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Abstract

Invented in the 70’s, the Suffix Tree (ST) is a data structure that indexes all substrings of
a text in linear space. Although more space demanding than other indexes, the ST remains an
inspiring index likely because it represents substrings in a hierarchical tree structure. Along
time, STs have acquired a central position in text algorithmics with myriad of algorithms and
applications to for instance motif discovery, biological sequence comparison, or text compres-
sion. It is well known that different words can lead to the same suffix tree structure with
different labels. Moreover, the properties of STs prevent all tree structures from being STs.
Even the suffix links, which play a key role in efficient construction algorithms and many ap-
plications, are not sufficient to discriminate the suffix trees of distinct words. The question of
recognising which trees can be STs has been raised and termed Reverse Engineering on STs.
For the case where a tree is given with potential suffix links, a seminal work provides a linear
time solution only for binary alphabets. Here, we also investigate the Reverse Engineering
problem on ST with links and exhibit a novel approach and algorithm. Hopefully, this new
suffix tree characterisation makes up a valuable step towards a better understanding of suffix
tree combinatorics.

∗This work is supported by ANR Colib’read (ANR-12-BS02-0008) and Défi MASTODONS SePhHaDe from
CNRS. This article is published in J. Discrete Algorithms in 2014, see [2] http://dx.doi.org/10.1016/j.jda.
2014.07.002.
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1 Introduction
Forty years after its invention, the Suffix Tree (ST) remains a ubiquitous data structure for indexing
all substrings of a text [3] and still inspires many researchers. Given a word w, the ST of w can
be build in linear time and space using well-known construction algorithms [9, 6, 8, 1, 3]. To
achieve linear time construction, all internal nodes of a ST are equipped with an edge of a different
type called a suffix link. Once built, the ST is kept in memory and serves for matching exactly
any given pattern in a time linear in the pattern length rather than in the text length [3]. However,
approximate pattern matching or overlap matching can also be achieved with STs, as well as many
other applications, for instance in bioinformatics [3].

To any word corresponds a suffix tree. As illustrated in Figure 1, two distinct words can give
rise to the same suffix tree (in terms of structure, not in terms of labels). Moreover, not all tree
structures can be a suffix tree. Hence, the reverse engineering problem (REST), which, given a
tree asks for a word whose suffix tree is isomorphic to the input tree, is a natural, but non trivial
question. How does one characterise a tree that is a suffix tree? Which strings do generate the same
ST? How many distinct STs exist for strings of a given length? All these questions remain open,
not mentioning enumeration or random sampling. To our knowledge, the problem REST has been
studied in a master thesis [7]1, and in a special case in one article, namely when the tree and its
potential suffix links2 are given as inputs [4, 5]. We call this version the SLI-REST (for Suffix Links
on Internal nodes - REST). Both reverse engineering problems are fundamental for enumerating,
counting, and even uniformly sampling suffix trees at random, in other words for understanding
their combinatorics. The reverse engineering problem has been raised and addressed for other data
structures like border arrays, suffix arrays, etc (see references in [5]).
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Figure 1: Two different strings with an identical suffix tree structure: in (a) the string abcba$
and in (b) the string acbab$. Note that in both trees the suffix links (not represented) of internal
nodes are identical (they go to the root). Almost all labels from internal nodes to leaves are distinct
between the two suffix trees, even their lengths differ. No permutation of the alphabet symbols can
transform abcba$ into acbab$.

The SLI-REST problem is defined as follows: given a tree T and a tree of additional links F
(on the same nodes as T ), find a string whose ST and Suffix Links (SL) are isomorphic to (T,F).
In [4, 5], the authors first define SLI-REST, but then investigate a restricted version of it where T is

1A study that did not come up with a characterisation.
2We qualify those links of potential to distinguish them from true suffix links.
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an ordered tree and is equipped with a labelling function giving for each edge the first symbol of its
label. They propose an algorithm that builds the Suffix Tour Graph on the nodes of T , and checks
whether it contains a Eulerian cycle including the root and all leaves of T . On a binary alphabet, the
authors show with combinatorial arguments that the number of labelling functions is bounded by
a constant, and hence their algorithm runs in linear time. Since it explores all labelling functions,
the same algorithm can also output all strings solving SLI-REST. However, the combinatorial
explosion of possible labelling functions for a larger alphabet makes it inappropriate. Here, we
propose a different approach for the general version of SLI-REST (where T is neither ordered, nor
labelled) and organise the paper as follows. Notation, definitions, and known properties are written
below for strings, suffix trees, and other concepts. Section 2 explains how to compute the labels
for all internal edges, Section 3 details the case where all nodes are equipped with potential suffix
links, while Section 4 explains how to find the potential suffix links of leaves and proposes an
algorithm for solving SLI-REST. Finally, Section 5 summarises the differences and improvements
between [5] approach and ours, and Section 6 concludes.

1.1 Notation on strings, trees and graphs.
An alphabet Σ is a finite set of letters. A word or string over Σ is a finite sequence of elements
of Σ. The set of all words over Σ is denoted by Σ?, and ε denotes the empty word. For a word
x, |x| denotes the length of x. Given two words x and y, we denote by xy the concatenation of x
and y. For every 1 ≤ i ≤ j ≤ |x|, x[i] denotes the i-th letter of x, and x[i ; j] denotes the substring
x[i]x[i+1] . . .x[ j]. The suffix of x starting at position i is denoted suffi(w). We denote by #(Λ) the
cardinality of any set Λ.

A directed graph G := (VG,EG) consists of a set of vertices VG and a set of directed edges EG
that is a subset of VG×VG. A Eulerian cycle in a graph G is a simple path that visits each edge
exactly once (with the same start and end vertices). It can be seen as a cyclic permutation of EG.
A Eulerian route is a traversal of a Eulerian cycle starting at a given vertex. The #(EG) possible
routes of a Eulerian cycle are all cyclic shifts one of another. A tree is a graph in which any two
vertices can be connected by a unique simple path. In a rooted tree T , the root is denoted by ⊥T ,
the vertices of VT are partitioned into internal nodes and leaves; so, VT := V in

T ∪V lea f
T . For any

node v ∈ VT , fT (v) denotes its unique father, while ChildrenT (v) is its set of children. A leaf has
no children and the root has no father. Moreover, a child of v that is a leaf is termed a chleaf ;
thus, children of v are partitioned into chleaves and non-leaf children (also called chin), which we
denote by ChleavesT (v) := ChildrenT (v)∩V lea f

T and ChildrenT (v) := ChleavesT (v)∪ChinT (v).
In addition, VT (v) denotes the set of nodes of the subtree of T rooted in v.

An alphabetisation of a tree T on an alphabet Σ is an injective mapping from the set of edges
going out⊥T to Σ. A labelling l of a tree T on an alphabet Σ is a mapping from ET onto Σ∗: it maps
an edge e to a word l(e) of Σ∗. Let u,v ∈VT such that v ∈VT (u), l̃(u,v) denotes the word formed
by the concatenation of edge labels on the (unique) path joining u to v in T , and l(v) := l( fT (v),v).
The (unique) word represented by node v with labelling l is l̃(v) := l̃(⊥T ,v).

