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Quantifying trust dynamics in signed graphs, the S-Cores approach

Christos Giatsidis ∗ Bogdan Cautis † Silviu Maniu ‡ Dimitrios M. Thilikos §¶

Michalis Vazirgiannis ‖

Abstract
Lately, there has been an increased interest in signed net-
works with applications in trust, security, or social comput-
ing. This paper focuses on the issue of defining models and
metrics for reciprocity in signed graphs. In unsigned di-
rected networks, reciprocity quantifies the predisposition of
network members in creating mutual connections. On the
other hand, this concept has not yet been investigated in the
case of signed graphs. We capitalize on the graph degener-
acy concept to identify subgraphs of the signed network in
which reciprocity is more likely to occur. This enables us to
assess reciprocity at a global level, rather than at an exclu-
sively local one as in existing approaches. The large scale
experiments we perform on real world data sets of trust net-
works lead to both interesting and intuitive results. We be-
lieve these reciprocity measures can be used in various social
applications such as trust management, community detection
and evaluation of individual nodes. The global reciprocity
we define in this paper is closely correlated to the clustering
structure of the graph, more than the local reciprocity as it is
indicated by the experimental evaluation we conducted.

Keywords:Graph mining, trust networks, graph degeneracy,
signed networks.

1 Introduction
Online social networks have become increasingly popular
in today’s Web landscape. Compared to the rest of the
Web, their main difference is that they focus on the user
instead of the content. Relationships (links or edges in a
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social network) between the users generate a rich context that
has formed a basis for extensive research in the last years,
driven by applications such as search, recommendations
or access control. All these applications can benefit from
the knowledge of the social network associated to the data
content as well.

Going beyond a paradigm of simple links between users,
an emerging research direction is the study of networks in
which links convey richer semantics. In particular, certain
social networks, usually called signed, can contain both links
with a positive interpretation (trust, friendship, similarity)
and links with a negative interpretation (distrust, opposition,
antagonism) [12]. Indeed, several social applications support
and publish such links (e.g., Epinions and Slashdot). Fur-
thermore, recent research tackled the problem of extracting
implicit signed networks, through the analysis of user inter-
actions in the application [14, 13, 3, 18].

This paper deals with the issue of reciprocity in signed
graphs and introduces reciprocity in signed networks both
as a local and a global property illustrating the value of
the latter. The basic definition of reciprocity is a local
property based on mutuality in pairs of nodes in directed
graphs [21, 16, 19]: r ≡ L↔

L , where L↔ is the number
of links pointing in both directions and L is the total number
of links. Thus, the highest value of r is 1, when the network
is fully bi-directional, and the lowest is 0 when the network
is completely unidirectional.

We argue that the concept of reciprocity as defined in
existing works does not offer an adequate descriptive capa-
bility (especially for signed networks) for measuring reci-
procity at the graph level. Reciprocity, in unsigned directed
networks, quantifies the predisposition that the members of
a network display in creating mutual connections. In signed
trust networks, reciprocity would have different interpreta-
tions based on the pairs of signs we examine. By in+/out+

pairs, we would get an indication on the level of trust. In
contrast, in−/out− pairs would indicate distrust or vindic-
tiveness. Moreover, the in+/out− and in−/out+ pairs may
reveal interesting aspects as well. The reciprocity of the for-
mer would describe impartiality under positive votes (trust),
while the latter would describe impartiality under negative
votes(distrust). A more strict version of reciprocity could be
viewed by the account of only the number of bidirectional
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Figure 1: Example digraph of signed networks.

links baring the same sign in both ends. This would describe
only the most basic nature of reciprocity without taking into
account any further context.

Disregarding for now what would be the best definition
of reciprocity for signed networks, in Figure 1 we see a sam-
ple toy signed directed graph (to keep it simple we assume
only positive signs on the links) representing trust relations.
As we can observe there is no pairwise mutuality in terms of
mutual plus links among pairs of nodes – therefore the local
reciprocity as defined in directed and signed network is zero.
On the other hand it is clear from the graph that there is a
global reciprocity as for each node we observe a balanced in
/ out positive trust. For example, in this case each node offers
two outgoing positive (+) trust links to the community and at
the same time receives two positive (+) incoming trust links
– although they do not emanate from the same node as those
it gives trust to. Thus it is evident that there is a challenge
in representing and dealing with reciprocity at a more global
level. This issue becomes even greater when we consider the
added complexity of signs; since possible combinations of
local reciprocities would lessen their importance when look-
ing at the graph at a node level.

