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The Graph Minors Theory, developed by Robertson and Seymour, has been one of the most influential mathematical theories in parameterized algorithm design. We present some of the basic algorithmic techniques and methods that emerged from this theory. We discuss its direct meta-algorithmic consequences, we present the algorithmic applications of core theorems such as the grid-exclusion theorem, and we give a brief description of the irrelevant vertex technique.

Introduction

Graph Minors Theory (GMT) was developed by Robertson and Seymour in a series of 23 papers, between 1984 and 2009. Among them, the second paper of the series was published in the Journal of Algorithms while all the rest were published in the Journal of Combinatorial Theory Series B. The main theoretical achievement of this project was the proof of Wagner's conjecture, now known as the Robertson & Seymour Theorem, stating that graphs are well-quasi-ordered under the minor containment relation. Besides its purely mathematical importance, GMT induced a series of powerful algorithmic results and techniques that had a deep influence on theoretical computer science. More particularly, GMT has been one of the most powerful "mathematical engines" in the theory and design of parameterized algorithms. In particular, a considerable part of the basic techniques in parameterized algorithm design is directly or indirectly linked to results from GMT. Moreover, GMT offered the theoretical base for the understanding and resolution of some of the most prominent graph-algorithmic problems in parameterized complexity. In what follows, we give a brief presentation of the main results and techniques in this area.

Our presentation is organized as follows. In Section 2 we give the definitions of some basic combinatorial and algorithmic concepts. In Section 3.1 we present the main algorithmic consequences of the GMT, mainly from the parameterized complexity viewpoint. Section 4 is devoted to the celebrated grid-exclusion theorem and its applications to bidimensionality theory. Finally, Section 5, attempts a short presentation of the irrelevant vertex technique and its applications.

Basic definitions

All graphs we consider are finite, undirected and simple, i.e., they do not have multiple edges or loops. Given a graph G we denote by V (G) and E(G) its vertex and edge set respectively. The size (reps. magnetite) of a graph G is the number of its vertices (reps. edges) and is denoted by n(G) (reps. m(G)), i.e., n(G) = |V (G)| (m(G) = |E(G)|). We denote by G \ v the graph obtained by removing v (along with its incident edges) from G. The neighborhood of a vertex v ∈ V (G), denoted by N G (v), is the set of edges in G that are adjacent to v. The degree of a vertex v ∈ V (G) is the cardinality of its neighborhood in G. We denote by K r the complete graph on r vertices and by K r,q the complete bipartite graph with r vertices in its one part and q in the other. Finally, we denote by G k the (k × k)-grid, i.e., the Cartesian product of two paths of length k -1 (see Figure 1).

Our presentation is organized as follows. In Section 2 we give the definitions of some basic combinatorial and algorithmic concepts. In Section 3.1 we present the main algorithmic consequences of the GMT, mainly from the parameterized complexity viewpoint. Section 4 is devoted to the celebrated grid-exclusion theorem and its applications to bidimensionality theory. Finally, Section 5, attempts a short presentation of the irrelevant vertex technique and its applications.

Basic definitions

All graphs we consider are finite, undirected and simple, i.e., they do not have multiple edges or loops. Given a graph G we denote by V (G) and E(G) its vertex and edge set respectively. The size (reps. magnetite) of a graph G is the number of its vertices (reps. edges) and is denoted by n(G) (reps. m(G)), i.e., n(G) = |V (G)| (m(G) = |E(G)|). We denote by G \ v the graph obtained by removing v (along with its incident edges) from G. The neighborhood of a vertex v 2 V (G), denoted by N G (v), is the set of edges in G that are adjacent to v. The degree of a vertex v 2 V (G) is the cardinality of its neighborhood in G. We denote by K r the complete graph on r vertices and by K r,q the complete bipartite graph with r vertices in its one part and q in the other. Finally, we denote by G k the (k ⇥ k)-grid, i.e., the Cartesian product of two paths of length k 1 (see Figure 1). [START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF][START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF]-grid G 11 .

Relations on graphs and obstructions

We say that a graph H is a subgraph of a graph G if H can be obtained by G by removing edges or vertices. The contraction of an edge e = {x, y} from G is the removal from G of all edges incident to x or y and the insertion of a new vertex v e that is made adjacent to all the vertices of (N G (x) \ {y}) [ (N G (y) \ {x}). Given two graphs H and G, we say that H is a contraction of G, denoted by Figure 1. The [START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF][START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF]-grid G 11 .

Relations on graphs and obstructions

We say that a graph H is a subgraph of a graph G if H can be obtained by G by removing edges or vertices. The contraction of an edge e = {x, y} from G is the removal from G of all edges incident to x or y and the insertion of a new vertex v e that is made adjacent to all the vertices of (N G (x) \ {y}) ∪ (N G (y) \ {x}).

Given two graphs H and G, we say that H is a contraction of G, denoted by H ≤ c G, if H can be obtained from G by a (possibly empty) series of edge contractions.

H  c G, if H can be obtained from G by a (possibly empty) series of edge contractions.

G H v Figure 2.
The graph H is the result of the contractions of the bold edges in G to the vertex v.

H is a minor of G if H is a contraction of some subgraph of G. A graph H is a topological minor of G (denoted by H  t G) if G contains as a subgraph some subdivision of H (a subdivision of a graph H is any graph obtained by replacing some of its edges by paths between the same endpoints). Given a partial ordering relation  on graphs, we say that a graph class G is closed under  if for every G 2 G, H  G implies that H 2 G. Let G be a graph class that is closed under the minor relation. An -anti-chain is a set of graphs that are pairwise noncomparable with respect to . For example the set of graphs A = {K 2,r | r 2} is a  c -antichain but not an  m -antichain or a  t -antichain.

We define the -obstruction set of a graph class G, denoted by obs  (G), as the set of all -minimal graphs that do not belong to G. Clearly, by definition, the -obstruction set of a graph class is an -anti-chain. Obstruction sets can be seen as alternative characterizations of graph classes and, in many cases, reveal a good deal from their structural characteristics. For example, it easy to verify that obs

 m (T ) = obs  t (T ) = {K 3 }, obs  m (O) = obs  t (O) = {K 4 , K 2,3
}, where T and O are the classes of all acyclic and all outerplanar graphs respectively, and obs  c (O ⇤ ) = {K 4 , K 2,3 , K + 2,3 } where O ⇤ are the connected outerplanar graphs and K + 2,3 is the graph obtained from K 5 by removing a triangle. The most classic theorems on obstruction characterization of graph classes are the Kuratowski-Pontryagin's theorem [START_REF] Kuratowski | Sur le problème des courbes gauches en topologie[END_REF] and Wagner's theorem [121], stating that obs  m (P) = {K 5 , K 3,3 } and obs  t (P) = {K 5 , K 3,3 } respectively, where P is the class of all planar graphs.

Parameterized problems and algorithms

The idea of problem parameterization is to treat algorithmic problems as parameterized entities and to evaluate the complexity of the corresponding algorithms by considering the way parameters appear in their running times. As here we deal with problems on graphs, we adapt the classic definitions of parameterized complexity to the case where problem inputs represent graphs.

Formally, a parameterized problem on graphs is a subset ⇧ of ⌃ ⇤ ⇥ N, where ⌃ is some alphabet and, in each (I, k) 2 ⌃ ⇤ ⇥ N, I encodes a combinatorial 

H is a minor of G if H is a contraction of some subgraph of G. A graph H is a topological minor of G (denoted by H ≤ t G) if G contains
as a subgraph some subdivision of H (a subdivision of a graph H is any graph obtained by replacing some of its edges by paths between the same endpoints). Given a partial ordering relation ≤ on graphs, we say that a graph class G is closed under

≤ if for every G ∈ G, H ≤ G implies that H ∈ G.
Let G be a graph class that is closed under the minor relation. An ≤-anti-chain is a set of graphs that are pairwise noncomparable with respect to ≤. For example the set of graphs A = {K 2,r | r ≥ 2} is a ≤ c -antichain but not an ≤ m -antichain or a ≤ t -antichain.

