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Abstract

For each non-negative integer k, we provide all outerplanar obstructions
for the class of graphs whose cycle matroid has pathwidth at most k. Our
proof combines a decomposition lemma for proving lower bounds on matroid
pathwidth and a relation between matroid pathwidth and linear width. Our
results imply the existence of a linear algorithm that, given an outerplanar
graph, outputs its matroid pathwidth.
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1. Introduction

The notions of pathwidth and branchwidth are fundamental graph pa-
rameters that appear in many topics of discrete mathematics and algorithms.
The counterpart of branchwidth on matroids has been introduced by Geelen
and Whittle in [6] and was extensively studied in [6, 15, 10, 14, 11, 5]. How-
ever, not much is known for the counterpart of this parameter on matroids.
The pathwidth of a matroid was defined by Geelen, Gerards, and Whittle
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in [7] (see also [9]) and was extensively studied in the work of Kashyap [13]
in the context of trellis state-complexity of linear codes. Also, connected
matroids of pathwidth at most 3 have been studied in [8, 1].

Given a class of matroids M, we define its obstruction set obs(M) as
the set of all minor-minimal matroids not inM (similarly, we define obs(G)
for the case where G is a class of graphs). We define Pk as the class of all
matroids of pathwidth at most k. In this paper, we study the set obs(Pk)
and we characterize, for every k, all members of obs(Pk) that are cycle
matroids of outerplanar graphs.

Following Kashyap [13], we define the matroid-pathwidth (in short: µ-
pathwidth) of a graph as the pathwidth of its cycle matroid. As observed
in [13], the pathwidth and the µ-pathwidth of a graph are different param-
eters, while the pathwidth can be computationally reduced to µ-pathwidth.

In this paper we show that several structural characteristics of the path-
width of acyclic graphs are transferred to the µ-pathwidth of outerplanar
graphs. In particular, we define an operation, called fusion for “joining
together” triples of matroids and we prove a structural result (Lemma 3)
that provides a way to construct matroids of pathwidh at least k + 1 from
matroids of pathwidth at least k. Our result can be seen as the matroid-
analogue of the operation defined in [19] (see also [20, 17, 3]) for the case
of the pathwidh of graphs (see also [12] for related recent results for the
parameter of linear rank-width).

Using our structural lemma, we prove the existence of a bijection between
acyclic obstructions for linear-width (a parameter very similar to the path-
width for graphs) and the outerplanar obstructions of µ-pathwidth. This
gives a precise characterization of all members of obs(Pk) that are cycle
matroids of outerplanar graphs. A byproduct of our results is that the µ-
pathwidth of outerplanar graphs can be computed in linear time.

2. Definitions and Preliminaries

Given a graph G, we denote by V (G) its vertex set and as E(G) its edge
set. We consider graphs that may have loops or multiple edges. If a graph
has no multiple edges or loops we call it simple. For any set of vertices
S ⊆ V (G), we denote by G[S] the subgraph of G induced by the vertices in
S. Accordingly, for a set of edges F ⊆ E(G), we define G[F ] = (V (F ), F )
where V (F ) =

⋃
e∈F e. In addition, we define by F = E(G)− F .

We use the term plane graph for a planar graph along with an embed-
ding of it in the sphere S0 without crossings. To simplify notations, we do
not distinguish between a vertex of the graph and the point of S0 used in
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the drawing to represent the vertex or between an edge and the open line
segment representing it. We denote by F (G), the set of faces of this embed-
ding, i.e. the connected components of S0\G, (that are open sets of S0). A
planar graph G is outerplanar if it has an embedding on the sphere S0 such
that all its vertices lie on the boundary of a single face, called outer face.

Given two graphs H and G, we write H � G and call H a minor of G,
if H can be obtained by a subgraph of G after a series of edge contractions.
We also use the notation G∗ to denote an embedding of the dual graph of
G.

Matroids and cycle matroids of graphs. Given a matroidM, we use the nota-
tions E(M) and I(M) for its elements and the collection of its independent
sets respectively. We also call E(M) the ground set ofM. Moreover, follow-
ing the notation of [16], we denote by B(M) the collection of the maximal
independent sets, the bases of M and C(M) the collection of the minimal
dependent sets, the circuits of M. It is known (see e.g., [16]) that any of
the collections I(M), B(M) or C(M) suffices to describe a matroid M on
an element set E(M).