Local reciprocity is a property that represents the mutu-
ality among relationships. Global reciprocity would be de-
fined as the average reciprocity at graph level in terms of the
portion of positive (+) to negative (-) trust within the commu-
nity rather than at the node level. Hence, it is our objective
to measure graph level reciprocity for dense communities.

Following, we list the contributions of the paper:

• We introduce the notion of degeneracy in signed graphs
– to the best of our knowledge this is the first attempt
towards this direction.

• We introduce the notion of reciprocity for signed
graphs.

• We capitalize on the former to define novel metrics to
measure reciprocity in signed graphs in the context of
trust at a global graph level as opposed to local one.

• We conduct large scale experimental evaluations and
we interpret the results – an interesting issue in the
absence of previous similar work.

The reader may also consider viewing the supplemen-
tary material for a complete picture over the extend of the
conducted experiments and the concepts introduced here.

2 Related Work
Many algorithms for mining social networks have been pro-
posed in the literature, but none of them takes into account
the concept of degeneracy in the context of community eval-
uation in signed networks. In the area of signed graphs, a ma-
chine learning-based approach for inferring negative/positive
links in Epinions was published in [13], whose techniques
rely on an existing signed network complemented by user
interactions. In [14], a signed network over the editors of
the Wikipedia, denoted Wiki-Signed, is inferred exclusively
from interactions; it is evaluated, at both local and global
level, in relation with social theories and existing signed net-
works on the Web. We rely in this paper on networks built as
in [14]. Another approach for detecting positive and negative
interactions in Wikipedia was presented in [3], showing the
emergence of polarization in Wikipedia articles.

Several papers have also studied the prediction of links
and link signs, when only the signed network is known, a
problem also known as trust propagation. The first rigor-
ous treatment of this problem is given in [10], where the au-
thors define four atomic operators to predict link signs (direct
propagation, co-citation, transpose trust and trust coupling).
This approach was extended in [12, 11], where trust propa-
gation was studied through the lens of social theories such
as balance and status, and a prediction model based on the
number of triangles involving each candidate link was pro-
posed.

For undirected signed graphs, the theory of Social Bal-
ance [2] is a model for the dynamics friendship and enmity
through time. The weakness of this model is that it assumes
that all relationships are reciprocal. A more sophisticated
model (for directed signed edges) called Status Model is in-
troduced in [10] and elaborated in [12].The main point of this
model is that a directed signed edge signifies someone of ei-
ther higher or lower status and thus predicts that the flipping
of a direction should flip the sign as well. But this would
not account for the relationships of trust (that we attempt to
study). In principle (and shown by our results), it is counter
intuitive to assume that showing trust or distrust to others
would lead to the opposite assumptions of others to us.

Reciprocity is used to examine directed networks of
various kinds [16, 19, 6], an extension for weighted networks
is in the recent work of [1]. In [6], reciprocity is extended in
order to take into account the density of the network. The
model of reciprocity presented in that work is described by
two equations that are supposed to be equivalent but, on
deeper examination, do not match. In our work, we build
upon the original definition of reciprocity as it is a clear one
with intuitive interpretation and is widely accepted.



Additional work has been done in the area of extending
k-cores, a fundamental concept in graph theory whose study
goes all the way back to the 60s [4, 20, 15]. The existence
of k-cores of large size in sufficiently dense graphs has been
formally studied in [17], for random graphs generated by the
Erdős-Rényi model [5]. Extensions of the k-cores structure
have been studied for weighted undirected graphs in [8], and
for directed graphs in [7].Both extensions are targeted in the
evaluation of community graphs and their members.

3 Preliminaries
In this section we define the fundamental concept of degen-
eracy for signed graphs that will be exploited towards the
definition of reciprocity in such graphs. First we define the
notion of S-core – an extension of D-core [7] – that represents
degeneracy in signed graphs. Moreover we define additional
concepts that quantify the robustness of the graph under de-
gree based degeneracy.

3.1 S-cores: Degeneracy in signed graphs A signed di-
graph is a triple G = (V,E,w) such that (V,E) is a simple
directed graph and w : E → {+,−} is a labeling of E, as-
signing either a positive or a negative sign on the edges of
G. The existence of a positive signed edge e = (x, y) from
a vertex x to a vertex y represents the fact that “x trusts y”
or “x likes y”, while the existence of the same edge with
negative sign means that “x distrusts y” or “x dislikes y”.

Given a vertex v of G, we denote by deg+
in(v,G) (resp.

deg+
out(v,G)) the positive in-degree (resp. positive out-

degree) of v in G, i.e., the number of positive-signed edges
tailing (resp. heading) on v. The negative in- and out-degrees
of the vertices of G are defined analogously and are denoted
by deg−in(v,G) and deg−out(v,G).

