
HAL Id: lirmm-01081429
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01081429

Submitted on 7 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

From Indexing Data Structures to de Bruijn Graphs
Bastien Cazaux, Thierry Lecroq, Eric Rivals

To cite this version:
Bastien Cazaux, Thierry Lecroq, Eric Rivals. From Indexing Data Structures to de Bruijn Graphs.
CPM: Combinatorial Pattern Matching, Moscow State University, Jun 2014, Moscow, Russia. pp.89-
99, �10.1007/978-3-319-07566-2_10�. �lirmm-01081429�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01081429
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

From Indexing Data Structures to de Bruijn

Graphs∗

Bastien Cazaux†, Thierry Lecroq‡, Eric Rivals†

† L.I.R.M.M. & Institut Biologie Computationnelle

Université de Montpellier II, CNRS U.M.R. 5506

Montpellier, France
‡ LITIS EA 4108 & UFR des Sciences et des Techniques,

Université de Rouen, France

cazaux@lirmm.fr, thierry.lecroq@univ-rouen.fr, rivals@lirmm.fr

5th March 2014

Abstract

New technologies have tremendously increased sequencing throughput com-

pared to traditional techniques, thereby complicating DNA assembly. Hence, as-

sembly programs resort to de Bruijn graphs (dBG) of k-mers of short reads to

compute a set of long contigs, each being a putative segment of the sequenced

molecule. Other types of DNA sequence analysis, as well as preprocessing of the

reads for assembly, use classical data structures to index all substrings of the reads.

It is thus interesting to exhibit algorithms that directly build a dBG of order k from

a pre-existing index, and especially a contracted version of the dBG, where non

branching paths are condensed into single nodes. Here, we formalise the relation-

ship between suffix trees/arrays and dBGs, and exhibit linear time algorithms for

constructing the full or contracted dBGs. Finally, we provide hints explaining why

this bridge between indexes and dBGs enables to dynamically update the order k

of the graph.

1 Introduction

The de Bruijn graph (dBG) of order k on an alphabet Σ with σ symbols has σk vertices

corresponding to all the possible distinct strings of length k on the alphabet Σ and

there is a directed edge from vertex u to vertex v if the suffix of u of length k − 1

equals the prefix of v of length k− 1. De Bruijn graphs have various properties and

∗This work is supported by ANR Colib’read (ANR-12-BS02-0008) and Défi MASTODONS SePhHaDe

from CNRS.
†

‡

1

http://colibread.inria.fr
http://www.lirmm.fr/mastodons

are more commonly defined on all the k-mers of the strings of a finite set rather than

on all the possible strings of length k on the alphabet. When a vertex u has only

one outgoing edge to vertex v and when v has only one ingoing edge from vertex u

then the two vertices can be merged. By applying this rule whenever possible, one

gets a contracted dBG. dBGs occur in different contexts. In bioinformatics they are

largely used in de novo assembly due to a result of Pevzner et al [14]. Indeed recent

sequencing technologies allow to obtain hundreds of million of short sequencing reads

(about 100 nucleotides long) from one DNA sample. Next step is to reconstruct the

genome sequence using assembly algorithms. However, the volume of read data to

process has forced the shift from the classical overlap graph approach, which requires

too much memory, towards a de Bruijn Graph where vertices are k-mers of the reads. In

this context, there exist compact exact data structures for storing dBGs [7, 3, 15, 5] and

probabilistic data structures such as Bloom filters [12, 6, 5]. Onodera et al propose to

add to the succinct dBG representation of [3] a bit vector marking the branching nodes,

thereby enabling them to simulate efficiently a contracted dBG, where each simple path

is reduced to one edge [11].

Suffix trees are well-known indexing data structures that enable to store and retrieve

all the factors of a given string. They can be adapted to a finite set of strings and are then

called generalised suffix trees (GSTs). They can be built in linear time and space. They

have been widely studied and used in a large number of applications (see [1, 9]). In

practice, they consume too much space and are often replaced by the more economical

suffix arrays [10], which have the same properties.