We define the ≤-obstruction set of a graph class G, denoted by obs ≤ (G), as the set of all ≤-minimal graphs that do not belong to G. Clearly, by definition, the ≤-obstruction set of a graph class is an ≤-anti-chain. Obstruction sets can be seen as alternative characterizations of graph classes and, in many cases, reveal a good deal from their structural characteristics. For example, it easy to verify that obs ≤m (T ) = obs ≤t (T ) = {K 3 }, obs ≤m (O) = obs ≤t (O) = {K 4 , K 2,3 }, where T and O are the classes of all acyclic and all outerplanar graphs respectively, and obs ≤c (O * ) = {K 4 , K 2,3 , K + 2,3 } where O * are the connected outerplanar graphs and K + 2,3 is the graph obtained from K 5 by removing a triangle. The most classic theorems on obstruction characterization of graph classes are the Kuratowski-Pontryagin's theorem [START_REF] Kuratowski | Sur le problème des courbes gauches en topologie[END_REF] and Wagner's theorem [121], stating that obs ≤m (P) = {K 5 , K 3,3 } and obs ≤t (P) = {K 5 , K 3,3 } respectively, where P is the class of all planar graphs.

Parameterized problems and algorithms

The idea of problem parameterization is to treat algorithmic problems as parameterized entities and to evaluate the complexity of the corresponding algorithms by considering the way parameters appear in their running times. As here we deal with problems on graphs, we adapt the classic definitions of parameterized complexity to the case where problem inputs represent graphs.

Formally, a parameterized problem on graphs is a subset Π of Σ * × N, where Σ is some alphabet and, in each (I, k) ∈ Σ * × N, I encodes a combinatorial structure related to one, or more, graphs. For this, we agree that n (resp. m) is the maximum size (resp. magnitude) of the graphs encoded in I and we insist that |(I, k)| = O(m). We call I the main part of the input and we say that k is the parameter of the problem. Two instances (I, k), (I , k

) ∈ Σ * × N are equivalent with respect to Π if (I, k) ∈ Π ⇐⇒ (I , k ) ∈ Π.
We say that Π is fixed parameter tractable if there exists a function1 f : N → N and an algorithm deciding whether (I, k) ∈ Π in O(f (k) • n c ) steps, where c is a constant not depending on the parameter k of the problem. We call such an algorithm FPT-algorithm or, to express concretely the choice of f and c, we say that Π ∈ O(f (k) • n c )-FPT. A parameterized problem on graphs belongs to the parameterized class FPT if it can be solved by an FPT-algorithm. In fact, not all parameterized problems belong to the class FPT. There is a hierarchy of parameterized complexity classes, namely

FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ . . . ⊆ W[SAT ] ⊆ W[P] ⊆ XP,
and appropriate parameter-preserving reductions such that, when a problem is hard for some of them (other than FPT), it is not expected to have an FPTalgorithm (all inclusions in this hierarchy are believed to be strict). See the monographs [START_REF] Downey | Parameterized complexity[END_REF][START_REF] Flum | Parameterized Complexity theory[END_REF][START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF] for more details on parameterized complexity. Time bounds for parameterized algorithms have two parts. The term f (k) is called parameter dependence and, is typically a super-polynomial function. On the other hand, the term n c is a polynomial function and we call it polynomial part. In most of the problems that we examine here, I will encode a simple graph. To simplify notation, we frequently write "O k (n c )" instead of "f (k) • (n c )" for some recursive function f : N → N" and, in this case, we refer to the function f hidden in the O k notation as the parameter dependence.

3 Algorithmic consequences of the GMT

Well-Quasi-Ordering

The main combinatorial result of the GMT fits in the more general framework of the theory of Well-Quasi-Orderings, first developed by Graham Higman2 under the name "finite basis property" [START_REF] Higman | Ordering by divisibility in abstract algebras[END_REF]. Given a set X and a partial ordering ≤ on X we say that X is well-quasi-ordered under ≤ if none of its subsets is an infinite ≤-antichain.

Theorem 1 (Robertson & Seymour Theorem [110]). The set of all graphs is well-quasi-ordered under minors.

In other words, Theorem 1 says that If G is an infinite set of graphs then there exist two graphs H, G ∈ G such that H is a minor of G. The proof of theorem 1 was concluded in paper XX of the Graph Minors Series. Before its proof, the statement of Theorem 1 was known as Wagner's conjecture. However, as mentioned by Diestel in [START_REF] Diestel | Graph Theory[END_REF], Wagner said that he had never made such a conjecture. A similar conjecture, on the well-quasi-ordering of trees under the topological minor relation was made by Vázsonyi and was proved in 1960 independently3 by Joseph Kruskal and S. Tarkowski [START_REF] Lovász | Graph minor theory[END_REF]. Interesting results on the meta-mathematics of Kruskal's tree theorem as well as Roberson & Seymour's theorem can be found in [START_REF] Friedman | Internal finite tree embeddings[END_REF] and [START_REF] Friedman | The metamathematics of the graph minor theorem[END_REF] The main algorithmic contribution of the GMT is the following result.

Theorem 2 (Robertson and Seymour [108]). One can construct an algorithm that, given a n-vertex graph G and a k-vertex graph H, checks whether H is a minor of a graph G in O k (n 3 ) steps. In other words, H-Minor Checking ∈ O k (n 3 )-FPT.

Actually, Robertson and Seymour in [108] describe an O k (n 3 )-step algorithm that solves a generalization of the H-Minor Checking and another celebrated problem, namely the k-Disjoint Paths problem. In Section 5, we give a rough description of the main ingredients of the algorithm in Theorem 2 especially for the k-Disjoint Paths problem. Recently, this running time was improved to a quadratic one for the k-Disjoint Paths problem in [START_REF] Kawarabayashi | The disjoint paths problem in quadratic time[END_REF].

The good news about Theorem 2 is that it is constructive (contrary to Theorem 1) and there is a recursive function hidden in the O k notation. The bad news is that, according to the algorithm in [108] and the proof of its correctness in [111] and [107], the values of this function are immense4 , even for small values of k. David Johnson mentioned in [START_REF] Johnson | The NP-completeness column: An ongoing guide[END_REF]:

"for any instance G = (V, E) that one could fit into the known universe, one would easily prefer |V | 70 to even constant time, if that constant had to be one of Robertson and Seymour's". Moreover, in [START_REF] Johnson | The NP-completeness column: An ongoing guide[END_REF], David Johnson estimates that just one constant in the parameter dependence of Theorem 2 is roughly

2 ↑2 2 2 2 ↑2 ↑Θ(r)
where 2 ↑r denotes a tower 2 2 2 . . . involving r 2's. Clearly, such type of constants may create reasonable doubts to computer scientists on whether such an algorithm may be considered to be an "algorithm" of some practical meaning. In fact, to investigate until which point these constants can be improved is an open and challenging problem in parameterized complexity and algorithms (see e.g. [START_REF] Adler | Tight bounds for linkages in planar graphs[END_REF]).

Minor-closed graph parameters

A parameter on graphs (or a graph parameter) is any function that maps graphs to integers and with the property that it is invariant under graph isomorphism. Let ≤ be a relation on graphs. We say that a graph parameter p is closed under ≤ (or, simply, ≤-closed ) if for every two graph H and G, H ≤ G implies that p(H) ≤ p(G). We define the ≤-obstruction family of p as the parameterized graph class 

O ≤ p,k = obs ≤ ({G | p(G) ≤ k}).
p(G) ≤ k ⇐⇒ ∀H ∈ O ≤m p,k H ≤ m G.
Therefore, to check whether p(G) ≤ k it is enough to apply g(k) times the O k (n 3 ) step algorithm of Theorem 2 and check whether some member of O ≤m p,k is contained as a minor in G.

Theorem 3 had a great impact in parameterized complexity as it implied a massive classification of problems in the class FPT. In that sense, Theorem 3 is an algorithmic meta-theorem because it provides a generic condition (minorclosedness) for a parameterized problem that automatically implies the existence of an FPT-algorithm for it. Unfortunately, the proof of Theorem 1 does not provide any general "meta-algorithm" to compute the set O ≤m p,k and, that way, construct the claimed algorithm for each p. In fact, due to the meta-mathematics of Theorem 1 [START_REF] Friedman | The metamathematics of the graph minor theorem[END_REF], such an meta-algorithm does not exist. As observed in [START_REF] Fellows | On search, decision, and the efficiency of polynomial-time algorithms[END_REF], there is no algorithm that, given a Turing machine accepting precisely the graphs of a minor-closed graph class F, outputs obs ≤m (F) (see also [119]). However, Theorem 3 gave important (mathematical) energy to Parameterized Algorithms as it acted as an "encouraging factor". The knowledge that an algorithm exists for a specific problem, induces the challenge to construct one and, in a sense, provides the courage to try to accomplish such a task.