Note that the notion of labelling function of [5] assigns the first letter to the labels of all edges;
so it does not coincide with our notion of labelling.
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1.2 Suffix trees
The suffix tree (ST) of a string w, denoted by STw, is a labelled rooted tree that encodes all the
suffixes of w. We assume that any string ends with a special symbol $ /∈ Σ, which implies that any
two suffixes cannot be a prefix of each other. The definition of a suffix tree requires that

C1: an internal node has at least two children,

C2: the labels of edges going from a node to its children start with distinct symbols,

C3: each suffix is represented by a leaf and conversely; leaves are numbered by the starting posi-
tion of their suffix,

C4: each edge is labelled by a non empty substring of w such that the concatenation of the labels
found on the path from a root to a leaf spells out the corresponding suffix.

Let Σw denote the alphabet of w; let Tw and lw denote respectively the rooted tree of STw and the
labelling induced by w on Tw. In other words, STw is a pair (Tw, lw).

From the above characterisation of STw, several well-known properties follow:

P1: Its number of leaves equals the length of w (#(V lea f
Tw

) = |w|); by C1 its number of internal
nodes satisfies #(V in

Tw
) ≤ |w| − 1, and thus its total number of nodes (and of edges) satisfies

#(VTw) ≤ 2 |w|− 1, which means altogether that the size of Tw is linear in |w|. Note that the
size of lw can be quadratic in |w|.

P2: By C1 and C2, the number of children of any internal node is smaller than the cardinality of
Σw (i.e. #(ChildrenTw(v)) ≤ #(Σw)). Moreover, the root ⊥Tw has exactly #(Σw) children and
exactly one of its leaves is labelled by $ (by hypothesis).

P3: An internal node v represents a maximal prefix, namely ˜lw(v), shared by all suffixes located at
the leaves of its subtree.

P4: Let λ be a bijective mapping from Σw onto any other alphabet, say Γ. Clearly, substituting the
letters of w using λ yields a word λ(w), whose ST is isomorphic to Tw, and whose labelling
results from applying λ on lw.

For linear time construction algorithms and many applications [9, 6, 8, 1, 3], internal nodes
of STs are equipped with a suffix link defined as follows. We extend this notion to leaves; so,
the following definition applies to all nodes of VT except the root (instead of V in

T ). Let SLw be the
mapping from VTw \{⊥Tw} to VTw that maps a node u to a node v iff suff2( ˜lw(u)) = ˜lw(v). We define
the directed graph Fw such that VFw :=VTw and (u,v) belongs to EFw iff SLw(u) = v. The edge (u,v)
is the suffix link of u. It follows that Fw is a tree rooted in ⊥Tw . We call Fw the complete suffixing
tree of STw.

Classically, SL equip only all internal nodes of a ST (except the root). By well-known property
of SL [3], each SL points to another internal node, with those of the children of the root pointing to
the root (which represents the empty string). Hence, the SL of internal nodes forms a tree rooted
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in the root of STw. For 0 < i≤ |w|, the SL of leaf i will point to leaf (i+1) (for suff2(suffi(w)) =
suff(i+1)(w)). Hence, the SL of the leaves build a chain going from leaf 1 to leaf |w| (which
represents the suffix $) and finally to the root of Tw. We termed the graph formed by Fw minus this
chain, the internal suffixing tree of STw. We thus summarise this in Proposition 1.

Proposition 1 (Suffix links) Let w be a string and STw denotes its suffix tree. Then

1. the suffix links of internal nodes form a tree rooted in the root of STw,

2. the suffix links of the leaves form a chain going through all suffixes in decreasing order of
length, that is from the longest suffix of w until its root.

Hence, Fw, the set of all suffix links, is a tree rooted in the root of STw.

As a corollary, only one leaf of STw, the one representing w itself, is a leaf in Fw. Note that the
edges of Fw are directed towards the root of T .

2 Reverse engineering: internal labelling
Let us refine the problem SLI-REST. Let k be the cardinality of the alphabet Σ. Let (T,F) be an
instance of SLI-REST. If any node in T has more than k children, then (T,F) cannot be the suffix
tree of a word written on alphabet Σ. Otherwise, by property P4 we can arbitrarily choose the
letters that belong to the alphabet and set Σ := {a1, . . . ,ak}. Once done, we can associate with each
outgoing edge of ⊥T , that is with each of its children, distinct letters of Σ as the first letter of their
label. By hypothesis, Σ contains enough letters and without loss of generality, we can assume that
⊥T has exactly k children. Now the question becomes: Find a word on alphabet Σ such that its
suffix tree and links are isomorphic to (T,F). For it is easy to choose a large enough k in linear
time in the size of (T,F), solving this question allows us to solve SLI-REST. Figure 2 shows our
running example with the input (T,F), that is the tree T in solid edges and the potential suffix links
in dashed edges, and the arbitrary choice of first letters labelling the edges going out of the root.

Now, we define a first necessary condition of ST, called the kinship condition (Definition 1),
and state an important result (Proposition 2) regarding the labels of all internal edges of T : If (T,F)
satisfies the kinship condition, the labels of all internal edges are uniquely determined. We will see
later how to compute them in linear time. Conversely, once the edges are labelled, one can find
where the SL of each internal node should point to. We can formally define the tree formed by this
set of SL (Definition 2). Clearly, any suffix tree satisfies the kinship condition.

Definition 1 (Kinship condition (Figure 3a)) We say that (T,F) satisfies the kinship condition if
and only if for any v ∈VF \ ({⊥F}∪ChildrenT (⊥T )), one has fF(v) ∈VT ( fF( fT (v))).

Verifying the kinship condition means checking for each node v whether fF( fT (v)) is an an-
cestor of fF(v) in T . Let l be a labelling of T . In the same way as Fw is defined from Tw and lw, we
define a rooted tree Fl from T and l.
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Figure 2: Running example: An input as a pair (T,F) with T a rooted tree (with solid edges) and
F defined on the internal nodes of T (with dashed edges), which gives the potential suffix links
of internal nodes. The same pair (T,F) is used a running example throughout this work. As one
searches a word on an alphabet of size 3, one sets Σ∪{$} = {a,b,c,$} and as suggested in the
text, one associates arbitrarily one letter to each edge linking the root of T to its children. These
symbols are also referred to as the first letter of the branch since for each node in the subtree of
that branch, the label in a suffix tree must start with this letter.

Definition 2 (Fl) Let l be a labelling of T . Fl is a rooted tree whose set of vertices is VT and for
any two nodes u,v distinct from ⊥T , (u,v) is an edge of Fl if and only if suff2(l̃(u)) = l̃(v).