The cycle matroid of a graph G, denoted asM(G), has E(G) as ground
set, while its independent sets are the sub-forests of G. On the other hand,
a matroid that is isomorphic to a cycle matroid of a graph is called graphic.

Given a matroid M, the matroid whose ground set is E(M) and whose
collection of bases is {E(M) − B : B ∈ B(M)} is called the dual of the
matroid M and is denoted by M∗.

Let M be a matroid and X,Y ⊆ E(M) subsets of its ground set. The
matroidM\X = {E(M)−X, I ⊆ (E(M)−X) : I ∈ I(M)} and the matroid
M/Y = [M∗\Y ]∗ are the deletion of X and the contraction of Y from the
matroid M, respectively. If X = {e} then we simply write M\e instead of
M\{e} – likewise for the contraction of a single element. A matroid K is a
minor of a matroid M if K =M\X/Y for some X,Y ⊆ E(M).

The matroid connectivity function λ : 2E(M) → N is defined as follows:

λM(X) = rM(X) + rM(X)− rM(E(M))

where X = E(M)−X and r is the rank function of M, i.e. rM(X) is the
maximum cardinality of an independent set of X in M.

A matroid that for every pair of distinct elements of its ground set has
a circuit containing both of them is called connected. This implies that the
cycle matroid of a 2-connected graph is connected. It is also easy to check
that if a matroid M is connected and F ⊆ E(M), then λM(F ) = 0 only if
F = E(M) or F = ∅.
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Another useful property of connectivity is the following:

Fact 1 ([22]). Let e be an element of a connected matroid M. Then at
least one ofM/e andM\e is connected.

Given two matroids M1 and M2 on disjoint ground sets, we denote by
M1 ⊕M2 their direct sum, i.e. the matroid (E(M1) ∪ E(M2), I(M1) ∪
I(M2)).

We continue with the definition of two dual operations on matroids which
will play an important role in the proofs of the next section. If an element
is not contained in a base of a matroid, then it is called loop, while if it
is in every base is called coloop. Then, given two matroids M1 and M2

with E(M1) ∩ E(M2) = {e} where e is neither a loop or a coloop in these
matroids, the series connection of M1 and M2, denoted by S(M1,M2),
is the matroid with element set E(M1\e) ∪ E(M2\e) ∪ e′, where e′ is an
element not in E(M1) or E(M2) and whose collection of circuits is:

CS = C(M1\e) ∪ C(M2\e) ∪
{(C1 − e) ∪ (C2 − e) ∪ e′ : e ∈ Ci ∈ C(Mi) for i = 1, 2}.

Subsequently, the parallel connection ofM1 andM2 denoted by P (M1,M2)
is the matroid [S(M∗1,M∗2)]∗. Properties of series and parallel connection
include many attractive features. As example the classes of graphic matroids
and connected matroids are closed under these operations – for a further
study see also [16]. We will need the following property from [2]:

Fact 2. Let N1,N2 be two matroids where E(N1) ∩ E(N2) = {e}. Then,
P (N1,N2)/e = (N1/e)⊕ (N2/e).

Matroid Pathwidth. Given a layout L = (e1, . . . , em) of E(M), we define

µ-widthM(L) = max{λM({e1, . . . , ei}) | 1 ≤ i ≤ m− 1}.

According to the definition of [7] the pathwidth of a matroidM, denoted by
pw(M), is the minimum k for which there exists a layout L = (e1, . . . , em)
of its elements such that µ-widthM(L) ≤ k.

The matroid pathwidth of a graph G (or simply µ-pathwidth) is defined
as the pathwidth of its cycle matroid and it is denoted as µ-pw(G), in other
words:

µ-pw(G) = pw(M(G)).

We will need the following simple lemma:
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Lemma 1. The µ-pathwidth of a graph is equal to the maximum µ-pathwidth
of all its biconnected components.