Read analysis and assembly include preliminary steps like filtering and error cor-

rection. To speed up such steps, some algorithms index the substrings, or the k-mers of

the reads. Hence, before the assembly starts, the read set has already been indexed and

mined. For instance, the error correction software hybrid-shrec builds a GST of all

reads [16]. It can thus be efficient to enable the construction of the dBG for the sub-

sequent assembly, directly from the index rather than from scratch. For these reasons,

we set out to find algorithms that transform usual indexes into a dBG or a contracted

dBG. It is also of theoretical interest to build bridges between well studied indexes and

this graph on words. Despite recent results [15, 11], formal methods for constructing

dBG from suffix trees are an open question. Notably, the String Graph, which is also

used for genome assembly, can be constructed from a FM-index [17].

In this article, given a finite collection S of strings and an integer k we formalise

the relationship between GSTs and dBGs and show how to linearly build the dBG of

order k for S. Next we show how to directly build the contracted dBG of order k for S

in linear time and space, without building the dBG. We also show how to perform the

same task using suffix arrays. Finally, we give some hints on how to dynamically adapt

our dBG construction from order k to k−1 or from k to k+1.

2 Preliminaries

An alphabet Σ is a finite set of letters. A finite sequence of elements of Σ is called a

word or a string. The set of all words over Σ is denoted by Σ⋆, and ε denotes the empty

word. For a word x, |x| denotes the length of x. Given two words x and y, we denote by

2

1 2 3 4 5 6 7
s1 b a c b a b
s2 c b a b c a a
s3 b c a a c b
s4 c b a a c
s5 b b a c b a a

Figure 1: SupportS(ba) = {(1,1),(1,4),(2,2),(4,2),(5,2),(5,5)}, RCS(ba) =
{ε,c,cb,cba,cbab,b,bc,bca,bcaa,a,ac,cbaa}, LCS(ba) = {ε,c,ac,bac,b,bbac} and

dS(ba) = 0. One has RCS(ba)∩Σ = {a,b,c}. Thus, the word ba is not right extensible

in S (see Def. 2.2).

xy the concatenation of x and y. For every 1≤ i≤ j ≤ |x|, x[i] denotes the i-th letter of x,

and x[i .. j] denotes the substring or factor x[i]x[i+1] . . .x[j]. Let k be a positive integer.

If |x| ≥ k, f irstk(x) is the prefix of length k of x and lastk(x) is the suffix of length k of

x. A substring of length k of x is called a k-mer of x. For i such that 1 ≤ i ≤ |x|−k+1,

(x)k,i is the k-mer of x starting in position i, i.e. (x)k,i = x[i .. i+ k− 1]. Thus we have

f irstk(x) = (x)k,1 and lastk(x) = (x)k,|x|−k+1. We denote by ♯(Λ) the cardinality of any

finite set Λ.

Let S = {s1, . . . ,sn} be a finite set of words. Let us denote the sum of the lengths

of the input strings by ‖S‖ := ∑si∈S |si|. We denote by FS the set of factors of words of

S. For a word w of FS,

• SupportS(w) is the set of pairs (i, j), where w is the substring (si)|w|, j. SupportS(w)
is called the support of w in S.

• RCS(w) (resp. LCS(w)) is the set of right context (resp. left context) of the word

w in S, i.e. the set of words w′ such that ww′ ∈ FS (resp. w′w ∈ FS).

• ⌈w⌉S is the word ww′ where w′ is the longest word of RCS(w) such that SupportS(w)=
SupportS(ww′). In other words, such that w and ww′ have exactly the same sup-

port in S.

• ⌊w⌋S is the word w′ where w′ is the longest prefix of w such that

SupportS(w
′) 6= SupportS(w).

• dS(w) := |⌈w⌉S|− |w|.

In other words, ⌈w⌉S is the longest extension of w having the same support than w

in S, while ⌊w⌋S is the shortest reduction of w with a support different from that of w

in S. These definitions are illustrated in a running example, with

S := {bacbab,cbabcaa,bcaacb,cbaac,bbacbaa}, presented in Fig. 1.

We give the definition of a de Bruijn graph for assembly (dBG for short), which

differs from the original definition of a complete graph over all possible words of length

k stated by de Bruijn [8].

Definition 2.1 Let k be a positive integer and S := {s1, . . . ,sn} be a set of n words.