Proposition 2 Let F a potential, complete suffixing tree of T . Then (T,F) satisfies the kinship
condition if and only if there exists a unique labelling l such that the tree of suffix links implied by
l equals F (iff Fl = F).

Throughout the paper, we denote by lF the unique labelling as implied by Proposition 2.
Proof ”⇒ ” Suppose that (T,F) satisfies the kinship condition and let l be a labelling of T

such that Fl = F . Among internal nodes minus the root, we consider two cases: either v is a child
of the root or it is not. Let us show that for all v ∈VF \ ({⊥F}∪ChildrenT (⊥T )),

l(v) = l̃( fF( fT (v)), fF(v)).

By the definitions of l̃ and Fl , we know that l̃(v) = l̃( fT (v))l(v) and suff2(l̃( fT (v))) = l̃( fF( fT (v))).
As l̃( fF(v)) = l̃( fF( fT (v)))l̃( fF( fT (v)), fF(v)) we obtain that l(v) = l̃( fF( fT (v)), fF(v)).

Moreover, for any labelling l on T satisfying Fl = F , if the node v is a child of the ⊥T , there
exists i ∈ [1,k] such that l(v) = ail̃( fF(v)). By construction, using a top-down traversal of F , we
have a unique labelling l such that Fl = F .

”⇐ ” Let l be the unique labelling such that Fl = F . By contraposition, assume that (T,F) do
not satisfy the kinship condition. It means that there exists a node v such that fF(v) /∈VT ( fF( fT (v))).
As Fl = F , l̃( fF( fT (v))) is a prefix of l̃( fF(v)), which leads to a contradiction and closes the proof.
ut

The proof of Proposition 2 contains a procedure to compute the complete labels of all internal
edges of T ; we call it the internal labelling procedure. As the kinship condition can be verified

6



(a) Kinship condition

β

a.α

β

α

v

fT (v)

fF(v)

fF( fT (v))

(b) Separation condition (Def. 4 p. 8)

bβ1β2 cγ1γ2

aα

γ2

cγ1

β2

bβ1

α

v

v1 v2

fF(v1)fF(v2)

fF(v)

Figure 3: Illustration of two necessary conditions that nodes of a tree must satisfy in order to be a
suffix tree. In (a) the kinship condition: the dashed edges from v (green) to fF(v) is required since
fT (v) has a link to fF( fT (v)). In (b) the separation condition: the dashed edges going out of v1
and v2 must end up in different branches under fF(v).

in linear time, one can filter out any instance not satisfying it. On a remaining instance, we can
determine the labels of all nodes having a potential SL, that is an edge of F starting from them. If
F contains potential suffix links only for internal nodes, we must find the labels of edges going to
the leaves and check whether these build a proper word. If F contains potential suffix links for all
nodes (leaves included), we get all labels from Proposition 2, and we only need to check whether
they form a word. We investigate this second case in the next section.

3 Recognising a ST with a complete suffixing tree
In this section, we assume that all nodes are equipped with a suffix link. In other words, in the
input (T,F), we suppose F is a potential complete suffixing tree. We consider this case for two
reasons. First, it is not trivial especially when the input is invalid, and we will demonstrate this can
be solved efficiently by only looking at the structures of T and F without checking equality of the
labels. Second, once one knows the chain of suffix links that lists all leaves of T (hence all putative
suffixes), one can check the structure and then derive a word for (T,F) (see the algorithm below).
Thus, to solve SLI-REST in the general case one needs to find this chain, and Section 4 is devoted
to this question.

From Proposition 1, we know two structural properties that the set of suffix links must sat-
isfy. This translates into a necessary condition on F . It is easy to see that checking the structure
condition takes linear time in the size of (T,F).

Definition 3 (Structure condition) We say that (T,F) satisfies the structure condition if and only
if 1/ the set of internal nodes of T forms a subtree of F rooted in ⊥T , and 2/ the set of leaves T
forms a subtree of F rooted in ⊥T that is isomorphic to a chain.

Algorithm for computing a word w realising (T,F) By hypothesis, we know the first symbol
of the label for each child of the root of T (Section 1). For any node v (leaves included), this symbol
is the first letter of the word represented by v. With a simple traversal of T , one can store in each
node the corresponding first symbol of its branch. Since (T,F) satisfies the structure condition, we
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Figure 4: Running example: same tree with the labels on all edges going to internal nodes of T .
The labels are computed for any node that has a dashed edge, (i.e. a potential suffix link) starting
from it, as explained in the text. For instance, as the dashed edge link node 2 to node 1 one knows
that the label between these nodes has length one, as one is the number of suffix links between the
starting node and the root minus the same number for its father. Thus, this label equals a. The label
between nodes 2 and 4 must be of length 3−1= 2. Moreover, it must be equal to the concatenation
of labels between the nodes pointing to by the suffix links of 2 and of 4, that is equal to the labels
read between the root and node 5. Thus the label between node 2 and 4 equals ba.

know that suffix links of the leaves form a chain that lists all suffixes in order of decreasing length.
For any 1≤ i < |w|, going from leaf i to the next one (i.e. to leaf (i+1)) in this chain by following
one suffix link, means going from the suffix starting at position i in w to the one starting at position
i+1. The letter that is eliminated by doing so is w[i] and is thus the first letter of the branch of leaf
i. Hence, traversing the chain of leaves using their suffix links and printing at each step the first
letter of the branch of the current leaf outputs w.

If (T,F) satisfies the structure condition, then the only leaf of T that is a leaf of F , represents
the longest suffix, i.e., a candidate word that realises (T,F). One could compute this word, call
it z, as explained above, build its suffix tree with suffix links and labels, check whether these are
isomorphic with (T,F), and verify the equality between the labels. However, building all labels
and checking their equality for all edges can take quadratic time in the length of z. We want to
avoid this procedure. For this sake, we introduce another necessary condition (Definition 4) and
show that if (T,F) satisfies both the structure and separation conditions, then it forms a valid suffix
tree (Theorem 6). One can check these in linear time (Proposition 7) and compute a word realising
it also in linear time.

Definition 4 (Separation condition (Figure 3b)) We say that (T,F) satisfies the separation con-
dition if and only if for all v ∈ V in

F \ {⊥F}, for all v1,v2 ∈ChildrenT (v) with v1 6= v2, fF(v1) and
fF(v2) belong to distinct branches of the T -subtree rooted in fF(v).

One sees quite easily that the separation condition implies the kinship condition.

Proposition 3 If (T,F) satisfies the separation condition, it also satisfies the kinship condition.

8



The next proposition means that (T,F) labelled with lF satisfies condition C2.

Proposition 4 If (T,F) satisfies the separation condition, then for all v ∈ V in
F , for all v1,v2 ∈

ChildrenT (v):
v1 6= v2 ⇒ lF(v1)[1] 6= lF(v2)[1].

Lemma 5 (Relation between conditions) (T,F) satisfies the separation condition if and only if
it satisfies the kinship condition and if the labelling lF satisfies condition C2 on (T,F).