Proof. Let {C1, . . . , Cr} be the biconnected components of a graph G and
E1, . . . , Er the corresponding edge sets. Then, for i = 1, . . . , r it holds
that rM(Ei) + rM(Ei) = r(M), where by M is denoted the cycle matroid
of G. This implies that the value of the connectivity function of a set
of edges belonging to the same component, is irrelevant from the rest of
the biconnected components. This implies that if µ-width(Li) ≤ k for
i = 1, . . . , r, where Li is a layout of Ei, then for the concatenation L of all
these layouts it also holds µ-width(L) ≤ k. �

3. A Decomposition of Matroids

Let M1,M2,M3 be connected matroids on disjoint edge sets and for
each of them pick an element ei ∈ E(Mi), i = 1, 2, 3. The uniform matroid
U1,3 with elements {e1, e2, e3} shares one common element with each of the
three matroids: E(U1,3)∩E(Mi) = {ei}. We call fusion ofM1,M2,M3 on
the elements {e1, e2, e3} the matroid

M = S(S(S(U1,3,M1),M2),M3)

and we denote it by fusion(M1,M2,M3, e1, e2, e3). It is easy to check that
this matroid is also connected. The elements e1, e2, e3 on which the fusion
takes place will be referred to as bridge elements.

The series connections in the definition ofM involve the three elements
of U1,3 which implies that the order in which the connections are performed
is irrelevant. Consider now the matroid S(S(U1,3,M1),M2) one step before
the composition of the final matroid M. Let M(1) and M(2) be matroids
isomorphic to U1,2 where E(M(1)) = {e1, e3} and E(M(2)) = {e2, e3}. Keep-
ing in mind that U1,3 is isomorphic to P (M(1),M(2)) we can observe the
following:

Observation 1. The matroid P (S(M(1),M1), S(M(2),M2)) is isomorphic
to the matroid S(S(U1,3,M1),M2).

In order to estimate the pathwidth of the fusion of three given matroids
we need the following lemma about the connectivity function of a matroid
formed by a series connection:
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Lemma 2. LetM1,M2 be connected matroids with E(M1)∩E(M2) = {e}
and M = S(M1,M2). For any two sets F1, F2 where F1 ⊆ E(M1) and
F2 ⊆ E(M2\e) it holds that

λM (F1 ∪ F2) ≥ λM1(F1) + λM2\e(F2)

Proof. Let M−i = Mi \e, i = 1, 2. Since M1,M2 are both connected
matroids it follows that their series connection M is also connected. From
the connectivity of Mi, we obtain that r(Mi) = r(M−i ), i = 1, 2. Also,
from the connectivity of M it follows that r(M) = r(M\e). Notice that
M = S(M1,M2) implies that M\e =M−1 ⊕M

−
2 , which, in turn, implies

that r(M) = r(M1) + r(M−2 ). From the definition of the connectivity
function λ and the last equality, it is enough to prove that for any two
subsets F1 ⊆ E(M1), F2 ⊆ E(M−2 ),

rM (F1 ∪ F2) ≥ rM1(F1) + rM−2
(F2) (1)

rM (F1 ∪ F2) ≥ rM1(F1) + rM−2
(F2) (2)

Towards a contradiction, suppose that rM (F1∪F2) < rM1(F1)+rM−2
(F2)

and let B1, B2 be bases of F1, F2 respectively. Then B1 ∪B2 should contain
a circuit C in M. Moreover, since B1 ∩ B2 = ∅ the circuit C has elements
from both B1, B2 – as otherwise it would contradict their choice as bases.
Contracting the elements of M−2 in M will force the existence of a circuit
C1 ⊆ C ∩ E(M1) = B1 in M/E(M−2 ) = M1 which contradicts that B1

is a base in M1 and completes the proof of (1). Then (2) easily follows
from (1) by the symmetry of the connectivity function λ and the fact that
F 1 ∪ F 2 = F1 ∪ F2 (recall that F1 ∩ F2 = ∅). �

We are now ready to prove the main structural result of this paper.

Lemma 3. LetM be a matroid that is obtained by the fusion of three con-
nected matroidsMa,Mb,Mc. Then it holds that

pw(M) ≥ min{pw(Ma),pw(Mb),pw(Mc)}+ 1.

Proof. We will prove that, for any layout L = (e1, . . . , em) of the element set
E(M) ofM, there is an q ∈ {1, . . . ,m−1} such that λM({e1, . . . , eq}) ≥ k+1
where k = min{pw(Ma),pw(Mb),pw(Mc)}.