Let G = (V,E,w) be a signed graph. Let also s, t ∈
{+,−} and k, l ∈ N. We define the (lt, ks)-dicore of G as
the maximum size subgraph H of G where, for each vertex
v of H , it holds that degs

in(v,H) ≥ k and degt
out(v,H) ≥ l.

Throughout this paper, we use the generic term S-core when
we do not need to make explicit the values of the pair (lt, ks).

Notice that the (lt, ks)-dicore of G can be computed by
the following greedy procedure, similar to those described
in [8, 7]: remove from G a vertex v where degsin(v,H) < k
or degt

out(v,H) < l, until this is not possible anymore. It is
straightforward that the resulting sub-graph is well-defined
– i.e., it is the same regardless of the order of elimination of
vertices – and it is indeed the (ks, lt)-dicore of G.

(s, t)-degeneracy: Given a pair (s, t) ∈ {+,−}2, we define
the (s, t)-degeneracy of G as follows.

δs,t(G) = max{k+l
2 | G contains

a non-empty (lt, ks)-dicore }

For convenience, we define the sign function s : Z →

{+,−} that, given an integer i, outputs − or + depending
whether i is negative or not.

Thus the (s, t)-degeneracy of the graph represents its
robustness under degeneracy in the four different combina-
tions of edge-direction and sign. In the case of trust networks
the (s, t)-degeneracy represents the degeneracy of the graph
for each of the combinations of incoming/outgoing and pos-
itive/negative trust. For instance refer to Figure 2 where the
four cases of degeneracy are depicted as delta++

max(G) etc.
Signed dicore diagram: For every signed digraph G, we
define its signed dicore diagram (or S-core diagram) as a
matrix A = (αi,j)(i,j)∈Z2 where for each (i, j) ∈ Z2, αi,j

is the size (i.e., the number of vertices) of the (is(i), js(j))-
dicore of G.
Signed Graph Extension: As the above definition of A =
(αi,j)(i,j)∈Z2 produces an infinite matrix, it is sufficient to
consider its finite portion, which contains all its non empty
dicores. For this, we restrict i and j to belong in the frame of
G that is the set FG = {−(b+ 1), . . . , 0, . . . , b+ 1} where

b = max{l, k | G has a non-empty (lt, ks)-dicore
for some (s, t) ∈ {+,−}2}.

We call the value b the extension of the signed graph G and
we denote it by b(G).
S-core region: Given a signed graph G, we define its core
region as the set RG = {(i, j) ∈ F 2

G | αi,j > 0}, that is all
the pairs that correspond to a non-empty S-core.
S-core frontier: The core-frontier of G, denoted by BG,
is the set of all entries (i, j) ∈ F 2

G with the property that
ai,j > 0 and αi+(s(i)1),j+(s(j)1) = 0. These are the extreme
non-empty S-cores, in the sense that any further shift of their
coordinate results in an empty S-core.

Here we attempt an intuitive presentation of the above
definitions based on Figure 2. There the reader may see
the extension of the degeneracy of the four cases as the
areas (i.e. R++(G) for the positive in and out trusts edges
degeneracy) enclosed by the respective frontiers. In Figure
3 we see the aforementioned metrics and concepts depicted
for two real works graphs. Apparently the size of the graph
shrinks as the thresholds for in/our for positive/negative signs
increase but we notice that graphs are much more robust
under degeneracy for the positive/positive trust case. We
notice that the bottom diagram indicates that the Wikipedia-
politics graph is more robust as its extension and therefore
its region RG is larger that the Slashdot graph. Evidently the
S-core frontier for the second graph is well more extended
than the other one.Many of the above definitions, (and
some that follow in latter sections) can be seen in a visual
representation in Figure 3.

3.2 Reciprocity in signed graphs Here, we define differ-
ent notions of reciprocity in signed graphs. Initially we build
up on existing definitions of reciprocity for directed graphs



based on local criteria and extend them towards signed ones.
Moreover we define novel notions of reciprocity that do not
depend only on local binary reciprocity but represent this
concept in an aggregate manner at the graph level.

3.2.1 Signed graph reciprocity – local definition First,
we need to adapt the existing definitions [21, 16, 19] to
signed digraphs. We consider trust networks as a prominent
example of signed digraphs where a node can either trust or
distrust another. Additionally, since self-trust is trivial, self
loops are excluded.