Proof The propositions 4 and 3 yield the result in one direction. For the other direction, let u,v,w
be nodes of T such that v,w are children of u and u 6= ⊥T . By hypothesis, lF satisfies condi-
tion C2, hence: lF(v)[1] 6= lF(w)[1]. By the kinship condition, we have for both v and w that
˜lF( fF(u), fF(v)) = lF(v) and ˜lF( fF(u), fF(w)) = lF(w). From which we deduce that the labels
˜lF( fF(u), fF(v)) and ˜lF( fF(u), fF(w)) start with distinct first symbols, and hence, the nodes fF(v)

and fF(w) lie on different branches below fF(u). ut

Theorem 6 (T,F) is realised if and only if (T,F) satisfies both the separation and the structure
conditions.

Proof ”⇒ ” From the properties of Suffix Trees, we get that (T,F) is realised, then it satisfies
the separation and the structure conditions.
”⇐ ” Assume (T,F) satisfies both the separation and the structure conditions. By Proposition 3,
there exists a unique labelling lF such that FlF = F . To prove the realisation of (T,F), we must
find a string w satisfying the four conditions of a suffix tree characterisation (see C1-4 on p. 4). C1
is satisfied by hypothesis since we filtered out any input tree T violating it. One deduces C2 from
Proposition 4 since (T,F) satisfies the separation condition.

From the structure condition, V lea f
T forms a subtree of F rooted in ⊥T that is isomorphic to a

chain graph. The leaf at the extremity of that chain, denote it v, is the only one in V lea f
T ∩V lea f

F . If
we set w := ˜lF(v), thanks to the chain, we can map bijectively each suffix of w to a leaf in T , which
gives condition C3. By construction, for any internal node u, there exists at least a leaf v ∈VT (u).
Hence, by the kinship condition, ˜lF(u) is a prefix of ˜lF(v), which is a suffix of w. Thus, ˜lF(u) is a
substring of w, which gives us condition C4 and concludes the proof. ut

Proposition 7 Verifying that (T,F) satisfies the separation condition takes linear time in #(V lea f
T ).

Proof To check that (T,F) satisfies the separation condition, we use Algorithm 1, which tra-
verses a subtree of F in a depth-first search manner. Let v be an internal node of T and v1,v2, . . . ,vk
be all its children in T . Let w (respectively w1,w2, . . . ,wk) be the father of v (respectively of
v1,v2, . . . ,vk) in F . We need to show that for any 1 ≤ i < j ≤ k, wi and w j belong to distinct
branches of the subtree rooted in w, i.e. that their lowest common ancestor is w.

If the algorithm returns False at iteration i, then two cases arise. Either z is the root of T (line
7), which means that z is not in the subtree of w and thus (T,F) violates the separation condition.

9



Algorithm 1: Separation(w,w1,w2, . . . ,wk).
Input : A set of nodes w,w1, . . . ,wk coloured white such that ChildrenT (w) = {w1, . . . ,wk}
Output: Returns True if for any 1≤ i < j ≤ k the lowest common ancestor in F of wi et w j

is w and False otherwise.
1 for i← 1 to k do
2 z← wi;
3 while z 6= w do
4 if z is black then return False;
5 else colour z black;
6 z← fT (z);
7 if z is the root of T then return False;

8 return True;

In the alternative case, z is already black (line 4), which occurs when z has already been visited
at an earlier iteration, say j < i, with child w j. Then z is the lowest common ancestor of wi and
w j. As z 6= w (for we are in the while loop - see line 3), (T,F) violates the separation condition. It
follows that the algorithm returns True if for all 1≤ i < j ≤ k, w is the lowest common ancestor of
wi and w j.

For each internal node v of T , we call Algorithm 1 with { fF(v)}∪{
⋃

vi∈ChildrenT (v) fF(vi)}. We
get that (T,F) satisfies the separation condition if and only if it returns True for all nodes of V in

T . As
soon as Algorithm 1 returns False for some node, we stop the overall verification and return False.
Note that if we proceed branch by branch and make the calls successively for the internal nodes
of a given branch, we ensure that all tested nodes locally satisfy the kinship condition (Def. 1). It
follows that amortised complexity of the whole verification is linear in the size of T . ut

Thanks to Propositions 2, 7, and to Theorem 6, we can both decide if (T,F) is realised, find
the labelling lF , and compute a string w realising (T,F) in linear time.

An example of an invalid input satisfying the structure and kinship condition Figure 5 dis-
plays a non trivial example to show that checking the separation condition is compulsory to dis-
criminate valid from invalid inputs. The input tree and the first letter of the edges’ label violate the
separation condition.

4 Recognising a ST with an internal suffixing tree
From Section 3, we know how to solve SLI-REST in linear time when all nodes are equipped with
a potential suffix link (i.e. have an out-going edge of F starting from it). However, in the general
case, only internal nodes have potential suffix links. In other words, the input F is a tree on the
internal nodes of T (if it has not been filtered at an earlier step because it violated simple necessary
conditions). In this section, we will see how to extend F such that each leaf also has a potential
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6 7

(b)

1

2

8

c

4

10
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11

b
b
a

9

b

a

3

5

13

b

14

b

15

b

a

12
a

b

6

c

7

$

(c)

13 11 14 10 15 9 12 8 6 7

b a b a b a b a c $

Figure 5: An invalid input (T,F) satisfying the kinship and structure conditions, but not the sep-
aration condition. T is identical to the tree in our running example, but F is not. (a) the input
tree T and its complete suffixing tree F ; (b) T with the labels of internal branches, the edges of F
only for internal nodes, and the first symbols of the labels of edges going to leaves. (c) The word
obtained with the algorithm described on p.7, with in yellow the substring corresponding to the
word represented by leaf 11. Obviously, the labelling of the leaves does not comply with condition
C2 of suffix trees.

suffix link and those links form a chain. This is equivalent to finding a permutation of the leaves.
The description is divided into three parts:

1. how to reduce the combinatorics of possible solutions? We explain why one can explore
solutions by considering only multi-permutations of a subset of internal nodes,

2. defining a graph on this subset of nodes,

3. defining the properties that a route which traverses this subset of nodes shall satisfy such that
the (T,F) can be realised.

Then, we will conclude by giving an algorithm that explores all potential valid routes and outputs
all distinct words realising (T,F).

4.1 From a chain of leaves to a multi-permutation of some internal nodes
We seek how to extend F by adding potential suffix links to the leaves. In Section 2, we showed
that a complete suffixing tree must satisfy the separation condition. One can see that from its
definition (Def. 4), this necessary condition must be inherited by the subtree of internal nodes of
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a complete suffixing tree. Thus, we deduce that the input F (of this section) must also satisfy the
separation condition.