The de Bruijn graph of order k for S, denoted by DBG+
k , is a directed graph, DBG+

k :=

3

1 2 3 4 5 6 7
s1 b a c b a b
s2 c b a b c a a
s3 b c a a c b
s4 c b a a c
s5 b b a c b a a

(a)

ba ab

aa

ac

(b)

1 2 3 4 5 6 7
s1 b a c b a b
s2 c b a b c a a
s3 b c a a c b
s4 c b a a c
s5 b b a c b a a

(c)

ba
cb

bb

(d)

Figure 2: Examples of arcs from DBG+
k . (a) letters in the right context of ba, and (b)

the successors of node ba in DBG+
2 ; one for each letter in RCS(w)∩Σ. (c) letters in the

left context of ba, and (d) the predecessors of node ba in DBG+
2 .

(V+,E+), whose vertices are the k-mers of words of S and where an arc links u to v if

and only if u and v are two successive k-mers of a word of S, i.e.: V+ := FS ∩Σk and

E+ := {(u,v) ∈V+2
| lastk−1(u) = f irstk−1(v) and v[k] ∈ RCS(u)}.

Examples of arcs are displayed on Fig. 2.

Let us introduce now the notions of extensibility for a substring of S and that of a

Contracted dBG (CdBG for short).

Definition 2.2 (Extensibility) Let w be a word of FS, w is right extensible in S if and

only if ♯(RCS(w)∩Σ) = 1 and w is left extensible in S if and only if ♯(LCS(w)∩Σ) = 1.

As S is clear from the context, we simply omit the “in S”. Let w be a word of

Σ⋆. The word w is said to be a unique k′-mer of S if and only if k′ ≥ k and for all

i ∈ [1..k′− k+ 1], (w)k,i ∈ FS and for all j ∈ [1..k′− k], (w)k, j is right extensible and

(w)k, j+1 is left extensible.

Definition 2.3 A contracted de Bruijn graph of order k, denoted by CDBG+
k =(V+

c ,E+
c),

is a directed graph where:

V+
c = {w∈Σ⋆ |w is a k′-mer unique maximal by substring and k′≥ k} and E+

c = {(u,v)∈

V+
c

2
| lastk−1(u) = f irstk−1(v) and v[k] ∈ RCS(lastk(u))}.

Note that in the previous definition, an element w in V+
c does not necessarily belong

to FS, since w may only exist as the substring of the agglomeration of two words of

S. Thus, let w be a k′-mer unique maximal by substring with k′ ≥ k: lastk(w) is not

right extensible or RCS(lastk(w))∩Σ = {a} and lastk−1(w) · a is not left extensible,

f irstk(w) is not left extensible or LCS(f irstk(w))∩Σ = {a} and a · f irstk−1(w) is not

right extensible. With this argument, we have both following propositions.

Proposition 1 Let (u,v)∈ E+
c ; (lastk(u), f irstk(v))∈ E+ and there exists w ∈V+ such

that (w, f irstk(v))∈E+\{(lastk(u), f irstk(v))} or (lastk(u),w)∈E+\{(lastk(u), f irstk(v))}.

Proposition 2 Let (u,v)∈E+. If u is right extensible and v is left extensible, then there

exists w ∈ V+
c such that uv[k] is a substring of w. Otherwise, there exists (u′,v′) ∈ E+

c

such that u = lastk(u
′) and v = f irstk(v

′).

According to Prop. 1 and 2, CDBG+
k is the graph DBG+

k where the arcs (u,v) are

contracted if and only if u is right extensible and v is left extensible.

4

3 Definition of de Bruijn Graphs with words

Let k be a positive integer. We define the following three subsets of FS.

• InitExactS,k = {w ∈ FS | |w|= k and dS(w) = 0}

• InitS,k = {w ∈ FS | |w| ≥ k and dS(f irstk(w)) = |w|− k}

• SubInitS,k = InitExactS,k−1

A word of InitExactS,k is either only the suffix of some si or has at least two right

extensions, while the first k-mer of a word in InitS,k \ InitExactS,k has only one right

extension.

Proposition 3 InitExactS,k = InitS,k ∩{w ∈ FS | |w|= k}.

For w an element of InitS,k, f irstk(w) is a k-mer of S. Given two words w1 et w2 of

InitS,k, f irstk(w1) and f irstk(w2) are distinct k-mers of S. Furthermore for each k-mer

w′ of S, there exists a word w of InitS,k such that f irstk(w) = w′. From this, we get the

following proposition.

Proposition 4 There exists a bijection between InitS,k and the set of the k-mers of S.