The intuition of reciprocity in signed networks must also
be examined. We assume two different options: i.Contextual
local reciprocity where we examine all four possible sign
permutations between two reciprocal edges where each sign
permutation defines a context of trust and ii. Simple local
reciprocity where we consider only the mutuality under trust
and distrust – i.e. we consider only the pairs of nodes
with the same sign that represents the coarse level of trust
reciprocity.
Contextual local reciprocity: Following we define the reci-
procity emanating from all the possible signs permutations
on reciprocal links on a pair on nodes.

r++ ≡ L+↔+

L+
for the in+/out+

r+− ≡ L+↔−

L+
for the in+/out−

r−− ≡ L−↔−

L−
for the in−/out−

r−+ ≡ L−↔+

L−
for the in−/out+

where L+/− is the count of positive/negative edges and the
signs on the double arrow of L↔ (links pointing both ways
i.e. reciprocations) indicate the sign of in and out edges
respectively. Notice that the denominator is not the same for
all the definitions. We could have used L instead of L+/−

but, in our trust model, the second and fourth reciprocity
would have had identical values. The identical values would
not be an issue for a more relaxed model that would allow
two edges of different sign to have the same source and
target.

The rationale for this definition is that, since recipro-
cation quantifies mutuality, we only care about the type of
actions that are being mutual. For each type of reciprocity
above, we select a different set of actions that we are in-
terested to see if they are being reciprocated. For example,
when we study the reciprocation of trust by trust (in+/out+)
it is more intuitive (and more expressive) to compute reci-
procity as only the portion of the positive edges and not the
total number of them. More over this way, in our assump-
tions about the network, we can have distinguishable values
between the in+/out− and in−/out+ cases of reciprocity.

Simple local reciprocity: Moving on to the second defini-
tion, we strictly consider only the same sign reciprocations
and thus we have the following :

rs ≡ L+↔+ + L−↔−

L

For the rest of the document we will refer to rs as sim-
ple reciprocity and the former set of four signed reciprocities
as contextual reciprocity. We also consider the average of
the local reciprocities over the individual nodes (e.g. r+↔+

a

is the average of ratios of reciprocal positive edges in indi-
viduals over all vertices ). These average local reciprocities
are utilized only for comparison (see Section 5.3). All ref-
erences to local reciprocities in the text correspond to the
original five definitions unless specified otherwise.

OBSERVATION 1. Invariance under sign flipping: A cru-
cial difference between the two definitions is that the first
one is not invariant to sign flipping while the second one
is. With contextual reciprocity we try to quantify different
behaviors under a particular context. For example, trust
and distrust are two opposite concepts and their measure-
ment should change if we have a different count of recipro-
cal signs. On the other hand, simple reciprocity remains the
same since we count one type of behavior. Therefore, flipping
the signs should not (and does not) change the measurement
of simple reciprocity.

3.2.2 Signed graph reciprocity – global definition The
concept of reciprocity as defined in existing works capital-
izes on the local property of mutuality among pairs of nodes
and does not offer an adequate descriptive capability for
measuring reciprocity at the graph level.

We proceed here to define metrics that represent signed
graph reciprocity at graph level. Figure 3 is a visual aid
to those definitions (the S-core frontier here is the irregular
shape outlined with the thick line). In this diagram the trust
axes (in, out) and signs (+,−) define respective quadrants
Qout sign,in sign, where out sign, in sign ∈ {+,−}. Each
of the quadrants bears specific semantics regarding the in/out
trust. For instance Q+,+ represents degeneracy in graphs
where the criterion is the mutual trust incoming and out-
going. On the other hand Q+,− represents degeneracy un-
der outgoing trust but incoming distrust. The graphs in the
S-Core frontier (in Q+,−) represent situations where users
maximally trust others in the graph but they receive distrust
from others. The interpretations are analogous for the re-
maining two quadrants Q−,−, Q−,+.
Maximum degeneracy on the trust axes: We now discuss
the extreme degeneracy on each of the four trust axes –
representing the robustness of the graph for each type of
trust. For instance the δ(out,+)

max (G) represents the extreme
graph with regards to outgoing positive trust degeneracy, i.e.
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Figure 2: The S-core diagram, displaying the core sizes, for
the Slashdot and Wikipedia-politics digraphs. Each point,
of integer coordinates (i, j), corresponds to the size of the
(is(i), js(j))-dicore. The color variation reflects the sizes of
the dicores.