Now, the Structure condition (Def. 3) requires that the potential suffix links of the leaves form
a chain on all leaves ending at the root of T , and such a chain is equivalent to a permutation of the
leaves. Clearly, one cannot explore the complete set of permutations in polynomial time; thus we
need to reduce the search space. First, remember that strings are ended by a terminating symbol
occurring only once, the dollar. From property P2 (see p. 2), ⊥T has a chleaf labelled by this
symbol, and it must represent the suffix of length 1 of a realising string. Hence, this leaf must
be the one that precedes the root in the chain. So now we seek a permutation of the set of leaves
minus that leaf of the root. From now on we only consider this subset of the leaves. We get that
the set of extensions of F such that (T,F ′) satisfies the structure condition (where F ′ denotes an
extension of F) is in one-to-one correspondence with the set of permutations of the leaves. Another
property helps us to restrict the combinatorics: in a suffix tree, if two leaves have the same father,
then exchanging their edge labels does not change the word, but only the starting position of the
corresponding suffixes (see Figure 6 on page 13). In other words, if (T,F ′) is realised by a word
w, then for any extension F ′′ obtained by exchanging two such leaves in the chain, we have that
(T,F ′′) is also realised by w, and conversely. This is an important property for, from now on,
we can "replace" in the permutation chleaves of the same node by their father. For simplicity,
we insert a dummy internal father node between any chleaf of ⊥T and ⊥T (Otherwise, all these
chleaves would be replaced by the root and we would lose the first letter of their labels; moreover,
with this transformation, the root has no chleaf anymore - see below). We obtain the following
property (see also Figure 6).

Proposition 8 Let σ be a leaf permutation such that (T,F) is realised by a word w, and u,v be
two leaves sharing the same father node. The permutation σ′ in which u and v have been swapped
is also realised by w.

Let us call Vc the subset of internal nodes of T that have at least one chleaf. For any v ∈ Vc,
let us denote by n(v) its number of chleaves. Hence, what we seek is a multi-permutation of the
nodes of Vc, where each element of Vc appears exactly n(v)≥ 1 times (each occurrence represents
one of its chleaves in the permutation of the leaves). We coined the term multi-permutation as
an equivalent of the term multi-set, but for a permutation. To transform a leaf permutation into a
multi-permutation of Vc one replaces each leaf by its father; hence, many leaf permutations map
to the same multi-permutation of Vc. Conversely, from a multi-permutation of Vc, one creates a
leaf permutation by replacing each node of Vc by one of its chleaves. We term this an induced leaf
permutation (see Figure 6). Thus, all possible relative orderings of the chleaves of a node exist
in distinct induced leaf permutations. Note that if two internal nodes are consecutive in a multi-
permutation, then two among their chleaves must be consecutive in an induced leaf permutation
(see Figures 6 and 7).

Proposition 9 Let σi be a multi-permutation of Vc and σ f be an induced leaf permutation of σi.
Let v1,v2 be two consecutive nodes of σi. Then, the edge of F starting in v1 (i.e. the potential suffix
link of v1) points to v2 or to an ancestor of v2 in T if and only if the extension made of F union σ f
satisfies the kinship condition.

12



Proof Assume (T,F) satisfies the separation condition; by Proposition 3 it satisfies the kinship
condition. As for any leaf u, its link in σ f points in the subtree of the node pointed to by the link
of its father, one gets that (T,F ∪σ f ) also satisfies the kinship condition. The proof in the other
direction follows from properties of suffix trees. ut

(a)

13 8 10 15 11 14 9 6 12 7

b a a b a b a c b $

(b)

5

13

a

14

c

15

b

(c)

14 8 10 15 11 13 9 6 12 7

b a a b a b a c b $

(d)

5

13

c

14

a

15

b

(e)

5 2 4 5 4 5 2 6 3 7

b a a b a b a c b $

Figure 6: Running example: different leaf permutations that exchange the order of chleaves of the
same node (here chleaves 13,14,15 of node 5 - see (a), (c)) are equivalent to exchanging the labels
of the edges leading to these chleaves (see (b), (d)). Hence, using a multi-permutation of nodes
of Vc (see (e)), as a representative of all its induced leaf permutations simplifies the algorithm. As
node 5 represents the word ba, the label corresponding to each chleaf is located two positions after
the chleaf number in table (a-c). See the node numbering on Figure 4.

We call an acceptable multi-permutation (AMP) any multi-permutation of Vc verifying the con-
dition of Proposition 9 and such that the last node is a dummy child of ⊥T . An extension of an
AMP is the extension of F obtained by taking the union of F with an induced leaf permutation
of this AMP. Two remarks regarding the extensions of an AMP. First, by the condition of Propo-
sition 9, any extension satisfies the kinship condition. Second, as an induced permutation of the
leaves is a chain of the leaves, the extension also satisfies the structure condition.

We say that a multi-permutation is realised if the extension of F built by an induced leaf
permutation is realised. We can deduce the next proposition, which allows to reduce drastically
the elements considered during the exploration.

Proposition 10 Let σi be a multi-permutation of Vc and let w a word. If σi is realised by w, then
any induced leaf permutation is realised by w.
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4.2 The Graph of Internal Nodes (GIN)
We are now ready to define the Graph of Internal Nodes (GIN), in which a route will be an accept-
able multi-permutation. The GIN is not a simple graph: several identical edges (in other words, a
multiedge) can link two vertices. Edges of the GIN are partitioned in two sets, denoted R and B
(Red and Blue), and thus the GIN is said to be bi-coloured. An edge of R is an edge of F : it links
u and the node of T pointed by its potential suffix link (i.e., fF(u)) with a multiplicity of n(u) (the
number of chleaves of node u). Now for a node v of T , we define c(v) as the number of edges in R
leaving the subtree of T rooted in v minus those pointing into this subtree. Because (T,F) satisfies
the kinship condition, c(v) ≥ 0 for any node v otherwise (T,F) cannot be a positive instance. It
is easy to filter out such instances. An edge of B is an edge of T linking the father of v to v with
multiplicity c(v). The notation (u,v) j is a shortcut for j identical edges (u,v).

Definition 5 (GIN, Figure 8) The Graph of Internal Nodes (GIN) of (T,F), denoted GIN(T,F) :=
(V,R,B) is a bi-coloured directed graph such that

V =VT \U

R = {(u,v)n(u)| fF(u) = v}

B = {(u,v)c(v)| fT (v) = u}
where (u,v) j denotes a j-multiedge from u to v and

U := {v ∈V in
T \{⊥T}|v has no edge neither in R nor B}.

We will look for routes that visit all edges of the GIN. By the definitions of R and B, one gets
that the numbers of in-going and out-going edges of any node v∈V are equal. The GIN is Eulerian
only if it is connected. In this case, we can search for Eulerian routes through the GIN that end by
an edge between a dummy child of ⊥T and ⊥T . We call such a route a primary route. The next
lemma shows that there exists a bijection between the sets of AMP and of primary routes of the
GIN.

Lemma 11 An acceptable multi-permutation of Vc is bijectively associated to a primary route of
the GIN.