In order to cope with the inherent non-constructivity of Theorem 3 one may study specific parameters where the computation of the set O ≤m p,k (or, at least, of some upper bound to the function g(k)) in the proof of Theorem 3 is possible. However, this is not an easy task, even for simple parameters. According to [START_REF] Dinneen | Too many minor order obstructions (for parameterized lower ideals)[END_REF], if the problem of checking whether p(G) ≤ k is NP-complete, then |O ≤m p,k | is a super-polynomial function of k, unless the polynomial hierarchy collapses to Σ P 3 . Characterizations of p(G) ≤ k (yielding better lower bounds for |O ≤m p,k |) have been provided for several parameters [START_REF] Bienstock | On obstructions to small face covers in planar graphs[END_REF][START_REF] Chlebíková | The structure of obstructions to treewidth and pathwidth[END_REF][START_REF] Ellis | The vertex separation and search number of a graph[END_REF][START_REF] Giannopoulou | Obstructions for tree-depth[END_REF][START_REF] Koutsonas | Outerplanar obstructions for matroid pathwidth[END_REF][START_REF] Parsons | Pursuit-evasion in a graph[END_REF][START_REF] Ramachandramurthi | The structure and number of obstructions to treewidth[END_REF]115,117,118]. However, to our knowledge, there is not yet a natural parameter p for which a complete characterization of O ≤m p,k is known. A more promising strategy towards detecting constructive fragments of Theorem 3, is to detect parameters -or families of parameters -where O ≤m p,k is recursive. For this one may either prove upper bounds for |O ≤m p,k |, as done in [START_REF] Geelen | On the excluded minors for the matroids of branch-width k[END_REF] for the case of branchwidth5 , or provide partial characterizations of O ≤m p,k , as done in [START_REF] Adler | Computing excluded minors[END_REF][START_REF] Cattell | On computing graph minor obstruction sets[END_REF][START_REF] Courcelle | A note on the computability of graph minor obstruction sets for monadic second order ideals[END_REF][START_REF] Lagergren | Upper bounds on the size of obstructions and intertwines[END_REF][START_REF] Mohar | A linear time algorithm for embedding graphs in an arbitrary surface[END_REF], that permit its recursive computation.

At this point, we should mention that all theorems of this section have their counterparts in another partial relation on graphs, the one of immersion. The lift of two incident edges is the operation of removing two edges e 1 = {x, y} and e 2 = {x, z} (incident to a common vertex x) and adding the edge {y, z}. We say that a graph H can be immersed in a graph G, denoted by H ≤ im G, if H can be obtained from a subgraph of G by a (possibly empty) sequence of edge lifts. According to the last paper of the Graph Minor series [112], graphs are well-quasi-ordered under immersions, i.e., Theorem 1 holds also if we replace minors by immersions. Therefore, in order to prove a counterpart of Theorem 3 for the case of immersion-closed parameters, we need an algorithm that given an n-vertex graph G and a k-vertex graph H, checks where

H ≤ im G in O k •(n(G)) 3 steps.
Recently, a construction of such an algorithm was given in [START_REF] Grohe | Finding topological subgraphs is fixed-parameter tractable[END_REF]. This makes it possible to derive the following meta-algorthmic result. Theorem 4. If p is a parameter that is closed under immersions, then there exists an algorithm that solves the problem k-Parameter Checking for p in f (k) • n 3 steps for some function f .

In fact, the main result of [START_REF] Grohe | Finding topological subgraphs is fixed-parameter tractable[END_REF] proves the FPT membership of topological minor testing, i.e., given two graphs H and G, check whether H ≤ t G (the pa-rameter is the size of H). This means that there is a counterpart of Theorem 2 for the topological minor relation as well. This might create some hope that Theorem 3 holds for topological minors as well. Unfortunately, this requires an analogue of the combinatorial Theorem 1 which does not exist as it is possible to construct an infinite class of graphs that are pairwise non-comparable with respect to the topological minor relation: just take all cycles with their edges duplicated. An other argument for the non-existence of analogues of Theorems 1 and 3 for topological minors is given by the Topological Bandwidth problem asking whether the topological bandwidth of a graph is at most k. The topological bandwidth of a graph G is denoted by tbw(G) and is defined as

tbw(G) = min{k | ∃q ≥ 1 : G ≤ t P k q }
(P k q is obtained by a path P q of length q if we make adjacent any two vertices of distance ≤ k in P q ). It is easy to observe that tbw is closed under topological minors. In [START_REF] Fellows | Towards fully multivariate algorithmics: Some new results and directions in parameter ecology[END_REF] it is mentioned that Topological Bandwidth is W[t]-hard for all t ≥ 1 -the proof is a modification of the proof for the case of Bandwidth in [START_REF] Bodlaender | Beyond NP-completeness for problems of bounded width: hardness for the W hierarchy[END_REF]. This implies that, under reasonable assumptions in parameterized complexity theory, the anti-chain corresponding to the ≤ t -obstruction family O ≤t tbw,k is infinite for an infinite set of values of k.

Grid-exclusion and bidimensionality

Treewidth

Treewidth has been one of the main contributions of GMT to algorithmic graph theory. While, as a concept, its indices can be traced back to the work of Gavril in [START_REF] Gavril | The intersection graphs of subtrees in trees are exactly the chordal graphs[END_REF], its formal birth as a graph parameter occurred in the second paper of the Graph Minors series [104]. Currently, there are at least six equivalent definitions of tree-width. We present the original one from [104].

A tree decomposition of a graph G is a pair (X , T ) where T is a tree and

X = {X i | i ∈ V (T )} is a collection of subsets of V (G) such that: 1. i∈V (T ) X i = V (G); 2. for each edge {x, y} ∈ E(G), {x, y} ⊆ X i for some i ∈ V (T ), and 3. for each x ∈ V (G) the set {i | x ∈ X i } induces a connected subtree of T .
The width of a tree decomposition

({X i | i ∈ V (T )}, T ) is max i∈V (T ) {|X i | -1}.
The treewidth of a graph G, denoted by tw(G), is the minimum width over all tree decompositions of G.

If, in the above definitions, we restrict the tree T to be a path then we define the notions of path decomposition and pathwidth. We write pw(G) to denote the pathwidth of a graph G. Pathwidth was defined earlier than treewidth in the first paper is the Graph Minors Series [102].

Treewidth can intuitively be seen as a measure of the topological resemblance of a graph to a tree or, alternatively, as a measure of the "global connectivity" of a graph. Similarly, pathwidth can be seen as a measure of the topological resemblance of a graph to a path.

Counting Monadic Second Order Logic (CMSOL) is a logic on graphs 6 where the domain is the set of vertices and edges, there are predicates for vertex-vertex adjacency and edge-vertex incidence, there is quantification over edges, vertices, edge sets and vertex sets, and there is a predicate Card r,p (S) which expresses whether the size of a set S is r modulo p.

The importance of treewidth for algorithmic graph theory is illustrated by the celebrated Courcelle's theorem stating that if Π k is a parameterized property of graphs expressible by a CMSOL formula φ k , then there is an algorithm that, given as input a graph G, can check whether G satisfies property Π k (i.e., whether

G ∈ Π k ) in O |φ k |+tw(G) (n) steps.
Moreover, there exists a meta-algorithm that, given φ k , outputs such an algorithm. A proof of Courcelle's theorem can be found in [START_REF] Downey | Parameterized complexity[END_REF]Chapter 6.5] and [START_REF] Flum | Parameterized Complexity theory[END_REF]Chapter 10] and similar results appeared by Arnborg, Lagergren, and Seese in [START_REF] Arnborg | Easy problems for tree-decomposable graphs[END_REF] and Borie, Parker, and Tovey in [START_REF] Borie | Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families[END_REF]. An alternative game-theoretic proof has appeared recently in [START_REF] Kneis | A practical approach to courcelle's theorem[END_REF][START_REF] Kneis | Courcelle's theorem -a game-theoretic approach[END_REF].

Courcelle's theorem had a deep influence in parameterized algorithms as it automatically yields FPT-algoriths for a wide family of problems, provided that the treewidth of their instances is bounded by a function of the parameter k. The natural challenge is whether and when a parameterized problem can be reduced to its bounded treewidth variant. For this, an important step is to detect what kind of combinatorial structures are contained in a graph with big treewidth. The most prominent structure of this type is the grid G k . Let gm(G) be the maximum k for which G contains G k as a minor. A valuable theoretical tool in this direction was given by the following result of the GMT.

Theorem 5 ( [105]

). There exists a recursive function f : N → N such that tw(G) ≤ f (gm(G)).