We denote by ea, eb, ec ∈ E(M) the bridge elements of the fusion asso-
ciated with the matroids Ma,Mb,Mc respectively and, for simplicity, we
use the notation Ea = E(Ma), Eb = E(Mb) and Ec = E(Mc). Assume
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w.l.o.g. that e1 ∈ Ea. Likewise, we assume that the last, in L, element e` of
E(M)\Ea belongs in Ec. Note then that all edges of Eb appear in L after
e1 ∈ Ea and before e` ∈ Ec.

By the definition of fusion follows thatM/(Ea∪Ec) =Mb. Consider the
matroidM′ =M/(Eb\eb) and observe thatM′ = S(S(U1,3,Ma),Mc). Let
Lb = (ep1 , . . . , eps) be the restriction of L in E(Mb). As pw(Mb) ≥ k, there
is an h ∈ {1, . . . , s− 1} such that λMb

(Fb) ≥ k, where Fb = {ep1 , . . . , eph} ⊆
Eb. Let F ′ = {ej ∈ L | ej 6∈ Eb and j < ph}.

Observe now that F ′ ⊆ Ea ∪ Ec and {e1, . . . , eph} = Fb ∪ F ′. Since
E(M′\eb) = Ea∪Ec, it also holds that F ′ ⊆ E(M′\eb). From Observation 1,
M ′ can be seen as a parallel connection of two matroids on the element eb.
This, together with Fact 2 implies that M′/eb is not connected. By Fact 1,
it follows that the matroid M′\eb is connected.

By the connectivity of M′ \eb and the fact that e1 ∈ F ′, e` 6∈ F ′ we
obtain that λM′\eb(F

′) ≥ 1. Observe finally that M′ ∩ Mb = {eb} and
M = S(M′,Mb). Applying Lemma 2 implies that λM (Fb∪F ′) ≥ k+ 1. As
{e1, . . . , eph} = Fb ∪ F ′, we can choose q = ph. �

4. µ-Pathwidth and Linear Width

Let T be the set of all trees. We define the function φ that maps trees to
graphs such that for every T ∈ T , φ(T ) is the graph obtained if we identify
all the leaves of T to a single vertex (see Figure 1 for an example). We
denote the new vertex as the join-vertex of φ(T ).

Figure 1: An example of the application of the function φ.

Observe that if G is a 2-connected outerplanar graph, then its dual H
belongs to the class φ(T ), where its join-vertex corresponds to the outer face
of G.

Let G be a graph. For any set of edges F ⊆ E(G) we denote by ∂G(F )
the set of vertices of the graph that are incident with an edge in F and also
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with an edge in E(G)\F . The boundary function δG(F ) of the graph G is
defined as δG(F ) = |∂G(F )|. We define the linear width of a graph G as the
minimum integer k for which there exists a layout L = (e1, . . . , em) of the
edge set E(G), such with max{δG({e1, . . . , ei}) | 1 ≤ i ≤ m− 1} ≤ k and we
write lw(G) ≤ k.

Given a graph G and an edge set F ⊆ E(G) as before, we denote by
σG(F ) the number of the connected components of G[F ]. We will need the
following well known fact (see, e.g. [16, 15, 6]).

Fact 3. Let G be a connected graph and F ⊆ E(G). Then λM(G)(F ) =

δG(F )− σG(F )− σG(F ) + 1.

Using this fact we can prove the following relation between the linear
width of a tree T and the µ-pathwidth of φ(T ).

Lemma 4. For every tree T , it holds that µ-pw(φ(T )) ≤ lw(T ).

Proof. Let F be an edge set in E(T ), where F 6= ∅ and F 6= E(T ).
By the definition of the function φ, the tree T and the graph H = φ(T )
share a common edge set. Note that only inner vertices of T contribute to
δT (F ) and observe that the corresponding vertices of H, with the possible
addition of the vertex v, into which the leaves of T merged, are the ones
that contribute to δH(F ); i.e. δH(F ) ≤ δT (F ) + 1. From Fact 3, we obtain
that λM(H)(F ) = δH(F ) − σH(F ) − σH(F ) + 1 ≤ δH(F ) − 1 ≤ δT (F ). It
is straightforward now to conclude that given any sequence of E(T ) that
results to lw(T ) ≤ `, the same sequence results to µ-pw(H) ≤ `. �

We recursively define the parameterized family of trees Tk, for any non-
negative integer k, as follows:

• Let T0 contain the tree obtained by the 1-subdivision of K2.