the last non empty graph when we increase the threshold
for the outgoing positive trust. Similarly we define the rest
of extreme degeneracies δ(in,+)

max (G), δ(out,−)max (G), δ(in,−)max (G)
on the other trust axes.
Quadrant bounding box: For each of the four aforemen-
tioned quadrant there is the previously defined frontier that
has a respective bounding box which is defined by the max-
imal degeneracies on the relevant axes. For instance the
bounding box for Q+,+ is the dotted rectangle defined by
the points: 0, 0, (δ(out,+)

max (G), δ(in,+)
max (G)). This bounding

box would be the S-core frontier of G if all its vertices (or
at least a subset of the vertices in G) had degrees of at least
δ
(out,+)
max (G) and δ(in,+)

max (G) and moreover their out/in edges
connected them with vertices having the same property.
Quadrant maximal degeneracy: By utilizing the bounding
box, we then define the max degeneracy of each quadrant as
the intersection point between the diagonal of the bounding
box. For instance for the Q+,+ quadrant the maximal
degeneracy δ(+,+)

max (G) is defined by the intersection of the
diagonal (0, 0, (δ(out,+)

max (G), δ(in,+)
max (G))) and the respective

frontier F++(G). The max degeneracy of each quadrant
corresponds to the most extreme core in relevance to the
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Figure 3: Metrics on the S-core graph.

natural ratio of the maximum degeneracies that characterize
the quadrant. This metric signifies the overall activity of
the signed network (i.e. evaluation of how much the users
interact for each type of relationship) while, at the same time,
taking into account the over all outward or inward tendencies
(e.g. are the users more prone to giving or receiving trust).
Contextual reciprocity: In accordance to the local reciproci-
ties, defined in previous sections, we design the definition of
reciprocity at a graph level. As we can observe in Figure 3
the S-core frontier covers the bounding boxes reaching dif-
ferent levels of degeneracy in each. We utilize this to mea-
sure graph level reciprocity. Thus contextual reciprocity at
the graph level is defined (per quadrant) as the ratio of the
area under the respective quadrant frontier over the corre-
sponding bounding box surface. For instance the contextual
reciprocity GR+,+ of the quadrant Q+,+ is defined as:

R++(G)/(δ(out,+)
max (G) ∗ δ(in,+)

max (G)).

These Global Reciprocities have the same contextual
meaning as their node level equivalents. For example,
GR++ measures global trust reciprocity and would reach a
maximum value of one if everybody gave as much trust as
they received (but not necessarily to the same people).
Global reciprocity: Much like the node level reciprocities
we need to define a more strict version of reciprocity for re-
ciprocation of the same types of actions. For this purpose,
we consider the quadrants of same sign (i.e. Q+,+, Q−,−)
as those capturing this type of reciprocity, and the quadrants
having different in/out signs as ones capturing inverse reci-
procity. We can then define Graph Reciprocity as such :

GR =
GR++ +GR−−

GR++ +GR+− +GR−− +GR−+
.

Ideally, the value of this metric would reach a maximum
of one only when the reciprocation is in the same sign quad-
rants (i.e. GR+− and GR−+ are equal to zero) thus keeping
the same range of values as the rest of reciprocations. By



taking into account the inversely reciprocal quadrants, we
differentiate between cases where the signed graph is highly
reciprocal only in the same sign quadrants and cases where
the same applies and simultaneously there is also high recip-
rocation in the other quadrants as well.

4 Datasets Description and Methodology
In this paper, we have used two kinds of signed networks:
explicit ones, from existing Web applications publishing
such networks, and implicit ones, inferred from interactions
that can be interpreted as positive or negative.

Explicit signed networks. We have used two explicit
signed networks, available on the SNAP website1, Epinions
and Slashdot. The Epinions network is extracted from the
epinions.com website in which any user of the site can
indicate if they trust or distrust other users. Similarly, in
the Slashdot signed network, extracted from the slashdot.org
website, users declare friends or foes.We present the main
properties of these explicit signed networks in Table 1a. For
a more in-depth description, we refer the reader to [12].

Implicit (inferred) signed networks. We adopt in this
paper the network Wiki-Signed, which is a signed network
built with the methodology of [14], over the Wikipedia edi-
tors, based on the articles of the English Wikipedia and the
revision history thereof. In short, this network tracks the var-
ious interactions between contributors, either in text editing,
in votes for adminship of pages, or in acknowledgments of
contributions (so called barnstars). From the global Wiki-
Signed network, we selected four subsets of articles, from
the following domains History, Politics, Religion and Math-
ematics. Each of these sets gave a corresponding subgraph of
Wiki-Signed. We give in Table 1b the properties of the four
signed networks – corresponding to the four domains of ar-
ticles: number of extracted articles for each domain, number
of nodes, number of edges and ratio of negative edges

In Figure 2, we show the distributions of S-cores sizes
along the degeneracy coordinates for the Wikipedia-Politics
(bottom) and Slashdot (top) digraphs. Each point in the plot
corresponds to the size of the (is(i), js(j))-dicore and the
color variation reflects the sizes of the cores. It is clear in
both cases that the trust pattern is robust to degeneracy at the
positive in and out trust. On the contrary, the negative trust
constituents are very minor. This conveys that (i) users tend
to engage more in trust actions than distrust ones, (ii) it is
unlikely that a user that trusts another to receive a negative
trust link in reciprocation ( and/or the opposite), and (iii) a
very small portion of the graph concerns mutual distrust, as
the (-,-) quadrant has a very small relative volume overall.