While the above result appeared in the fifth paper of the series, a preliminary variant of it, where G is planar, appeared earlier in [103]. As every graph containing G k as a minor has treewidth at least k, Theorem 5 implies that tw and gm are parametrically equivalent: a bound to the one of them implies a bound to the other. The initial estimation of the parameter dependence in Theorem 5 was huge. However, a better one appeared in [113] where it was proven that tw(G) = 20 2•(gm(G)) 5 . An alternative, and relatively simpler, proof of Theorem 5 was given in [START_REF] Diestel | Highly connected sets and the excluded grid theorem[END_REF]. To see the use of Theorem 5 in parameterized algorithm design, consider a parameter p that satisfies the following properties: i. p is closed under taking of minors.

ii. there exists a recursive function t : N → N such that p(G t(k) ) > k for every non-negative integer k. iii. One can construct an algorithm that, given a tree-decomposition of G of width at most q and an integer k, checks whether p(G) ≤ k in l(k, q) • n O (1) steps for some recursive function l : N × N → N.

Clearly, the first two conditions are easy to check for most instantiations of p.

Moreover, the third one follows directly from Courcelle's theorem if for each k, Π k = {G | p(G) ≤ k} is expressible by a CMSOL formula φ k . There are many examples of such parameters. Typical examples are the vertex cover of a graph, i.e., the minimum number of vertices that meets all vertices of G and the feedback vertex set of a graph, i.e., the minimum number of vertices meeting all cycles of G. A direct consequence of Theorem 5 is the following (constructive) special case of Theorem 3:

Lemma 1.
Let p be a parameter satisfying conditions i-iii above for some t and l. Then it is possible to construct an algorithm that, given as input a graph G and an integer k, checks whether

p(G) ≤ k in (2 O(f (t(k)) + l(k, 4 • f (t(k)))) • n O(1)
steps where f is the function in Theorem 5.

Proof. The algorithm in Lemma 1 works as follows: First of all, it uses an FPTapproximation algorithm for treewidth, i.e., an algorithm that given a graph G and an integer q, either outputs a tree decomposition of G of width at most α • q or reports that tw(G) > q in z(q) • n β steps. Various algorithms of this type have been proposed in [START_REF] Amir | Approximation algorithms for treewidth[END_REF][START_REF] Bodlaender | A linear-time algorithm for finding tree-decompositions of small treewidth[END_REF][START_REF] Lagergren | Efficient parallel algorithms for graphs of bounded tree-width[END_REF]100,108] for different trade-offs between z, α, and β. Among them, we pick the one form [START_REF] Amir | Approximation algorithms for treewidth[END_REF] where z(q) = 2 4.38•q , α = 4, and β = 2. We run this algorithm for G and q = f (t(k)). If it outputs a tree decomposition of width ≤ 4 • f (t(k)) then we use the algorithm of Property iii and solve the problem in l(k, 1) steps. If the algorithm reports that the treewidth of G is more than f (t(k)), then from Theorem 5, G contains G t(k) as a minor. In such a case, the algorithm directly outputs a negative answer as, from Properties i and ii, p(G) ≥ p(G t(k) ) > k.

4•f (t(k)))•n O(
The idea of the above proof is also known as the Win/win approach: we either have an answer to the problems directly because the treewidth is big enough or we solve the problems use dynamic programming on a tree-decomposition of bounded width.

Clearly, the running time of the algorithm in Lemma 1 depends on the functions f, t, and l. In what follows, we comment on the current bounds on each one of them.

l: As we have already mentioned, the (constructive) existence of l, follows from Courcelle's theorem for the wide family of problems that are expressible in CMSOL. However, the bounds on l, derived from the proof, are huge and this may dismiss any hope for a good parameter dependence (see [START_REF] Frick | The complexity of first-order and monadic second-order logic revisited[END_REF]). However, for many problems it is possible to directly apply dynamic programing on the tree decomposition and derive moderate bounds on l such as l(k, q) = 2 O(q 2 ) •k O (1) , or l(k, q) = 2 O(q log q) •k O (1) or, even better, l(k, q) = 2 O(q) •k O (1) . Clearly, time bounds of the third type are more attractive. For this reason, we say that a parameter p is single exponentially solvable with respect to treewidth if there exists an algorithm that, given G and k, checks whether 1) steps. There is a quite extended bibliography on how to do fast dynamic programming on graphs of bounded treewidth;

p(G) ≤ k in 2 O(tw(G)) • n O(
as a sample of this, we just mention [START_REF] Alber | Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs[END_REF][START_REF] Alber | Improved tree decomposition based algorithms for domination-like problems[END_REF][START_REF] Betzler | Tree decompositions of graphs: Saving memory in dynamic programming[END_REF][START_REF] Björklund | Fourier meets Möbius: fast subset convolution[END_REF][START_REF] Bodlaender | Dynamic programming on graphs with bounded treewidth[END_REF][START_REF] Bodlaender | Space-efficient construction variants of dynamic programming[END_REF][START_REF] Cygan | Solving connectivity problems parameterized by treewidth in single exponential time[END_REF][START_REF] Dorn | Dynamic programming and fast matrix multiplication[END_REF][START_REF] Dorn | Dynamic programming and fast matrix multiplication[END_REF][START_REF] Dorn | Fast subexponential algorithm for nonlocal problems on graphs of bounded genus[END_REF][START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Dorn | Catalan structures and dynamic programming in H-minor-free graphs[END_REF][START_REF] Dorn | Efficient exact algorithms on planar graphs: Exploiting sphere cut decompositions[END_REF]114,120,120]. t: Bounds are much better for the function t. For most natural graph parameters, it holds that t(k) = O(k) while for some of them, including tw and pw, it holds that t(k) = Θ(k). However, there is a wide family of parameters where t(k) = O( √ k). This intuitively says that a certificate for the value of such a parameter spreads "bidimensionally" inside a (k × k)-grid. For instance any vertex cover of G k should have size at least k • k 2 = Ω(k 2 ) as the vertices of such a set should cover edges all over the "area" of the grid. Similarly, a feedback vertex set of G k should have size at least ( k 2 ) 2 = Ω(k 2 ) as the vertices of such a set should cover all ( k 2 ) 2 members of a packing of "squares" in G k . If such a parameter is also closed under taking of minors then we call it minor bidimensional. f : To improve the function f , i.e., the parameter dependence in Theorem 5, is an important challenge as, even for the parameters with most moderate instantiations of l and t, k-Parameter Checking for p could be only clas-

sified in 2 2 k O(1)
• n O(1) -FPT. Robertson, Seymour, and Thomas conjectured in [113] that f can be a polynomial function. This would directly imply that k-Parameter Checking for p belongs to 2 k O (1) • n O(1) -FPT for a wide family of parameters (see [START_REF] Demaine | Algorithmic graph minor theory: Improved grid minor bounds and Wagner's contraction[END_REF] for more discussions and conjectures on this issue). Another interesting problem is to lower bound the contribution of f in Theorem 5. As mentioned by Robertson, Seymour, and Thomas in [113] there are graphs excluding G k as a minor that have treewidth Ω(k 2 • log k). To see this, one may use the result in [START_REF] Dahan | Ramanujan graphs of very large girth based on octonions[END_REF] (see also [START_REF] Erdős | Reguläre graphen gegebener tailenweite mit minimaler knollenzahh[END_REF]122]) to construct an O(1)-regular Ramanujan graph G on n vertices that has girth Ω(log n). One can easily verify that gm(G) = O( √ n log n ). The claimed bound follows because Ramanujan graphs are expanders and thus tw(G) = Ω(n). It is a challenging question whether any bound better than this one can be proven. Towards achieving a polynomial dependance between treewidth and the size of an excluded grid, Reed and Wood defined in [101] the notion of a gridlike-minor. A grid-like-minor of order k in a graph G is a set of paths in G whose intersection graph is bipartite and contains a K k as a minor. Clearly, the rows and columns of the (k × k)-grid are a grid-like-minor of order k + 1.

In [101] it is proved that every graph with treewidth Ω(k 4 √ log k) contains a grid-like minor of order k. Meta-algorithmic implications of the results in [101], analogous to those of Theorem 1, can be found in [START_REF] Kreutzer | On brambles, grid-like minors, and parameterized intractability of monadic second-order logic[END_REF].