• For k ≥ 1, Tk contains any tree that can be obtained by the following
procedure: Take three (not necessarily distinct) members of Tk−1, add
a new vertex and connect it with some non-leaf vertex in each of these
three trees. As long as a leaf in the resulting graph has a neighbour
of degree 3, delete this leaf.

For an example of the above construction, see Figure 2 (only two of the
four members of the class T2 are depicted in Figure 2).

We denote by Lk the class of graphs with linear-width at most k. Linear-
width is a parameter defined in [21] and studied in [4, 20]. While it differs
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Figure 2: The classes T0, T1, and part of T2.

by at most one from the more known parameter of pathwidth, it is more
easy to study in our context because of the strong similarity of its definition
to the one of µ-pathwidth.

The acyclic obstructions for Lk are determined by the following result
(see Theorem 29 in [20]).

Proposition 1. For every non-negative integer k, obs(Lk) ∩ T = Tk.

5. Obstructions for µ-Pathwidth

For each non-negative integer k, we define Hk = φ(Tk), i.e. a graph H
belongs to the class Hk, iff H = φ(T ) for some T ∈ Tk (see Figure 3).

Figure 3: The sets H0, H1, and part of H2.

Let now G1, G2, G3 be three disjoint 2-connected graphs and vi, ui ∈
V (Gi) a pair of distinct vertices for i = {1, 2, 3}. We call u-fusion of the
graphs G1, G2, G3 on the given pairs of vertices the graph G constructed as
follows:

a) For i = {1, 2, 3} if the vertices vi, ui are adjacent in Gi, then delete
the edge {vi, ui} in Gi (in case {vi, ui} is a multiple edge, delete only
one of its copies).

b) Identify vertices v1, v2, v3 to a single vertex v, take a new vertex u not
in G1, G2 or G3, and add the edges {u1, u}, {u2, u} and {u3, u}.
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Figure 4: The u-fusion operation.

Notice that G is 2-connected by construction. We will call the vertices
v, u base vertex and top vertex of the resulting graph respectively and the
three edges incident to u bridge edges in G.

Lemma 5. Let G be a u-fusion of three disjoint 2-connected graphs G1, G2

and G3. Then µ-pw(G) ≥ min{µ-pw(G1), µ-pw(G2), µ-pw(G3)}+ 1.

Proof. For i = 1, 2, 3 let us denote by vi, ui ∈ V (Gi) the pair of vertices
involved in the u-fusion of the three graphs. Consider for each graph Gi the
graph G+

i which has the same vertex set as Gi and edge set E(G+
i ) = E(Gi)

if ei = {vi, ui} ∈ E(Gi) or else E(G+
i ) = E(Gi) ∪ ei. Clearly µ-pw(G+

i ) ≥
µ-pw(Gi) for i = 1, 2, 3.

Recall that, by its definition, a matroid formed as a fusion of three
graphic matroids is itself graphic as the class of graphic matroids is closed
under series connection. By construction, the cycle matroid of G is isomor-
phic to the matroid obtained by the fusion of the cycle matroids of the graphs
G+

1 , G
+
2 , G

+
3 on the elements e1, e2, e3. Then, the application of Lemma 3

yields that µ-pw(G) ≥ min{µ-pw(G1), µ-pw(G2), µ-pw(G3)}+ 1. �

We will use Lemma 5 to prove the following lemma:

Lemma 6. Let H be a graph in Hk for some non-negative integer k. Then
H is an obstruction for µ-pathwidth less or equal to k.

Proof. Following the standard course for a proof of an obstruction set
let us first attend to the value of the µ-pathwidth of a given graph in Hk.
Notice that µ-pw(C2) = 1 and that, for any k ≥ 1, every graph in Hk

is 2-connected, i.e. its cycle matroid is connected. Since every graph in
Hk is a u-fusion of three graphs of the class Hk−1, by applying inductively
Corollary 5 it follows that for any integer k ≥ 0, all graphs in Hk have
µ-pathwidth at least k + 1. On the other hand a graph in Hk has clearly
µ-pathwidth at most k+1, as otherwise its image in Tk over φ−1 would have
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also linear width more than k + 1 by Lemma 4. Summarizing, all graphs in
Hk for k ≥ 0 have µ-pathwidth equal to k + 1.