According to Def. 2.1 and Prop. 4, each vertex of DBG+
k can be assimilated to

a unique element of InitS,k. To define the arcs between the words of InitS,k, which

correspond to arcs of DBG+
k , we need the following proposition, which states that each

single letter that is a right extension of w gives rise to a single arc.

Proposition 5 For w ∈ InitExactS,k and a ∈ Σ∩RCS(w), there exists a unique w′ ∈
InitS,k such that lastk−1(w)a is a prefix of w′.

The set InitS,k represents the nodes of DBG+
k . Let us now build the set of arcs that is

isomorphic to E+. Let w be a word of InitS,k and Succ(w) denote the set of successors

of f irstk(w): Succ(w) := {x ∈ InitS,k | (f irstk(w), f irstk(x)) ∈ E+}. We know that for

each letter a in RCS(w), there exists an arc from f irstk(w) to f irstk(last|w|−1(w)a) in

DBG+
k . We consider two cases depending on the length of w:

Case 1 |w|= k. According to Prop. 3, w∈ InitExactS,k and hence lastk−1(w)∈ SubInitS,k.

Therefore, the outgoing arcs of w in DBG+
k are the arcs from w to w′ satisfying

the condition of Prop. 5. Then,

Succ(w) = ∪a∈Σ∩RCS(w)⌈lastk−1(w)a⌉S.

Case 2 |w|> k. As w is longer than k, it contains the next k-mer; hence

f irstk(last|w|−1(w)a) = f irstk(last|w|−1(w)), and there exists a unique outgo-

ing arc of w: that from w to ⌈w[2 ..k]⌉S. Indeed, by definition of InitS,k,

⌈w[2 ..k]⌉S ∈ InitS,k, and thus Succ(w) = {⌈w[2 ..k]⌉S}.

Now, we can build integrally DBG+
k or more exactly an isomorphic graph of DBG+

k .

Thus for simplicity, from now on we confound the graph we build with DBG+
k . To do

the same with CDBG+
k , we need to characterise the concepts of right and left extensi-

bility in terms of word properties. By the construction of DBG+
k , we have the following

results.

5

Proposition 6 Let w be a word of InitS,k. f irstk(w) is right extensible if and only if

|w|> k or ♯(RCS(w)∩Σ) = 1.

Proposition 7 Let w be a word of InitS,k such that f irstk(w) is right extensible. Let the

letter a be the unique element of RCS(f irstk(w))∩Σ, then lastk−1(f irstk(w))a is left

extensible if and only if ♯(SupportS(f irstk(w))) = ♯(SupportS(lastk−1(f irstk(w))a) \
{(i,1) | 1 ≤ i ≤ n}).

We present a generic algorithm to build incrementally CDBG+
k . In the following

sections, we exhibit algorithms to compute DBG+
k and CDBG+

k for two important in-

dexing structures.

4 Transition from the suffix tree to de Bruijn graphs

A generalised ST (GST) can index the substrings of a set of words. Generally for

this sake, all words are concatenated and separated by a special symbol not occurring

elsewhere. However, this trick is not compulsory, and an alternative is to keep the

indication of a terminating node within each node.

4.1 The Suffix Tree and its properties

The Generalised Suffix Tree (GST) of a set of words S is the suffix tree of S, where

each word of S does not finish necessarily by a letter of unique occurrence. Hence, for

each node v of the GST of S, we keep in memory the set, denoted by SuffS(v), of pairs

(i, j) such that the word represented by v is the suffix of si starting at position j. Let us

denote by T the GST of S (from now on, we simply say the tree) and by VT its set of

nodes. For v ∈VT , Children(v) denotes its set of children and f (v) its parent.

Some nodes of T may have just one child. The size of the union of SuffS(v) for

all node v of T equals the number of leaves in the GST when the words end with a

terminating symbol. Hence, the space to store T and the sets SuffS(.) is linear in ‖S‖.

By simplicity, for a node v of T , the word represented by v is confused with v. For each

node v of T , v ∈ FS. As all elements of FS are not necessarily represented by a node of

T , we give the following proposition.

Proposition 8 The set of nodes of T is exactly the set of words w of FS such that

dS(w) = 0.