Bidimensionality

Theorem 5 has several refinements that are important for improving the parameter dependence of the algorithm in Lemma 1. The first variant of Theorem 5 for special graph classes appeared in [113] (proved for the twin parameter of branchwidth) from which it follows that if G is a planar graph, then tw(G) ≤ 6 • gm(G). Actually, with some more careful application of the results of [113] it can also be proven that tw(G) ≤ 5 • gm(G), which can be improved further to tw(G) ≤ 9 2 • gm(G) using the results of [START_REF] Gu | Improved bounds on the planar branchwidth with respect to the largest grid minor size[END_REF]. An analogous upper bound holds also for graphs embedded in surfaces. From the results in [START_REF] Demaine | Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs[END_REF], it follows that tw(G) ≤ 6 • (eg(G) + 1) • gm(G) where eg(G) is the Euler genus of G. Also in [START_REF] Demaine | Algorithmic graph minor theory: Improved grid minor bounds and Wagner's contraction[END_REF], it was proven that if G is a K 3,r -minor free graph, then tw(G) ≤ 20 4r • gm(G). At this point, the natural question is whether this linear dependence holds for every non-trivial minor-closed graph class. This was resolved in [START_REF] Demaine | Linearity of grid minors in treewidth with applications through bidimensionality[END_REF], where the following theorem has been proved.

Theorem 6. Let r be a positive integer. If G is a K r -minor free graph, then tw(G) = O r (gm(G)).
The proof of Theorem 6 is heavily based on GMT. More specifically, it depends on the Structure Theorem of the GMT [109] which implies immense bounds for the parameter dependence of the bound in Theorem 6. The improvement of the parameter dependance of Theorem 6 is an interesting problem and this might be possible without making use of the structural results of [109].

As mentioned in the previous Section, a parameter p is minor-bidimensional if it is closed under taking of minors and for every non-negative integer k it holds that p(G √ k ) = Ω(k). A major consequence of Lemma 1, Theorem 6, and the discussion above is the following meta-algorithmic result.

Theorem 7. Let H be an r-vertex graph and let p be a graph parameter that is minor-bidimensional and single exponentially solvable with respect to treewidth. Then k-Parameter Checking for p restricted to H-minor free graphs belongs (constructively) to 2 Or( √ k) • n O(1) -FPT, i.e., one can construct a sub-exponential FPT-algorithm that solves it.

Notice that the above result is, in a sense, optimal, as, due to the complexity bounds in [START_REF] Cai | On the existence of subexponential parameterized algorithms[END_REF], a 2 O( √ k) • n O(1) -step parameterized algorithm is the best we may expect for several bidimensional parameters, even on planar graphs. The metaalgorithmic machinery that we employed above in order to prove Theorem 7 is known as Bidimensionality Theory and was introduced for the first time in [START_REF] Demaine | Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs[END_REF], while some preliminary ideas had already appeared in [START_REF] Alber | Fixed parameter algorithms for dominating set and related problems on planar graphs[END_REF][START_REF] Fomin | Dominating sets in planar graphs: branch-width and exponential speed-up[END_REF].

Theorem 7 concerns only minor-closed parameters. A typical parameter that does not fit in the framework of minor-bidimensionality is the dominating set number, denoted by ds(G) and defined as the minimum size of a dominating set in G, i.e., a set S of vertices such that every vertex not in S has some neighbor in S.

The dominating set number is not minor-closed as it may increase by removing edges. However this is not the case when we do only contractions. To develop the contraction counterpart of bidimensionality, one has to find a counterpart of Theorem 6 for contractions, i.e., to detect what types of graphs appear as contractions in graphs with big treewidth. This line of research was developed in [START_REF] Demaine | Bidimensional parameters and local treewidth[END_REF][START_REF] Demaine | The bidimensional theory of bounded-genus graphs[END_REF] and concluded in [START_REF] Fomin | Contraction obstructions for treewidth[END_REF]. Before we present the the results in [START_REF] Fomin | Contraction obstructions for treewidth[END_REF], we need first some definitions.

Let Γ k (k ≥ 2) be the graph obtained from the (k × k)-grid by triangulating internal faces of the (k × k)-grid such that all internal vertices become of degree 6, all non-corner external vertices are of degree 4, and then one corner of degree two is joined by edges with all vertices of the external face (the corners are the vertices that in the underlying grid have degree two). Graph Γ 6 is shown in Fig. 3. Let also Π k be the graph obtained from Γ k by adding a new vertex Let k (k 2) be the graph obtained from the (k ⇥ k)-grid by triangulating internal faces of the (k ⇥ k)-grid such that all internal vertices become of degree 6, all non-corner external vertices are of degree 4, and then one corner of degree two is joined by edges with all vertices of the external face (the corners are the vertices that in the underlying grid have degree two). Graph 6 is shown in Fig. 3. Let also ⇧ k be the graph obtained from k by adding a new vertex adjacent to all vertices of k .

A consequence of the results in [START_REF] Fomin | Contraction obstructions for treewidth[END_REF] is the following.

Theorem 8. There exists a function ↵ : N ! N such that every connected graph of treewidth at least ↵(k) contains some of the graphs in {K k , k , ⇧ k } as a contraction.

Theorem 8 has several refinements. One of them is the following counterpart of Theorem 6. Theorem 9. There exists a function : N ! N such that every connected K rminor-free graph of treewidth at least (r) • k 2 contains either k or ⇧ k as a contraction.

Notice that in the above theorem, the quadratic dependence (on k) is optimal. Indeed, let Z k 2 be the graph obtained by adding to G k 2 a new vertex adjacent to all the k 2 vertices with both coordinates in the underlying grid divisible by k. Then Z k 2 excludes K 6 , G k+2 , and ⇧ k+2 as contractions and is of treewidth at least k 2 . This means that, in order to have a "linear counterpart" of Theorem 6, we should restrict further the graphs that we exclude. An apex graph is a graph that can become planar by the removal of one vertex. It appears that the linear dependence in the bound of Theorem 6 is also possible for contractions when we consider graphs excluding some apex graph as a minor. For this, we define tgm(G) as the maximum k for which G contains k as a contraction. adjacent to all vertices of Γ k .

A consequence of the results in [START_REF] Fomin | Contraction obstructions for treewidth[END_REF] is the following.

Theorem 8. There exists a function α : N → N such that every connected graph of treewidth at least α(k) contains some of the graphs in {K k , Γ k , Π k } as a contraction.

Theorem 8 has several refinements. One of them is the following counterpart of Theorem 6. Theorem 9. There exists a function β : N → N such that every connected K rminor-free graph of treewidth at least β(r) • k 2 contains either Γ k or Π k as a contraction.

Notice that in the above theorem, the quadratic dependence (on k) is optimal. Indeed, let Z k 2 be the graph obtained by adding to G k 2 a new vertex adjacent to all the k 2 vertices with both coordinates in the underlying grid divisible by k. Then Z k 2 excludes K 6 , G k+2 , and Π k+2 as contractions and is of treewidth at least k 2 . This means that, in order to have a "linear counterpart" of Theorem 6, we should restrict further the graphs that we exclude. An apex graph is a graph that can become planar by the removal of one vertex. It appears that the linear dependence in the bound of Theorem 6 is also possible for contractions when we consider graphs excluding some apex graph as a minor. For this, we define tgm(G) as the maximum k for which G contains Γ k as a contraction.

Theorem 10. Let H be an apex graph with r vertices. If G is a connected Hminor-free graph, then tw(G) = O r (tgm(G)).

We say that a parameter p is contraction bidimensional if it is closed under taking of contractions and if p(Γ √ k ) = Ω(k) for every non-negative integer k. Using now Theorem 10 one can derive the following contraction counterpart of Theorem 7.

Theorem 11. Let H be an r-vertex apex graph and let p be graph parameter that is contraction-bidimensional and single exponentially solvable with respect to treewidth. Then k-Parameter Checking for p restricted to H-minor free graphs belongs (constructively) to 2 Or( √ k) • n O(1) -FPT, i.e., one can construct a sub-exponential FPT-algorithm that solves it.

The algorithmic consequence of Theorems 6 and 10 are not restricted in the design of sub-exponential parameterized algorithms (i.e., Theorems 7 and 11). Bidimensionality theory had meta-algorthmic applications in the automatic derivation of linear-time kernels for wide families of parameterized problems [START_REF] Bodlaender | Meta) kernelization[END_REF][START_REF] Fomin | Bidimensionality and kernels[END_REF]. Apart from its applications to parameterized complexity, Bidimensionality Theory was also used for the automated design of Fast Polynomial Time Approximation Schemes (FPTAS) in [START_REF] Demaine | Bidimensionality: new connections between FPT algorithms and PTASs[END_REF] and [START_REF] Fomin | Bidimensionality and EPTAS[END_REF].