1http://snap.stanford.edu/data/index.html#
signnets

Network Nodes Edges Negative

Epinions 119,217 841,200 15.0%
Slashdot 82,144 549,202 22.6%

(a)

Domain Articles Nodes Edges Negative

History 3,331 141,983 534,693 17.5%
Politics 12,921 453,116 2,428,945 13.5%
Religion 6,459 277,482 1,423,279 12.6%

Mathematics 9,610 158,671 651,450 15.9%

(b)

Table 1: a. Properties of the explicit signed networks. b. The
signed networks extracted from the four Wikipedia domains.

5 Experimental Evaluation
We present in this section the experiments we performed on
the explicit signed graphs (Epinions and Slashdot) and all the
inferred Wikipedia networks.The algorithm for computing
the S-cores of a signed digraph is linear to the number of
the graph edges. As the signed graphs we examine are
sparse, the construction of the S-cores is hence very fast.
The computation is quite straightforward: for a given pair
of in- and out-degree thresholds, we remove iteratively the
vertices having degrees that are below the desired threshold
and update the degrees of the remaining nodes. We repeat
until there are no more nodes in the graph to remove.

The algorithm follows the same logic as in [8, 7]. In
particular, we optimize the efficiency of computing all the
S-cores by utilizing the following property. A (is(i), js(j))-
dicore is a subgraph of every (i′s(i

′), j′s(j
′))-dicore where

i′ ≤ i and j′ ≤ j and for the signs: s(i′) = s(i) or i’=0
and s(j′) = s(j) or j’=0 (i.e. both of the dicores are in
the same quadrant). Thus, we can compute e.g. (2+, 0)-
dicore having computed and stored in memory the (1+, 0)-
dicore. Moreover, we can compute the entire S-core diagram
by computing firstly the S-cores on the axes. Note that two
S-cores upon different axes are not correlated so we need to
compute all of them across the axes but we need on each
quadrant only one of the axes to fill in the rest.

5.1 Slashdot and Epinion graphs The graphs derived
from the Slashdot and Epinions networks are explicitly de-
fined by the users thus providing ground truth examples for
the S-cores and their metrics. Figure 4a displays compara-
tively the frontiers of the Slashdot and Epinion graphs. It can
be seen that the Epinions network has a larger negative area,
which is interpreted as a more distrustful community. For
more details we look at Table 2, containing the general trends
of the two networks. For example we see the higher activ-
ity of mutual trust (Q+,+) displayed from Slashdot (com-

http://snap.stanford.edu/data/index.html#signnets
http://snap.stanford.edu/data/index.html#signnets


Graph Q+,+ Q+,− Q−,− Q−,+ rs/GR

Epinions
max degeneracy (δmax) (19,18) (1,-4) (-5,-5) (-5,1) -
local reciprocity (r) 0.347 0.003 0.038 0.022 0.302
mean local reciprocity 0.230 0.002 0.046 0.013 0.160
graph reciprocity (GR) 0.976 0.109 0.886 0.197 0.859

Slashdot
max degeneracy (δmax) (37,35) (2,-2) (-4,-4) (-3,1) -
local reciprocity (r) 0.197 0.004 0.072 0.016 0.169
mean local reciprocity 0.228 0.004 0.091 0.025 0.133
graph reciprocity (GR) 0.978 0.067 0.8 0.108 0.911

History
max degeneracy (δmax) (17,17) (1,-1) (-2,-2) (-1,1) -
local reciprocity (r) 0.065 0.004 0.010 0.020 0.055
mean local reciprocity 0.050 0.004 0.030 0.029 0.010
graph reciprocity (GR) 0.938 0.158 1.0 0.205 0.842

Politics
max degeneracy (δmax) (64,65) (1,-2) (-2,-2) (-3,1) -
local reciprocity (r) 0.105 0.006 0.020 0.040 0.094
mean local reciprocity 0.059 0.006 0.067 0.048 0.014
graph reciprocity (GR) 0.955 0.535 1.0 0.564 0.640