We recall the notion of a suffix link (SL) for any node v of T (leaves included). Let

sl(v) denote the node targeted by the suffix link of v, i.e. sl(v) = v[2 .. |v|]. By definition

of a suffix tree, for all w ∈ FS, there exists a node v of T such that w is a prefix of v. Let

v′ the node of minimal length of T such that w is a prefix of v, then |v′|= |w|+dS(w),
and therefore ⌈w⌉S = v′.

Proposition 9 Let w ∈ FS. Then |⌈w⌉S| ≥ |w|> | f (⌈w⌉S)|, where f (⌈w⌉S) is the parent

of ⌈w⌉S in T .

6

72 75

62 65

34

33

b
c

a

51

32

caa
b

44

43

35

a

21

b
a

b

c

a

61 63

55

24

c

a

41

22

caa
b

25

a

11

b

cba

a

42

13

cb

caa

b

54

52

23

cb

aa

53

45

14

c

a

31

12

caa
b

a
b

c

15

b
acb

aa

Figure 3: The GST for our running example and the constructed dBG for k := 2. Square

nodes represent words that occur as a suffix of some si, circle nodes are the other nodes

of T . Grey nodes represent the vertices of the dBG. Each square node contains i j when

it represents the suffix of s j starting at position i. The curved arrows are the edges of

the dBG; those in dotted lines correspond to Case 1 and those in doubled lines to Case

2 (see p. 7).

4.2 Construction of DBG+
k

Let [x1..xm] be the set of k-mers of S. According to the definition of InitS,k and to

Prop. 4, InitS,k = [⌈x1⌉S..⌈xm⌉S]. Thus, by Prop. 9, InitS,k = {v ∈ VT | | f (v)| < k and

|v| ≥ k}. Similarly, InitExactS,k = {v ∈ VT | |v| = k}. Now, it appears clearly that

InitExactS,k is a subset of InitS,k, since for all v ∈VT , | f (v)|< |v|.
We consider the same two cases as for the construction of E+ on p. 5, but in the

case of a tree. Let v ∈ InitS,k.

Case 1 |v|= k (Fig. 4a). As v ∈ InitExactS,k, sl(v) ∈ SubInitS,k. Therefore, each child

u of sl(v) is an element of InitS,k. Thus, the outgoing arcs of v in DBG+
k are the

arcs from v to the child u of sl(v) where the first letter of the label between sl(v)
and u is an element of the right context of v. As the set of the first letters of the

label between v and children of v is exactly RCS(v)∩Σ, the number of outgoing

arcs of v in DBG+
k is the number of children of v. To build the outgoing arcs

of v in DBG+
k , for each child u′ of v, we associate v with the node of InitS,k

between the root and sl(u′), i.e. ⌈ f irstk(sl(u′))⌉S.

Case 2 |v| > k (Fig. 4b and 4c). We have that sl(v) is a node of VT . As |v| > k,

|sl(v)| ≥ k. Thus, there exists an element of InitS,k between the root and sl(v).
We associate v with this node, i.e. ⌈ f irstk(sl(v))⌉S.

We illustrate these two cases in Fig. 3. For Case 1: v is 62 65 , sl(v) is 72 75 , the

unique child u′ of v is 34 , and sl(u′) is 44 , which is in InitS,k. For Case 2: v is 15 ,

sl(v) is 25 , and ⌈ f irstk(sl(v))⌉S is .

7

(a) (b) (c)

Figure 4: Figures (a), (b) and (c) show Case 1 and Case 2 for the arcs of DBG+
k . The

grey node is v. The dashed arcs correspond to suffix links. The arcs of the dBG are in

bold (a) for the Case 1 and in dotted lines (b) (c) for the Case 2.

In both cases, building the arcs of E+ requires to follow the SL of some node. The

node, say u, pointed at by a SL may not be initial. Hence, the initial node representing

the associated first k-mer of u is the only ancestral initial node of u. We equip each

such node u with a pointer p(u) that points to the only initial node on its path from the

root. In other words, for any u /∈ InitS,k such that |u|> k, one has p(u) := ⌈ f irstk(u)⌉S.

The algorithm to build the DBG+
k is as follows. A first depth first traversal of T

allows to collect the nodes of InitS,k and for each such node to set the pointer p(.) of

all its descendants in the tree. Finally to build E+, one scans through InitS,k and for

each node v one adds Succ(v) to E+ using the formula given above. Altogether this

algorithm takes a time linear in the size of T . Moreover, the number of arcs in E+ is

linear in the total number of children of initial nodes. This gives us the following result.

