A. Abou-rjeili and G. Karypis, Multilevel algorithms for partitioning power-law graphs, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, pp.124-124, 2006.
DOI : 10.1109/IPDPS.2006.1639360

J. I. Alvarez-hamelin, L. Dall-'asta, A. Barrat, and A. Vespignani, k-core decomposition: a tool for the visualization of large scale networks, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004807

R. Andersen, C. , and K. , Finding Dense Subgraphs with Size Bounds, WAW, pp.25-37, 2009.
DOI : 10.1007/978-3-540-95995-3_3

D. Arthur and S. Vassilvitskii, k-means++: the advantages of careful seeding, SODA, pp.1027-1035, 2007.

V. Batagelj and M. Zaversnik, An o(m) algorithm for cores decomposition of networks, 2003.

J. Cheng, Y. Ke, S. Chu, and M. Ozsu, Efficient core decomposition in massive networks, 2011 IEEE 27th International Conference on Data Engineering, pp.51-62, 2011.
DOI : 10.1109/ICDE.2011.5767911

A. Clauset, M. E. Newman, and C. Moore, Finding community structure in very large networks, Physical Review E, vol.70, issue.6, p.66111, 2004.
DOI : 10.1103/PhysRevE.70.066111

P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay, Clustering Large Graphs via the Singular Value Decomposition, Machine Learning, vol.56, issue.1-3, pp.1-3, 2004.
DOI : 10.1023/B:MACH.0000033113.59016.96

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3-5, pp.3-5, 2010.
DOI : 10.1016/j.physrep.2009.11.002

C. Giatsidis, F. D. Malliaros, D. M. Thilikos, and M. Vazirgiannis, Supplemental material: CoreCluster: A degeneracy based graph clustering framework, 2014.

D. F. Gleich and C. Seshadhri, Vertex neighborhoods, low conductance cuts, and good seeds for local community methods, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.597-605, 2012.
DOI : 10.1145/2339530.2339628

G. Karypis and V. Kumar, A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs, SIAM Journal on Scientific Computing, vol.20, issue.1, 1998.
DOI : 10.1137/S1064827595287997

S. Kumar, M. Mohri, and A. Talwalkar, On sampling-based approximate spectral decomposition, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pp.553-560, 2009.
DOI : 10.1145/1553374.1553446

A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark graphs for testing community detection algorithms, Physical Review E, vol.78, issue.4, 2008.
DOI : 10.1103/PhysRevE.78.046110

J. Leskovec, F. , and C. , Sampling from large graphs, Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '06, pp.631-636, 2006.
DOI : 10.1145/1150402.1150479

J. Leskovec, K. J. Lang, and M. Mahoney, Empirical comparison of algorithms for network community detection, Proceedings of the 19th international conference on World wide web, WWW '10, pp.631-640, 2010.
DOI : 10.1145/1772690.1772755

A. S. Maiya and T. Y. Berger-wolf, Sampling community structure, Proceedings of the 19th international conference on World wide web, WWW '10, pp.701-710, 2010.
DOI : 10.1145/1772690.1772762

C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval, 2008.
DOI : 10.1017/CBO9780511809071

M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Physical Review E, vol.69, issue.2, 2004.
DOI : 10.1103/PhysRevE.69.026113

M. E. Newman, Fast algorithm for detecting community structure in networks On spectral clustering: Analysis and an algorithm, NIPS, pp.849-856, 2001.

M. Polito and P. Perona, Grouping and dimensionality reduction by locally linear embedding, NIPS, pp.1255-1262, 2001.

V. Satuluri and S. Parthasarathy, Scalable graph clustering using stochastic flows, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.737-746, 2009.
DOI : 10.1145/1557019.1557101

V. Satuluri, S. Parthasarathy, and Y. Ruan, Local graph sparsification for scalable clustering, Proceedings of the 2011 international conference on Management of data, SIGMOD '11, pp.721-732, 2011.
DOI : 10.1145/1989323.1989399

S. B. Seidman, Network structure and minimum degree, Social Networks, vol.5, issue.3, pp.269-287, 1983.
DOI : 10.1016/0378-8733(83)90028-X

J. Shi, M. , and J. , Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell, vol.22, issue.8, pp.888-905, 2000.

A. L. Traud, P. J. Mucha, and M. A. Porter, Social structure of facebook networks, 2011.

D. J. Watts and S. H. Strogatz, Collective dynamics of'small-world'networks, Nature, vol.393, issue.6684, 1998.

S. White and P. Smyth, A Spectral Clustering Approach To Finding Communities in Graphs, SDM, 2005.
DOI : 10.1137/1.9781611972757.25

Y. Zhang and S. Parthasarathy, Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks, 2012 IEEE 28th International Conference on Data Engineering, pp.1049-1060, 2012.
DOI : 10.1109/ICDE.2012.35