Proof Let p be a primary route of the GIN. We define the multi-permutation of Vc associated with
p as follows: the multi-permutation, denoted Mp, keeps all starting nodes of each edge of R in
their order of appearance in p. Let u,v be two consecutive nodes in Mp. Since u and v are adjacent
in Mp, there exists only one edge of R between them in p. Thus, the remaining edges of the path
between u and v belong to B. Then, the outgoing edge of F starting in u points to an ancestor of v
in T . Moreover, as p ends on ⊥T , its last edge necessarily belongs to R, since only such edges can
go up in T . We obtain that Mp is an acceptable multi-permutation.

Now, let M be an AMP on Vc and let u,v be two consecutive nodes in M. As M is acceptable,
there exists a path between u and v in the GIN that starts with an edge of R and continues with
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edges of B. By definition of the GIN, this path is unique. Thus, by choosing this path for any two
consecutive nodes u,v of M, we build a unique route associated with M. Recall that in an AMP,
each node v occurs exactly n(v) times, with n(v) being both its number of chleaves and its number
of outgoing edges that belong to R. As the AMP satisfies Proposition 9, the definition of c(v)
implies that there exists a route traversing each edge of R exactly once. Assume that some edges
of B are not visited by this route, as the GIN is Eulerian, then these edges form a set of cycles.
However, this contradicts the fact edges in B belongs to the tree T . Hence, this route traverses all
edges of the GIN exactly once. Moreover, since M ends on a child of ⊥T , it is primary, which
concludes the proof. ut

(a)

u

u′

v

v′

(b)

u v

(c)

u′ v′

(d)

2
1

3

5

8

14

u

u′

v

v′

Figure 7: Link between primary routes, multi-permutations on Vc, and leaf permutations. (a)
Window over a primary route of the GIN showing the path between two nodes u,v of Vc, which
are by definition followed by an edge of R (in red). All other edges between u and v belong to B
(in blue). Thus, v follows u in the corresponding acceptable multi-permutation of internal nodes
(shown in (b)), and then u′, a chleaf of u, follows v′, a chleaf of v, in an induced leaf permutation
(shown in (c)). Figure (d) shows an example of such path between internal nodes 2 and 5 of our
running example, which will put leaf 14 after leaf 8 in the permutation.

As a consequence of Lemma 11, if the GIN is disconnected, no primary route exists and thus
no acceptable multi-permutation of Vc. From now, we assume that instances with disconnected
GIN are tested and discarded (in linear time in the size of (T,F)). For finding efficiently primary
routes, we create bi-coloured labels on the edges of the GIN.

4.3 Labelling the GIN
The aim of the labels is two-fold: first, they will give us a word realising (T,F) if the instance is
positive, second they allow us to show that the GIN is linear in the size of a solution. We create
distinct labels lR and lB for the edges of R and of B, respectively. Basically, edges of R are the
potential suffix links, and as SL link one suffix to the next, traversing one is equivalent to loosing
the first symbol of the suffix of which the starting node is a prefix. Hence, we set the label of
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an edge (u,v) to be the first symbol of the string represented by u (i.e. ˜lF(u)[1]). Edges of B are
internal edges of T (those not ending at a leaf) and all these are labelled in T (see p. 6). Hence, lB

keeps the same label for the corresponding edge in the GIN. Formal definitions of lR and lB follow
and are illustrated on Figures 8 and 9.

lR(u,v) :=

{
˜lF(u)[1] if (u,v) ∈ R

ε if (u,v) ∈ B
(1) lB(u,v) :=

{
ε if (u,v) ∈ R
lF(u,v) if (u,v) ∈ B.

(2)

We extend the labelling lR and lB to any route in the GIN, and define it be the concatenation
of the labels of its edges (Figure 8). By the properties of ST and of SL, we obtain for any primary
route p that lR(p) = lB(p). If (T,F) is realised, then lR(p) will be a word realising it. From the
equality lR(p) = lB(p) it follows that the cardinality of B is at most that of R, and that GIN(T,F)
has a size linear in that of T .

Let us give the sketch of a proof for the equality lR(p) = lB(p). For any node u, l̃(u) is a prefix
of lR(p[u..]) and a suffix of lB(p[..u]), where p[u..] denotes any subroute of p starting at node u,
and p[..u] any subroute ending at node u. Let v be the last node of p before u having an outgoing
edge that belongs to B. Then, we have

∣∣lB(p[v..u])
∣∣ ≤ ∣∣l̃(u)∣∣, where p[v..u] is the subroute of p

between v and u. Let w be the first node of p after u having an ingoing edge that belongs to R.
Then,

∣∣lR(p[u..w])
∣∣≤ ∣∣l̃(u)∣∣. Now recall that B-edges go down the tree, while R-edges can only go

up T till the root. As these inequalities are true for any node u, combining them with the previous
properties shows the equality.

A primary route gives us an acceptable multi-permutation of Vc, which yields a permutation of
the leaves. But we still need to find the first symbol of the label in T of each edge going to a leaf
such that the separation condition is satisfied. Let us explain how this is done for a primary route
p. While traversing p, we can keep for each node the record of the first symbols already associated
with its children (see below the definitions of i0(v,u) and ip(ei)) and set those for its chleaves.
During a traversal, we will collect in the set T (p) the edges for which we are bound to choose
a symbol that belongs to the edge’s set of forbidden letters (because there are not enough letters
left in the alphabet); see Figure 9. In other words, T (p) collects the violations to the separation
condition. Hence, we will see later that a necessary and sufficient condition on p such that (T,F)
is realised, is: T (p) = /0.

Figure 7 illustrates the relationship between a primary route and an acceptable multi-permutation
of Vc. In a primary route p, the nodes of Vc are directly followed by an edge of R (coloured in red).
Hence, all edges but one on the path linking two consecutive nodes, u,v, of Vc belong to B (in
blue). By construction, this path is unique because of the kinship condition. Finally, if v follows u
in the route, then a chleaf of v will follow a chleaf of u in the associated induced leaf permutation.

For any primary route p, we define T (p) := {ei ∈ B | ei−1 ∈ R and lB(ei)[1] ∈ ip(ei−1)}, where
for each ei = (v,u) in R,

i0(v,u) := ∪w∈ChinT (v){ lF(v,w)[1] } initialise the set of forbidden symbols
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and, if for any e ∈ R, we denote the first B-edge coming after e in p by nextp(e),

ip(ei) := i0(ei)
⋃

{ lB(nextp(e j))[1] | e j ∈ R, e j = (v,u), and j < i }.

Examples of ip are shown on Figure 9. The goal of finding a primary route without violations
is to assign distinct first symbols to the edges of any pair of sister leaves.

Theorem 12 (T,F) is realised if and only if there exists a primary route p of GIN(T,F) satisfying
T (p) = /0.