Proving extensions of Theorems 7 and 11 for wider families of graph classes (possibly with worse -but still moderate -time bounds) is a open challenge in parameterized algorithm design. For this, one may either need to find extensions of Theorems 6 and 10 for graph classes that are wider than H-minor free and apex-minor free graphs respectively (see [START_REF] Fomin | Bidimensionality and geometric graphs[END_REF] for an important step in this direction) or to invent alternative notions of grid-like structures whose presence in a graph is still able to certify a big enough value for the parameter p (see [START_REF] Kreutzer | On brambles, grid-like minors, and parameterized intractability of monadic second-order logic[END_REF]101] and the end of Subsection 4.1).

The irrelevant vertex technique

One of the most powerful tools in parameterized algorithm design is the irrelevant vertex technique, introduced in [108] in order to derive (among others) FPT-algorithms for the H-Minor Checking (Theorem 2) and the k-Disjoint Paths Problem. The formal definition of the latter is the following.

k-Disjoint Paths

Instance: A graph G and a sequence of pairs terminals T = (s 1 , t 1 ), . . . , (s k , t k ) ∈ (V (G) × V (G)) k . Parameter: k. Question: Are there k pairwise vertex disjoint paths P 1 , . . . , P k in G such that for every i ∈ {1, . . . , k}, P i has endpoints s i and t i ?

We stress that, in [108], both H-Minor Checking and k-Disjoint Paths where treated simultaneously and the methodology that we present below is similar for both of them. In this section we give an outline of the O k (n 3 ) algorithm in [108] for the k-Disjoint Paths problem and we present some of the most important combinatorial results that supported the proof of its correctness.

The general framework

Given an instance (G, T, k) of the k-Disjoint Paths problem, we say that a

vertex v ∈ V (G) is an irrelevant vertex of G if (G, T, k) and (G \ v, T, k) are equivalent instances of the problem.
The general scheme of the algorithm in [108] is the following:

Irrelevant Vertex for the class G k Input: An instance (G, T, k) of k-Disjoint Paths Output: A (reduced) equivalent instance of k-Disjoint Paths 1. while G ∈ G k , 2. find an irrelevant vertex v in G 3. set G ← G \ v 4. output (G, T, k)
Clearly, each variant of the above scheme depends on the parameterized class G k and creates an equivalent instance that belongs to G k . The algorithm in [108] applies the above scheme in two phases: the first phase considers

G k = {G | G is a K h(k)
-minor free graph} for some recursive function h and produces equivalent instances where the input graph does not contain a "big clique" as a minor. The second phase assumes that the input graph excludes such a clique and considers

G k = {G | G is a G g(k)
-minor free graph}, for some recursive function g : N → N. This produces an equivalent instance that, from Theorem 5, has treewidth bounded by O k (1) and, in this case, the problem can by solved in O k (n) steps, using dynamic programming or, alternatively, by just using Courcelle's theorem.

It now remains to explain how Step 2 of the above scheme (i.e., finding an irrelevant vertex) is implemented in each of these two phases.

We omit the description of the first phase. Instead, we restrict ourselves to the second phase, as it encompasses the most combinatorially rich part of [108]. We just mention that the function h is determined from the results in [108] on the correctness of the first phase. The function g will be defined in the course of the description of the second phase below.

Assume now that we have an instance (G, T, k) of k-Disjoint Paths where G excludes a clique K h(k) as a minor but, however, it still contains a the grid G g(k) as a minor which means that tw(G) ≥ g(k). A big part of [108] is devoted to the characterization of such graphs, i.e., of H-minor free graphs with "big" treewidth. In particular, a major achievement of [108] was to show the Weak Structure Theorem of GMT, stating that such graphs contain some portion that is, in a sense, "almost flat". At this point we postpone the description of the irrelevant vertex technique to Subsection 5.3 in order to give the precise statement of this theorem.

The weak structure graph minors theorem

Walls. A wall of height k, k ≥ 1, is the graph obtained from a ((k+1)×(2•k+2))grid with vertices (x, y), x ∈ {1, . . . , 2 • k + 2}, y ∈ {1, . . . , k + 1}, by the removal of the "vertical" edges {(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices of degree 1. We denote such a wall by W k . The corners of the wall W k are the vertices

c 1 = (1, 1), c 2 = (2 • k + 1, 0), c 3 = (2 • k + 1 + (k + 1 mod 2), k + 1) and c 4 = (1 + (k + 1 mod 2), k + 1). We let C = {c 1 , c 2 , c 3 , c 4 }.
A subdivided wall W of height k is a graph obtained from W k by replacing some of its edges by paths without common internal vertices. We call the resulting graph W a subdivision of W k . The perimeter P of a subdivided wall is the cycle defined by its boundary. The layers of a subdivided wall W of height k are recursively defined as follows. The first layer of W is its perimeter. For i = 2, • • • , k 2 , the i-th layer of W is the (i -1)-th layer of the subwall W obtained from W by removing from W its perimeter and all occurring vertices of degree 1 (see Figure 4). to the characterization of such graphs, i.e., of H-minor free graphs with "big" treewidth. In particular, a major achievement of [108] was to show the Weak Structure Theorem of GMT, stating that such graphs contain some portion that is, in a sense, "almost flat". At this point we postpone the description of the irrelevant vertex technique to Subsection 5.3 in order to give the precise statement of this theorem.

The weak structure graph minors theorem

Walls. A wall of height k, k 1, is the graph obtained from a ((k+1)⇥(2•k+2))grid with vertices (x, y), x 2 {1, . . . , 2 • k + 2}, y 2 {1, . . . , k + 1}, by the removal of the "vertical" edges {(x, y), (x, y + 1)} for odd x + y, and then the removal of all vertices of degree 1. We denote such a wall by W k . The corners of the wall W k are the vertices

c 1 = (1, 1), c 2 = (2 • k + 1, 0), c 3 = (2 • k + 1 + (k + 1 mod 2), k + 1) and c 4 = (1 + (k + 1 mod 2), k + 1). We let C = {c 1 , c 2 , c 3 , c 4 }. A subdivided wall W of height k is a graph obtained from W k
by replacing some of its edges by paths without common internal vertices. We call the resulting graph W a subdivision of W k . The perimeter P of a subdivided wall is the cycle defined by its boundary. The layers of a subdivided wall W of height k are recursively defined as follows. The first layer of W is its perimeter.

For i = 2, • • • , b k 2 c
, the i-th layer of W is the (i 1)-th layer of the subwall W 0 obtained from W by removing from W its perimeter and all occurring vertices of degree 1 (see Figure 4). Compasses and rural divisions. Let W be a subdivided wall in G. Let K 0 be the connected component of G \ P that contains

W \ P . The compass K of W in G is the graph G[V (K 0 ) [ V (P )].
Observe that W is a subgraph of K and K is connected. We say that a path of K is perimetric if its endpoints lie in the Figure 4. A subdivided wall of height 5 its two first layers. The first layer is its boundary.

Compasses and rural divisions. Let W be a subdivided wall in G. Let K be the connected component of G \ P that contains

W \ P . The compass K of W in G is the graph G[V (K ) ∪ V (P )].
Observe that W is a subgraph of K and K is connected. We say that a path of K is perimetric if its endpoints lie in the perimeter P of W . Let P 1 and P 2 be two perimetric paths of K with endpoints a 1 , b 1 and a 2 , b 2 respectively. We say that P 1 and P

2 cross in K if (a 1 , a 2 , b 1 , b 2 )
is the cyclic ordering of their endpoints in P . We say that a wall is flat in G if K does not contain any pair of crossing and vertex-disjoint perimetric paths.

If J is a subgraph of K, we denote by ∂ K J the set of all vertices v ∈ V (J) such that either v ∈ C or v is incident with an edge of K that is not in J. A rural division D of the compass K is a collection (D 1 , D 2 , . . . , D m ) of subgraphs of K with the following properties:

1. {E(D 1 ), E(D 2 ), . . . , E(D m )} is a partition of non-empty subsets of E(K), 2. for i, j ∈ [m], if i = j then ∂ K D i = ∂ K D j and V (D i ) ∩ V (D j ) = ∂ K D i ∩ ∂ K D j , 3. for each i ∈ [m] and all x, y ∈ ∂ K D i there exists a (x, y)-path in D i with no internal vertex in ∂ K D i , 4. for each i ∈ [m], |∂ K D i | ≤ 3, and 5. the hypergraph H K = ( i∈[m] ∂ K D i , {∂ K D i | i ∈ [m]}) can be embedded in a closed disk ∆ such that c 1 , c 2 ,
c 3 and c 4 appear in this order on the boundary of ∆ and for each hyperedge e of H K there exist |e| mutually vertex-disjoint paths between e and C in K.