Religion
max degeneracy(δmax) (42,43) (1,-2) (-2,-2) (-2,1) -
local reciprocity (r) 0.084 0.006 0.022 0.044 0.076
mean local reciprocity 0.058 0.007 0.064 0.050 0.015
graph reciprocity (GR) 0.952 0.396 1.0 0.540 0.676

Mathematics
max degeneracy (δmax) (46,47) (1,-1) (-2,-2) (-2,1) -
local reciprocity (r) 0.099 0.006 0.011 0.032 0.085
mean local reciprocity 0.063 0.006 0.037 0.029 0.012
graph reciprocity (GR) 0.963 0.327 1.0 0.356 0.742

Table 2: The calculated metrics for all graphs. The first
four columns (of the calculated values) present the four
contextual reciprocities (e.g. r in column Q+,+ is the
contextual local reciprocity in the +,+ quadrant r++). The
last column is Simple Local Reciprocity rs or the Global
Reciprocity GR(depending on the corresponding row).

pared to Epinions) evident by the higher valued coordinates
of δ(+,+)

max (G) in that quadrant.
Additionally, we start to see a pattern concerning the

equivalent values of reciprocity at node and graph level. We
see that both types of reciprocity agree in the inversely recip-
rocal cases with low values. The more distinct differences
are in the other quadrants and when comparing simple reci-
procity (rs) with the graph reciprocity (GR). It is quite evi-
dent that, concerning the remaining reciprocities, on a node
level there is much less reciprocity. On the other hand, the
general reciprocities are quite large which is attributed to
users reciprocating more at a community level than a local
one.
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Figure 4: a. The frontiers for Slashdot and Epinions net-
works. b. The frontiers for the Wikipedia topics.

5.2 Wikipedia topics We analyze the S-cores structure on
the four Wikipedia topics selected above: politics, history,
mathematics and religion. In Figure 4b we can see the
corresponding S-core frontiers, and in Table 2 the values
for the defined metrics. In terms of maximal degeneracy
the topic of Politics has by far the largest trust quadrant.
This is expected since there is more activity in that topic,
in comparison with the others, evident by the larger number
of articles, resulting in a larger overall graph. On the other
hand, the History graph has the smallest value (a direct result
from the smaller number of articles). It is quite interesting
that, despite the difference in size, all four networks present
the same behavior in many of their aspects. The network
derived from the topics under History seems to display a
slightly different behavior. The larger value of GR expresses
a general tendency for the users to reciprocate edges of only
the same sign back to the community, which in turn can be
assigned to a larger bias in the actions of a user.

Again, the node level reciprocities cannot describe the
bigger picture of the community’s collective actions. For
example, Contextual Global Reciprocity GR++ has a high
value – indicating a lot of trustworthiness coming and going
from the user to the community– while at the same time



the equivalent node level reciprocities for all four topics are
very low. We should also point out that GR−− has reached
maximum value for all four topics as well. Meaning that,
despite the fact we have less unbiased actions (evident by the
higher values ofGR+− andGR−+ and with the exception of
History), there is a (small) remaining part of the community
where distrust is at its maximum – but not directly as the
node level contextual reciprocities values are very small.

5.3 Local vs. Global reciprocity It is visible from the
comparison in Table 2, that node level reciprocity, although it
captures somewhat the different trends in trust and distrust,
it can not evaluate the wider concept of general (“social”)
trust/distrust. This is more visible in quadrant Q+,+ as reci-
procity r++ is low in most of the cases while the respec-
tive GR++ is close to maximum. The large value of quad-
rant maximal degeneracy δ(+,+)

max (G) indicates that there is a
strong community of individuals that reciprocate their trust
with their community.

In Table 2 we also compare the Graph Reciprocities
to the average local reciprocities over all vertices in the
presented data graphs. The motivation for that is to establish
that Global Reciprocity represents the reciprocal behavior
better than the local one. The local reciprocities are ratios
over the edges while the average local reciprocities are
the mean values over individual behaviors and could be
perhaps better at capturing the average behavior over the
entire graph. From the comparison in Table 2, it is clear
that a) the values of average local reciprocities and of local
reciprocities display more or less the same trends and b)
Graph Reciprocity can capture collective behaviors the other
two metrics cannot.

5.4 S-core reciprocity vs clustering structure In this
section we display the correlation between triangles formed
by the nodes of signed networks and the properties of
reciprocity. The number of triangles a node participates is
important to tasks like graph clustering. As graph clustering
in signed networks is still quite unexplored, the results
presented here could be the seed for further research in graph
mining algorithms of signed networks.