Proof We know that (T,F) is realised if and only if there exists an AMP having an extension
F ′ of F such that the labelling lF ′ satisfies condition C2. In other words, such that the labelling
implied by F ′ assigns distinct first symbols to the edges of any pair of sister leaves. We obtain that
a realised AMP is one satisfying the previous condition. Indeed, (T,F) is realised means that there
exists an extension F ′ of F satisfying both the structure and separation conditions (by Theorem 6).
By Lemma 5, F ′ satisfies the structure and kinship conditions, and lF ′ satisfies condition C2. This
is equivalent to the existence of an AMP having an extension F ′ of F such that the labelling lF ′
satisfies condition C2.

Thanks to Lemma 11 and to the definition of T (p), which collects the edges violating condition
C2 in the primary route p, there exists an isomorphism between the set of realised AMPs and the
set of primary routes p of the GIN such that T (p) = /0. This concludes the proof. ut

4.4 An algorithm for finding all words realising (T,F)

Algorithm 2: Explore-GIN: Explore exhaustively all primary routes of the GIN
1 Input:GIN(T,F) = (V,R,B) Output: print all words realising (T,F)
// for each edge (u,v), initialise a counter q(u,v) to its multiplicity

2 for (u,v) ∈ B do q(u,v)← c(v);
3 for (u,v) ∈ R do q(u,v)← n(u);
4 for v ∈V do // initialise their sets of forbidden symbols
5 ip(v)← /0;
6 for w ∈ChinT (v) do ip(v)← ip(v)∪{lF(v,w)[1]};
7 return Explore-GIN-rec(GIN(T,F), ⊥T , ⊥T , ε); // explore from the root with y := ε

Building on Theorem 12, we exhibit an algorithm that decides whether (T,F) is realised or
not, and finds all distinct words realising it by exploring all primary routes of GIN(T,F). More
exactly, the algorithm produce all words up to a permutation of the alphabet. Indeed, as the labels
of the GIN depends on an arbitrary alphabetisation of T (see p. 3), additional words realising
(T,F) can be obtained by permuting the letters in the output words. For any route p satisfying the
conditions of Theorem 12, the corresponding word y is given by the concatenation of the edges of
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Procedure Explore-GIN-rec: recursive traversal of all primary routes of the GIN
Input: GIN(T,F) = (V,R,B), two nodes v and u, y the word being computed

1 if v =⊥T and |y|= #V lea f
T then print y;

2 else
3 for w a node of B∪R such that q(v,w)> 0 do
4 q(v,w)← q(v,w)−1 ; // decrease its counter
5 if (v,w) ∈ B then
6 if v = u then //no interdictions, update y, explore from w on

7 Explore-GIN-rec(GIN(T,F),w,w,y.lB(v,w)); // add lB(v,w) to y

8 else
9 x← u;

10 while r(x) 6= v do x← r(x); // move x till the node preceding v
11 if lB(v,w)[1] /∈ ip(x) then
12 while r(u) 6= v do // update u to the node preceding v
13 ip(u)← ip(u)∪ lB(v,w)[1];
14 u← r(u);

// update y as above, explore from w on
15 Explore-GIN-rec(GIN(T,F),w,w,y.lB(v,w));

16 else // then (v,w) ∈ R: nothing to check; keep u and y; explore from w on

17 Explore-GIN-rec(GIN(T,F),w,u,y);

B traversed along p, i.e. y = lB(p). Algorithm 2 (Explore-GIN) explores all primary routes of the
GIN whose associated word realises the input (T,F) (but not only these routes, see below), and
prints those words. It calls the procedure Explore-GIN-rec (p. 18), which performs a recursive
depth first exploration. The stop conditions of line 1 ensure that i/ the route is primary, ii/ all
edges have been visited (since we have enough letters in the output word y - see the proof of
lR(p) = lB(p)). Along the current route, it computes a word y by concatenating the labels of the
B-edges it traverses. Moreover, it builds on-the-fly the set ip of forbidden symbols for each B-edge,
and when it traverses an edge, if the label violates the set of interdictions, it stops exploring the
current route. Then, the recursive procedure resumes with the next possible route. That way, all
the portions shared between several routes are explored only once (see Figure 11(c) on p.23). The
complexity of Algorithm 2 is bounded by the exponential number of Eulerian cycles in a graph.

By simplicity, we use a notation for denoting the node pointed by a potential suffix link. Let
v ∈ V , there exists a unique node u ∈ V such that (v,u) ∈ R: we set r(v) := u. The algorithm
maintains the current node, denoted by v, and the last visited node u that is the end-point of a
B-edge. So, u precedes v on the route and only R-edges were traversed between them. To be sure
that each edge (u,v) of the GIN is visited once, the algorithm maintains a counter q(u,v), which is
initialised with the edge’s multiplicity.
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Figure 8: Running example: The bi-coloured GIN with labels on edges of B in blue (a), or on edges
of R in red (b) as defined in Section 4.3. The number near each multiedge gives its multiplicity.
The label of an edge in R corresponds to the first letter of the branch from the starting node: the
label between (4,5) is a because the branch of 4 is labelled by a between the root and node 2. This
is the letter "lost" by traversing the suffix link starting in 4. The label of an edge in B is the label
of the corresponding internal branch of T as computed using the links of F (see Section 2).

p 1 3 5 2 4 5 2 1 2 4 5 2 1 6 1 3 1 7 1

lR(p) b a b a a b a c b $

lB(p) b a ba a ba c b $

ip(5, 2) {} {b} {b, a}

ip(2, 1) {b} {b, a}

Figure 9: Running example. p is a primary route in the GIN displayed in Figure 8. Below, one sees
that its two labellings lR(p) and lB(p) are equal (lR(p) = lB(p)). The fourth line shows how the
set of prohibited symbols ip(5,2) evolves along p for edge (5,2). Initially, on the first occurrence
of (5,2): no letters are forbidden for i0(5,2) is empty. Then, a blue edge labelled ba is traversed
before reaching the second edge (5,2), thus at this occurrence, the symbol b is added to ip(5,2).
Then, the blue edge (1,2) labelled with a is traversed, and finally this symbol is added to ip(5,2) at
the third occurrence of (5,2). The last line shows the evolution of ip(2,1), which is initially set to
i0(2,1) = {b}, for one child of node 2 is labelled with ba. Later, the symbol a is added to ip(2,1)
because edge (1,2) has been traversed.
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5 Differences between Suffix Tour Graph and GIN
This section emphasises and illustrates the differences between the approach of [5] and ours. For
instance, we exhibit an instance on a 4-letter alphabet on which their approach runs an exponen-
tial number of times their linear-time algorithm for distinct labelling functions, while ours is run
once and takes linear time in the size of (T,F). First, we propose an informal summary of our
approach and another view of the one of [5]. Last, we review important differences between the
two approaches.