We call the elements of D

flaps. A flap D ∈ D is internal if V (D) ∩ V (P ) = ∅.
We can now state one of the main results in [108], known as the Weak Structure Graph Minors theorem.

Theorem 12 ( [108]

). There exist recursive functions g 1 : N × N → N and g 2 : N → N, such that for every two graphs H and G and every q ∈ N, one of the following holds:

1. H is a minor of G, 2. tw(G) ≤ g 1 (q, r), where r = |V (H)| 3. ∃X ⊆ V (G) with |X| ≤ g 2 (r) such that G \ X contains as a subgraph a flat subdivided wall W where W has height q and the compass of W has a rural division D such that each internal flap of D has treewidth at most g 1 (r, q).

While the statement of Theorem 12 above is somehow complicated, the intuition behind it is simpler. It says that when a graph excludes some "small" graph H as a minor and has "big enough" treewidth, it is enough to remove a "few" vertices from it, i.e., the vertices in X, and take a graph G \ X where it is possible to detect a subdivided wall W that is situated in a "flat" territory inside its perimeter P . The part of G that is inside P is the compass K of W which can be seen as the union of a collection of graphs (flaps) that are tree-like (have bounded treewidth) and are "planted" in that territory. Theorem 12 was used also in [START_REF] Adler | Computing excluded minors[END_REF][START_REF] Dawar | Locally excluding a minor[END_REF] with the name "the Trinity Lemma". However, a more depictive alternative nomenclature might be the "Sunny Forest Lemma", in the sense that the compass K is a forest, whose trees are the flaps, and X is the sun throwing its rays at it! In [START_REF] Giannopoulou | Optimizing the graph minors weak structure theorem[END_REF], an optimized version of the above result was proved where g 1 (r, q) = O r (q) and g 2 (r) is equal to the apex number of H, i.e., the minimum number of vertices that, when removed from H, leave a planar graph. This improved version can easily yield both Theorems 6 and 10. In case H is an apex graph, i.e., it can become planar with the removal of a single vertex, the result in [START_REF] Giannopoulou | Optimizing the graph minors weak structure theorem[END_REF] implies that X = ∅ which gives an analogue of Theorem 12 for apex minor-free graphs. As, in this case, the "sun" X does not exist, we are tempted to call this "apex"-variant of Theorem 12 the "Dark Forest Lemma".

Irrelevant vertices and linkages

We now go back to the task of detecting an irrelevant vertex in a graph G that excludes K h(k) and has treewidth bigger than g(k). Recall that, at this point, h has already been determined so that the previous phase of the algorithm runs correctly. In what follows, we set g(k) = g 1 (f 0 (k) • f 1 (λ(k)), h(k)) where g 1 is the function in Theorem 12, f 0 (k) = √ 2k + 1, and f 1 and λ will be determined later.

According to [108], it is possible, in O k (n 2 ) steps, to detect in G a set X and a subdivided wall W of height q = f 0 (k)•f 1 (λ(k)) of G\X where |X| ≤ g 2 (h(k)), as indicated in Theorem 12. For simplicity, we restrict our presentation to the case where X is an empty set, i.e., |X| = 0. Even if the ideas for the more general case are of the same flavor, they are quite more complicated and we prefer to omit them here.

Using a counting argument based on the definition of f 0 , it is easy to see that W contains a subdivided wall W of height q = f 1 (λ(k)) whose compass K avoids all terminals of the pairs in T .

The next step of the algorithm in [108] is based on the claim that if we take q to be "big enough", then any vertex v mid of the inner layer L in of W is an irrelevant vertex and therefore it can be safely removed from G. While such a vertex is easy to detect, to proof that it is indeed irrelevant -for some suitable choice of q -is not easy. We just mention that papers XXI [111] and XXII [107] of the Graph Minor series where devoted to it. Below, we present only some basic notions and ideas used in this proof. For this, we first need the definition of a k-linkage, introduced in [111].

A k-linkage in a graph G is a set of k pairwise disjoint paths of it. The endpoints of a linkage L are the endpoints of the paths in L. The pattern of L is defined as π(L) = {{s, t} | L contains a path from s to t} Two k-linkages are equivalent if they have the same pattern. W.l.o.g. we assume that all terminals involved in T are distinct. This implies that every solution to the k-Disjoint Paths problem is a k-linkage, whose pattern is determined by the pairs in T . To prove the irrelevance of the vertex v mid , it is enough to show that any linkage L whose paths meet L in can be replaced with an equivalent one that avoids it. To obtain an idea of how paths in L may reside inside K , we need to make some observations. Let R be the linkage defined by the connected components of ( L∈L L) ∩ K , i.e., the subpaths of the paths in L that are "cropped" by the compass K (notice Figure 5. A subdivided wall W 0 and the way a 13-linkage L is traversing its compass K 0 . The only vertices that are depicted are the endpoints of the paths in L (white vertices). The only edges that are depicted are those of the paths in L and the edges of W 0 . The grey area contains the vertices and the edges of the graph G that do not belong to K 0 . Let R be the linkage defined by the connected components of ( S L2L L) \ K 0 , i.e., the subpaths of the paths in L that are "cropped" by the compass K 0 (notice that all paths in R are perimetric). By the flatness of W 0 , it is not possible that two paths in R cross in K 0 . Moreover, by the definition of the the rural division D 0 of K 0 , each layer of W 0 , di↵erent than the inner one, is a separator of G. Therefore, if a path in R meets layers L i and L j for i  j, then it should also meet layer L µ for every µ 2 {i, . . . , j}. These observations argue that, intuitively, paths in R cross K 0 as if K 0 where a graph embedded in a disk bounded by Psee Figure 5 for a visualization of this. One may now claim that the infrastructure of a "big enough" subdivided wall W 0 should provide enough space inside K 0 so that the paths of L could be rerouted to an equivalent linkage that does not enter very deeply inside K 0 . To formalize this claim Robertson and Seymour defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of G and if there is no other linkage in G that is equivalent to L. An example of a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant vertex can be detected. The main result of [111] asserts that this possible "lack of flexibility" of linkages vanishes when graphs have big enough treewidth.

Theorem 13. There exists a recursive function : N ! N such that every graph with a vital k-linkage has treewidth at most (k). A subdivided wall W and the way a 13-linkage L is traversing its compass K . The only vertices that are depicted are the endpoints of the paths in L (white vertices). The only edges that are depicted are those of the paths in L and the edges of W . The grey area contains the vertices and the edges of the graph G that do not belong to K . that all paths in R are perimetric). By the flatness of W , it is not possible that two paths in R cross in K . Moreover, by the definition of the the rural division D of K , each layer of W , different than the inner one, is a separator of G. Therefore, if a path in R meets layers L i and L j for i ≤ j, then it should also meet layer L µ for every µ ∈ {i, . . . , j}. These observations argue that, intuitively, paths in R cross K as if K where a graph embedded in a disk bounded by Psee Figure 5 for a visualization of this. One may now claim that the infrastructure of a "big enough" subdivided wall W should provide enough space inside K so that the paths of L could be rerouted to an equivalent linkage that does not enter very deeply inside K . To formalize this claim Robertson and Seymour defined the notion of a vital linkage in [111].

A linkage L in a graph G is called vital if its vertices meet all the vertices of G and if there is no other linkage in G that is equivalent to L. An example of a vital k-linkage in a graph is depicted in Figure 6. Clearly, if a solution of the k-Disjoint Paths Problem corresponds to a vital linkage, then no irrelevant vertex can be detected. The main result of [111] asserts that this possible "lack of flexibility" of linkages vanishes when graphs have big enough treewidth. Theorem 13. There exists a recursive function λ : N → N such that every graph with a vital k-linkage has treewidth at most λ(k).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109], the upper bound for λ that follows from [111] is immense. However it was proved in [START_REF] Adler | Tight bounds for linkages in planar graphs[END_REF] that in the case of planar graphs it holds that λ(k) = 2 O(k) . Moreover, this bound is, in a sense, tight: as argued in [START_REF] Adler | Tight bounds for linkages in planar graphs[END_REF], for each k it is possible to construct a planar graph that contains a vital k-linkage and has treewidth 2 Ω(k) (the 5-linkage in the graph of Figure 6 already gives the flavor of such a construction).