Theorem 10 For a set of words S, building the de Bruijn Graph of order k, DBG+
k

takes linear time and space in |T | or in ‖S‖.

4.3 Construction of CDBG+
k

In Section 3, we have seen an algorithm that allows to compute directly CDBG+
k pro-

vided that one can determine if a node v is right extensible and if next(v) is left exten-

sible, where next(v) denotes the only successor of v. Let us see how to compute the

extensibility in the case of a Suffix Tree.

By applying Prop. 6 in the case of tree, for an element v of InitS,k, f irstk(v) is

right extensible if and only if |v| > k or ♯(Children(v)) = 1. Thus checking the right

extensibility of a node takes constant time.

For the left extensibility of the single successor of a node, one only needs the size

of support of some nodes (Prop. 7). Let us see first how to compute ♯(SupportS(.)) on

the tree, and then how to apply Prop. 7.

Proposition 11 Let v be a word of FS and VT (⌈v⌉S) denotes the set of nodes of the

subtree rooted in ⌈v⌉S. SupportS(v) = ∪v′∈VT (⌈v⌉S)SuffS(v
′).

Along a traversal of the tree, we compute and store ♯(SupportS(v)) and

♯(SupportS(v)∩{(i,1) | 1 ≤ i ≤ n}) for each node v in linear time in |T |.
Let v be a word of InitS,k such that f irstk(v) is right extensible.

8

Case 1 If |v| = k then f irstk(v) = v and ♯(Children(v)) = 1. Let u be the only child

of v. Thus, |u| > k, ♯(RCS(v) ∩ Σ) = {u[k + 1]}, and lastk−1(v)u[k + 1] =
f irstk(sl(u)). Hence, ♯(SupportS(v)) = ♯(SupportS(f irstk(sl(u))) \ {(i,1) |
1 ≤ i ≤ n}) and by Prop. 7, f irstk(sl(u)) is left extensible.

Case 2 If |v|> k then ♯(RCS(f irstk(v))∩Σ) = {v[k+1]} and lastk−1(f irstk(v)) · v[k+
1] = lastk(f irstk+1(v)) = f irstk(sl(v)). By Prop. 7, f irstk(sl(v)) is left exten-

sible if and only if

♯(SupportS(f irstk(v))) = ♯(SupportS(f irstk(sl(v)))\{(i,1) | 1 ≤ i ≤ n})

As ♯(SupportS(f irstk(v)))= ♯(SupportS(⌈ f irstk(v)⌉S)) and ♯(SupportS(v)\{(i,1) |
1 ≤ i ≤ n}) = ♯(SupportS(v))− ♯(SupportS(v)∩{(i,1) | 1 ≤ i ≤ n}), determining if

next(v) is left extensible takes constant time. To conclude, as for any initial node v, we

can compute in O(1) its set of successors Succ(v), its right extensibility, and the left

extensibility of its single successor, we obtain a complexity that is linear in the size of

DBG+
k , since each successor is accessed only once. This yields Theorem 12.

Theorem 12 For a set of words S, building the Contracted de Bruijn Graph of order

k, CDBG+
k takes linear time and space in |T | or in ‖S‖.

5 dBG and CdBG from Suffix Array

For lack of space the reader is referred to [4] for the full details.

Theorem 13 The dBG of order k, CDBG+
k , for a set of words S can be built in a time

and space that are linear in ‖S‖ using the generalised suffix array of S.

6 Dynamically updating the order of DBG+
.

Genome assembly from short reads requires to test multiple values of k for the dBG.

Indeed, the presence of genomic repeats, makes some order k appropriate to assemble

non repetitive regions, and larger orders necessary to disentangle (at least some) re-

peated regions. Combining assemblies obtained from DBG+
k for successive values of

k is the key of IDBA assembler, but the dBG is rebuilt for each value [13]. Other tools

also exploit this idea [2]. It is thus interesting to dynamically change the order of the

dBG. Here, we argue that starting the construction from an index instead of the raw

sequences ease the update. On page 7, we mention which information are needed in

general to build DBG+
k . Assume the words are indexed in a suffix tree T (as in Sec-

tion 4.2). Consider changing k to k− 1. First, only the nodes of InitS,k whose parent

represents a word of length k− 1 are substituted by their parent in DBG+
k−1, all other

nodes remain unchanged. Thus, any arc of order k either stays as such or has some

of its endpoints shifted toward the parent node in T . In any case, updating an arc de-

pends only on the nature of its nodes in DBG+
k−1 (whether they belong to InitS,k−1 or

InitExactS,k−1), and can be computed in constant time.