5.1 An informal summary
Consider an instance (T,F) of the problem SLI-REST.

Our approach First, we check that (T,F) satisfies the separation condition in linear time (Al-
gorithm 1, Prop. 7). Second, we build the GIN and check its connectivity. Then, we seek F ′, an
extension of F , a potential suffix link is assigned to each leaf. We know that a primary route p im-
plies an extension (T,F ′) satisfying the structure and kinship conditions. By Theorem 6, we know
that (T,F) is realised if (T,F ′) also satisfies the separation condition. The latter is true if the route
p has no violations, i.e. if T (p) is empty. Our traversal algorithm computes T (p) dynamically
while traversing p in time and space that are linear in the length of p.

A reformulation of I et al’s approach In addition to (T,F), they also consider an order and
a labelling function g on T . This function associates to each edge a single letter of the alphabet
as the first letter of the edge’s label. Given this input, they seek a word that realises (T,F) and
is compatible with g; in this case, let us say that (T,F,g) is realised. They filter out instances on
natural preconditions and build the unique Suffix Tour Graph, STGg. These conditions ensure that
any cover by cycles of the STGg implies an extension F ′ such that (T,F ′) satisfies the separation
condition. Indeed, the authors show that in the STGg, the in- and out-degree of each node are
equal; thus, each connected component of the STGg is Eulerian. Consequently, it remains to show
that (T,F ′) satisfies the structure condition. Actually, I et al. show that if the cycle cover is made
of a single Eulerian cycle then (T,F ′) satisfies the structure condition. This means that (T,F,g) is
realised if and only if there exists a Eulerian cycle on the STGg, i.e. if and only if STGg is Eulerian.
The disadvantage is that checking whether (T,F) is realised requires to consider all possible orders
and labelling functions.

Theoretical insights First, our work shows that the order on T does not ease the search (see
Proposition 8). Second, Theorem 12 is the corner stone of the approach since it provides a charac-
terisation of the realisation based on two conditions that are simple to verify. Third, it is possible
to check on-the-fly, while traversing a primary route, whether it generates some violations when
it assigns labels to the edges of chleaves. Finally, I et al’s approach explores the set of STGg for
all possible labelling functions g, while ours explores all potential primary routes of a single graph
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(the GIN). It remains open to determine which from both search spaces is the less complex from a
combinatorial viewpoint.

Figure 11 allows to compare both approaches on the example taken from [5, Figure 8]. All
labelling functions and the corresponding STG are shown in [5], while Figure 11 shows primary
routes in the GIN. One sees that neither approach subsumes the other. Indeed, on one hand, an
interrupted route in the GIN corresponds to an invalid labelling function in their approach. On the
other, a labelling function leading to a disconnected STG (their first case), cannot be a primary
route in the GIN; thus the GIN avoids such cases. Our results suggest an improvement for I et al.’s
approach: (1) use the internal labelling procedure (see p. 6) to compute the labels of internal edges,
(2) limit the search space of labelling functions to those labelling only the leaf edges.

5.2 Combinatorial differences
Recall that the Suffix Tour Graph of I et al is built for an input (T,F), and importantly for a chosen
order among the children of a node and a chosen labelling function. To choose a labelling function,
I et al. also require an order on the children of any node, that is an order on their labels (e.g.. the first
child label starts with an a, the second with a b, etc.) For a node of T having d children, restricting
to labelling functions in agreement with the chosen order divides the number of labelling functions
by a factor of d! (Cd

k = k!
d!(k−d)! instead of Ad

k = k!
(k−d)! , where k is the alphabet’s size). However,

enforcing an order can lead to errors. Indeed by Proposition 2, the labelling of internal nodes is
completely determined. So, if unfortunately the labelling does not comply with the order, their
algorithm returns false even if (T,F) is a positive instance of SLI-REST. Then other orders have
to be considered, and for them several labelling functions.

For instances whose GIN is disconnected, we can verify in linear time whether (T,F) is realised
or not. For the same case, the Suffix Tour Graph is built and tested for all possible labelling
functions. Figure 10(a) shows an example (not the running one) of such case: the left branch is
divided into l levels of two internal nodes each (here l = 2) and a complete subtree with 4 leaves is
attached to the middle internal node. This subtree creates a disconnected component on 3 internal
nodes in the GIN (Figure 10(b)). For a chosen order, one obtains (C2

4)
l = 6l possible labelling

functions for a number of leaves of T that is linear in l (in fact, 10l+2 leaves). In this example on
a small alphabet (here 4), the number of labelling functions is exponential in the size of T . Clearly,
this example input satisfies the three preconditions of [5]: (1) the root has as many children as
the alphabet letters, (2) one of its children is a leaf, and it can be seen that the labelling function
satisfies condition (3).

Finally, if k-multiedges are seen as weighted edges, the GIN is linear in the number of internal
nodes plus the number of children of the root of T . The Suffix Tour Graph is linear in the number
of leaves of T . As in a tree, the number of internal nodes is strictly smaller that of leaves, the GIN
takes less space in memory than the Suffix Tour Graph. Hence, some procedures, such as checking
the connectivity, will be faster for the GIN.

21



(a)

l

(b)

2

2

22

2

2

2

2

2

2

1 1

1 1
2

2
2

2

2 2

2 2
l

Figure 10: (a) An example of input (T,F), whose GIN is not connected (b). We build it for l = 2
and have a number of leaves that is linear in l. The algorithm from [5] must check the connectivity
of the Suffix Tour Graph for an exponential number (6l) of possible labelling functions. Our
algorithm simply checks once that the GIN is disconnected (b).

6 Conclusion
In this work, we examined the problem of Reverse Engineering on Suffix Trees and Links, which
in fact formulates the question of a characterisation of suffix trees. First, we exhibit necessary
conditions for a candidate tree. Second, we define a novel bi-coloured directed graph on a subset
of the ST’s internal nodes: the nodes having a child that is a leaf. After defining labels on its
edges, we show that finding a specific Eulerian route through this graph on which the labels satisfy
necessary conditions gives a word realising the input suffix tree and links. This algorithm explores
potential Eulerian routes in a graph whose size is linear in the input size. Basically, the results
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Figure 11: Example illustrating the comparison of I et al’s approach and ours. (a) Instance of the
example shown in [5] and (b) the associated GIN. (c) A tree representation of the routes visited by
Algorithm 2 on the GIN with their associated words (for the sake of legibility, we omit all primary
routes ending at the root that are too short). Edges of B and their labels are blue, edges of R and
their set of forbidden first letters in red. Routes that include a violation have their next to last node
painted in red.

comes from the novel graph, the GIN, whose nodes are a subset of internal nodes of T , rather
than all nodes of T as in [5], and also from the fact that our algorithm does not require a labelling
function as input. To illustrate the gain in efficiency, we also exhibit a general negative instance,
where the approach from I et al. must consider an exponential number of labelling functions, while
ours simply detect that the GIN is disconnected in linear time.

In future work, the current problem could be studied for implicit suffix trees (that is without a
terminating dollar symbol), and of course the Reverse Engineering problem of Suffix Tree without
links must be studied. However, the complexity of the version studied here let us think that the
general case could be hard since the length of each label could not be computed from the potential
suffix links.
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