In Figure 5 we see the four possible combinations of
edges in a triangle formation of a directed graph. From left
to right we have: a) the in-triangle 5a, b) the out-triangle 5b,
c) the through triangle 5c and d) the cycle triangle 5d. In
a signed network the types of triangles (for a given node) is
sixteen. In our case though, the types of triangles can be seen
as four sets of the four directed types in Figure 5. Each set
is the aforementioned four types that is “restricted” by the
“properties” imposed from each quadrant. For example, for
Q+,+ we have the four types displayed in Figure 5 where
the incoming edges must be positive and the the outgoing as
well. While forQ+,− only the outgoing must be positive and

(a) (b) (c) (d)

Figure 5: The four possible triangle configurations (for a
node – the green one) in a directed network. The dashed
line indicates that the direction is not important (as the
two possible directions create a “mirror” of one another).
From left to right:a) In-triangle, b) Out-triangle, c) through
triangle, d) cycle triangle.

the incoming negative.
In Table 3 we see the correlation between a node’s tri-

angle count and the respective reciprocities of the nodes for
each quadrant. Much like the frontier for each individual
node we can get the global reciprocity (GR) for that node
for each of the quadrants. Afterwards we measure the corre-
lation coefficient between a nodes triangle count (four types
for each quadrant) and the GR. All the values displayed in
Table 3 have p − value < 0.05 (from comparison to the no
correlation null hypothesis) thus indicating that the correla-
tion is significant.

The global reciprocity can be computed by the cores of
a node’s S-core frontier and a connection has been found
between the k-core properties of an undirected graph and its
clustering coefficient (e.g. see [9]).

Despite that, to our knowledge, this is the first time that
the correlation, between core properties in a signed digraph
(or even just a digraph) and clustering properties, has been
explored. And, even though the local reciprocity of a node is
not connected by intuition to clustering properties, we also
presented the correlation of the local reciprocity of a node to
the number of triangles for comparison and completeness of
the exploration.

It is very interesting that, with the exception of the
in-triangles, the global reciprocity presents a consistently
higher that the local one correlation with the triangles count.
In the in-triangle case the reason for this inconsistency (in the
Q−,−) could be that newcomers into a social network –since
they are new to the network and less knowledgeable and/or
more eager to participate– are more likely to receive negative
votes due to inexperience (which in turn could have a direct
reciprocation with a negative vote for the same reason).
Never the less the high correlation ofGR with triangle count
is an indication that GR could be used in signed network
clustering (for perhaps a selection phase of seed nodes).
Furthermore this indicates the validity and superiority of the
GR measure over the local reciprocity.



Reciprocity in out through cycle
triangle triangle triangle triangle

GR++ 0,56 0,79 0,96 0,87
r++ 0,29 0,09 0,08 0,09

GR−+ 0,17 0,26 0,60 0,47
r−+ 0,10 0,02 0,01 0,02

GR−− 0,05 0,79 0,97 0,87
r−− 0,46 0,03 0,04 0,04

GR+− 0,17 0,19 0,42 0,36
r+− 0,10 0,01 0,04 0,03

Table 3: Correlation coefficient values between the four
types of triangles and reciprocities for each quadrant.

6 Conclusions
We have investigated in this paper models and metrics for
reciprocity in signed graphs, capitalizing on the graph degen-
eracy concept to identify the most reciprocal parts of signed
networks and thus be able to assess reciprocity at a global
level, rather than at a local one as existing approaches man-
ifest. Starting from previous work, we have extended the D-
core structure – degeneracy in directed graphs – to the con-
cept of S-core, to handle degeneracy in signed graphs. We
utilize this tool to better represent reciprocity in the context
of trust networks. Our experimental evaluation shows prop-
erties of signed networks, both explicit and implicit ones,
that are better captured by the new reciprocity measures, sug-
gesting its potential as an objective for optimization algo-
rithms in the context of directed and/or signed graphs, such
as graph clustering or link formation models. There are sev-
eral direction we intend to focus our future work on, such
as:

• Weighted signed networks: We will extend the notion of
degeneracy in signed graphs with weights, i.e., where
the link is defined by a real-valued weight representing
partially positive or negative endorsement.

• Link formation models for signed networks: Based
on the existing models for directed graphs we are
interested in producing models that fit the structure and
behavior of signed graphs and can be used as generators
of such realistic graphs. Specifically we are interested
in investigating the issue of preferential attachment in
signed graphs.

• Utilizing global reciprocity for clustering: Graph clus-
tering is achieved by maximizing intra-cluster density,
while having as few links as possible between clusters.
Intuitively, the global reciprocity measure could be used
as an alternative measure for graph clustering, espe-
cially in the context of signed networks, where simple

intra-cluster density would not suffice as a measure of
realistic user communities.
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