The same situation arises when changing k to k+1. First, only nodes of InitExactS,k
change in DBG+

k+1: they are substituted by their children. Updating an arc also depends

9

on the nature of its nodes: it can create a fork towards the children of the destination

node if the latter changes, or it can be multiplied and join each children of the source

to one children of the destination if both nodes change. Then, the label of the children

in T indicate which children to connect to. It can be seen that updating from DBG+
k to

DBG+
k+1 in either direction takes linear time in the size of T . Moreover, as updating the

support of nodes in T is straightforward, we can readily apply the contraction algorithm

to obtain CDBG+
k+1 (see Section 4.3).

References

[1] A. Apostolico. The myriad virtues of suffix trees. In A. Apostolico and Z. Galil,

editors, Combinatorial Algorithms on Words, volume 12 of NATO Advanced Sci-

ence Institutes, Series F, pages 85–96. Springer, 1985.

[2] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, and et al. SPAdes: a new

genome assembly algorithm and its applications to single-cell sequencing. Jour-

nal of Computational Biology, 19(5):455–477, 2012.

[3] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya. Succinct de Bruijn Graphs.

In WABI, volume 7534 of LNCS, pages 225–235, 2012.

[4] B. Cazaux, T. Lecroq, and E. Rivals. From Indexing Data Structures to de Bruijn

Graphs. Technical report, lirmm-00950983, Feb. 2014.

[5] R. Chikhi, A. Limasset, S. Jackman, J. Simpson, and P. Medvedev. On the repre-

sentation of de Bruijn graphs. ArXiv e-prints, Jan. 2014.

[6] R. Chikhi and G. Rizk. Space-efficient and exact de Bruijn graph representation

based on a Bloom filter. Algorithms for Molecular Biology, 8:22, 2013.

[7] T. C. Conway and A. J. Bromage. Succinct data structures for assembling large

genomes. Bioinformatics, 27(4):479–486, 2011.

[8] N. de Bruijn. On bases for the set of integers. Publ. Math. Debrecen, 1:232–242,

1950.

[9] D. Gusfield. Algorithms on strings, trees and sequences: computer science and

computational biology. Cambridge University Press, Cambridge, 1997.

[10] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.

SIAM J. Comput., 22(5):935–948, 1993.

[11] T. Onodera, K. Sadakane, and T. Shibuya. Detecting superbubbles in assembly

graphs. In WABI, volume 8126 of LNCS, pages 338–348. 2013.

[12] J. Pell, A. Hintze, R. Canino-Koning, A. Howe, J. Tiedje, and C. Brown. Scaling

metagenome sequence assembly with probabilistic de Bruijn graphs. Proc. Natl

Acad. Sci. USA, 109(33):13272–13277, 2012.

10

[13] Y. Peng, H. Leung, S. Yiu, and F. Chin. IDBA A Practical Iterative de Bruijn

Graph De Novo Assembler. In RECOMB, volume 6044 of LNCS. 2010.

[14] P. Pevzner, H. Tang, and M. Waterman. An Eulerian path approach to DNA

fragment assembly. Proc. Natl Acad. Sci. USA, 98(17):9748–9753, 2001.

[15] E. A. Rødland. Compact representation of k-mer de Bruijn graphs for genome

read assembly. BMC Bioinformatics, 14:313, 2013.

[16] L. Salmela. Correction of sequencing errors in a mixed set of reads. Bioinformat-

ics, 26(10):1284–1290, 2010.

[17] J. T. Simpson and R. Durbin. Efficient construction of an assembly string graph

using the FM-index. Bioinformatics, 26(12):i367–i373, 2010.

11

	1 Introduction
	2 Preliminaries
	3 Definition of de Bruijn Graphs with words
	4 Transition from the suffix tree to de Bruijn graphs
	4.1 The Suffix Tree and its properties
	4.2 Construction of DBG+k
	4.3 Construction of CDBG+k

	5 dBG and CdBG from Suffix Array
	6 Dynamically updating the order of DBG+.