Consider now such a graph H in Hk and also the tree T = φ−1(H). For
an edge e in E(H) = E(T ), we examine the graph H/e and the tree T/e.
Since T belongs in Tk all leaves have neighbors of degree 2 and therefore
T/e is again a tree with the same number of leaves. Moreover, both T/e
and the cycle matroid of H/e are connected. It follows that H/e = φ(T/e)
and hence by Lemma 4, µ-pw(H/e) ≤ k, as T is an obstruction for linear
width of at most k.

Similarly, we examine the graph H\e and the tree T\e. Since the cycle
matroid M(H\e) is not connected, it does not hold that H\e = φ(T\e).
However, each connected blockMi inM(H\e) is the cycle matroid of φ(Ti),
where Ti is a minor of T\e. In any case, again Lemma 4 immediately implies
that µ-pw(H\e) ≤ k. �

Conversely, we will prove that if the dual of a biconnected outerplanar
graph is an obstruction to µ-pathwidth then it belongs to the family Hk.

Lemma 7. Let H be the dual of a biconnected outerplanar graph that is an
obstruction for µ-pathwidth at most k. Then H ∈ Hk.

Proof. To a contradiction, suppose thatH does not belong to the familyHk.
Since H is an obstruction for µ-pathwidth at most k, surely µ-pw(H) ≥ k+1
and Lemma 4 implies lw(T ) ≥ k+1, for the corresponding tree T = φ−1(H).
Thus it contains a minor T ′ � T such that T ′ ∈ Tk+1. Consider now
H ′ = φ(T ′) and observe that H ′ � H; a contradiction since by definition
H ′ ∈ Hk+1. �

For every non-negative integer k, we define H∗k as the class of all duals
of the graphs in Hk (see Figure 5). The previous two lemmata, along with
Lemma 1, imply the main result of our paper.

Theorem 1. For every non-negative integer k, the set H∗k is the obstruction
set for the class outerplanar graphs with µ-pathwidth at most k.

The theorem reveals a bijection between the acyclic obstructions for linear
width and the outerplanar obstructions for µ-pathwidth. This also gives a
way to lower bound the size of Pk. Copying the counting made in [19] (see
also [20]), it follows that |obs(Pk)| ≥ (k!)2.

Another consequence of our results is the following.

Corollary 1. Let G be a biconnected outerplanar graph and let T be a tree
such that G∗ = φ(T ). Then µ-pw(G) = lw(T ).
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Figure 5: The sets H∗0, H∗1 and part of H∗2.

The later implies the existence of a linear time algorithm for the com-
putation of the µ-pathwidth of outerplanar graphs:

Corollary 2. There exists a linear algorithm that, given an outerplanar
graph, outputs its µ-pathwidth.

Proof. Let G be an outerplanar graph. Let also G1, . . . , Gr be its bicon-
nected components and H1, . . . ,Hr their corresponding duals. Let

k = max{lw(φ−1(Hi)) | i = 1, . . . r}.

The linear-width of trees can be computed in linear time, using a straight-
forward adaptation of the linear algorithm of [18] for computing the path-
width of a graph. Therefore, from Corollary 1 and Lemma 1 we have that
µ-pw(G) = k. �
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[11] Petr Hliněný. The Tutte polynomial for matroids of bounded branch-
width. Combin. Probab. Comput., 15(3):397–409, 2006.

[12] Jisu Jeong, O joung Kwon, and Sang il Oum. Excluded vertex-minors
for graphs of linear rank-width at most k. In Natacha Portier and
Thomas Wilke, editors, 30th International Symposium on Theoreti-
cal Aspects of Computer Science (STACS 2013), volume 20 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 221–232,
Dagstuhl, Germany, 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik.

[13] Navin Kashyap. Matroid pathwidth and code trellis complexity. SIAM
J. Discrete Math., 22(1):256–272, 2008.

[14] Daniel Král’. Computing representations of matroids of bounded
branch-width. In Wolfgang Thomas and Pascal Weil, editors, STACS
2007, volume 4393 of LNCS, pages 224–235. Springer Berlin / Heidel-
berg, 2007.

13
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