Actually, it was also proved in [111] that treewidth can be replaced by pathwidth in Theorem 13. As the proof of 13 uses the Structure Theorem of the GMT [109], the upper bound for that follows from [111] is immense. However it was proved in [START_REF] Adler | Tight bounds for linkages in planar graphs[END_REF] that in the case of planar graphs it holds that (k) = 2 O(k) . Moreover, this bound is, in a sense, tight: as argued in [START_REF] Adler | Tight bounds for linkages in planar graphs[END_REF], for each k it is possible to construct a planar graph that contains a vital k-linkage and has treewidth 2 ⌦(k) (the 5-linkage in the graph of Figure 6 already gives the flavor of such a construction). Let now G 0 be the subgraph of G defined by the union of the paths in L, and the compass K 0 of W 0 . At this point, a naive idea might be to directly apply Theorem 13 and set q 0 = (k) so that the linkage L of G 0 , corresponding to a solution of the k-Disjoint Paths problem, cannot be vital. However, from this alone, we cannot expect nothing better than avoiding some vertices that will not necessarily be the vertices in L in . Therefore, a non-vital linkage alone does not provide the flexibility we need in order to reroute in G 0 the paths of L in a way that L in is avoided.

Curiously, it appears that the importance of non-vital linkages is rather qualitative than quantitative. Based on their "elementary" flexibility, it is possible to prove that none of the paths in R "bounces" much. In particular, L can be chosen in a way that if a path in R meets some layer L i in two di↵erent vertices x and y, then its subpath between x and y will not meet any layer L j where |i j| f 1 ( (k)), for some recursive function f 1 . This directly implies that paths in R do not go deeper than layer L f 1 ( (k)) and thus they avoid L in when q 0 = f 1 ( (k)). That way, it is possible to prove what we need: if the height of W 0 is f 1 ( (k)), then another linkage, equivalent to L exists in G 0 (and therefore in G as well) that avoids L in .

We should stress that even if the above sketch might be "convincing" for a good-tempered reader, it is far from being a formal proof. In the more realistic case where X is non-empty, a more complicated criterion for the choice of the Let now G be the subgraph of G defined by the union of the paths in L, and the compass K of W . At this point, a naive idea might be to directly apply Theorem 13 and set q = λ(k) so that the linkage L of G , corresponding to a solution of the k-Disjoint Paths problem, cannot be vital. However, from this alone, we cannot expect nothing better than avoiding some vertices that will not necessarily be the vertices in L in . Therefore, a non-vital linkage alone does not provide the flexibility we need in order to reroute in G the paths of L in a way that L in is avoided.

Curiously, it appears that the importance of non-vital linkages is rather qualitative than quantitative. Based on their "elementary" flexibility, it is possible to prove that none of the paths in R "bounces" much. In particular, L can be chosen in a way that if a path in R meets some layer L i in two different vertices x and y, then its subpath between x and y will not meet any layer L j where |i -j| ≥ f 1 (λ(k)), for some recursive function f 1 . This directly implies that paths in R do not go deeper than layer L f1(λ(k)) and thus they avoid L in when q = f 1 (λ(k)). That way, it is possible to prove what we need: if the height of W is f 1 (λ(k)), then another linkage, equivalent to L exists in G (and therefore in G as well) that avoids L in .

We should stress that even if the above sketch might be "convincing" for a good-tempered reader, it is far from being a formal proof. In the more realistic case where X is non-empty, a more complicated criterion for the choice of the subdivided wall W should be devised and a bigger lower bound for the height of W is necessary so that it contains an irrelevant vertex. In fact, this requires bigger lower bounds for both f 0 and f 1 . The whole proof is quite technical and has been the main purpose of [107].

According to the above discussion, the second phase of the algorithm runs in O k (n 3 ) steps and outputs a graph of treewidth at most g(k). As proved in [116], the k-Disjoint Paths problem can be solved by a f 2 (k)•n step dynamic programming algorithm where f 2 (k) = 2 O(k log k) (see [START_REF] Adler | Fast minor testing in planar graphs[END_REF][START_REF] Lokshtanov | Slightly superexponential parameterized problems[END_REF] for results related to this problem). As the parameter dependence of the running time of this last step is dominant in the running time of the algorithm, we conclude that the overall parameter dependence is:

O(f 2 (g 1 (f 0 (k) • f 1 (λ(k)), h(k)))).
Clearly, an improvement on the existing bounds for any of the functions g 1 , h, f 0 , f 1 , f 2 , and λ would be an important step towards reducing the parameter dependence of the algorithm for the k-Disjoint Paths problem. In fact, the only function that is "really immense" is λ, because the proof of its existence was based on the Structure Theorem of the GMT [109]. In this direction an alternative, relatively simpler, proof was given in [START_REF] Kawarabayashi | A shorter proof of the graph minor algorithm: the unique linkage theorem[END_REF] that avoids the core results of [109]. Using a rough estimation, the proof in [START_REF] Kawarabayashi | A shorter proof of the graph minor algorithm: the unique linkage theorem[END_REF] should give that that λ(k) = 2 2 2 O(k) which changes the status of the parameter dependence in Roberson and Seymour's algorithm from "immense" to "huge". Clearly, any further improvements, even for special cases or variants of the problem, are highly welcome (see [START_REF] Adler | Tight bounds for linkages in planar graphs[END_REF]).

Applications

The above description already outlines a powerful algorithmic framework that could not be of use for just one problem. Below, we mention a series of results in parameterized algorithms where the irrelevant vertex technique (or extensions of it) has been applied. We sort them in chronological order of their appearance.

[24] A proof of the following meta-agorithmic result: Let C be a class of graphs excluding and h-vertex graph H as a minor. Then any first-order definable decision problem can be solved in time O h+|φ| (n O (1) ), where f is a computable function and φ is the sentence defining the decision problem.

[77] A 2 O(g) • n step algorithm that, given a graph G and a non-negative integer g either outputs an embedding of G in a surface of genus g or a minor of G that belongs to obs ≤m (G g ) where G g contains all graphs embeddible in a surface of Euler genus g. A previous result of this type, but not with single-exponential parameter dependence appeared previously in [START_REF] Mohar | A linear time algorithm for embedding graphs in an arbitrary surface[END_REF]. [START_REF] Adler | Computing excluded minors[END_REF] A proof that it is possible to construct an algorithm that, given the obstruction sets of two minor-closed graph classes G 1 and G 2 , outputs the obstruction set of the class G = G 1 ∪ G 2 . Also, in the same paper, it was proved that it is possible to construct an algorithm that given the obstruction set of a minorclosed graph class G and a non-negative integer k, outputs the obstruction set of the class k-almost(G) = {G | ∃S ⊆ V (G) : |S| ≤ k and G \ S ∈ G} (see also [START_REF] Cattell | On computing graph minor obstruction sets[END_REF][START_REF] Kawarabayashi | Planarity allowing few error vertices in linear time[END_REF][START_REF] Marx | Obtaining a planar graph by vertex deletion[END_REF] for related results). [START_REF] Kobayashi | Algorithms for finding an induced cycle in planar graphs and bounded genus graphs[END_REF] An O k (n O (1) ) time algorithm for solving the Induced Cycle Through Terminals problem: Given a graph G, embedded in some surface, and a set S ⊆ V (G) of terminals, does G contain an induced cycle that meets all vertices in S? Clearly, the above list is just indicative and is expected to grow more. Further algorithmic applications of the weak structure theorem and/or the irrelevant vertex technique can be found in [START_REF] Ito | Parameterizing cut sets in a graph by the number of their components[END_REF][START_REF] Kamiński | Finding an induced path of given parity in planar graphs in polynomial time[END_REF][START_REF] Kawarabayashi | Half integral packing, Erdős-Pósa-property and graph minors[END_REF][START_REF] Kawarabayashi | The edge disjoint paths problem in eulerian graphs and 4-edge-connected graphs[END_REF][START_REF] Kawarabayashi | An improved algorithm for the half-disjoint paths problem[END_REF][START_REF] Kawarabayashi | Linkless and flat embeddings in 3-space and the unknot problem[END_REF][START_REF] Kawarabayashi | Recognizing a totally odd K4subdivision, parity 2-disjoint rooted paths and a parity cycle through specified elements[END_REF][START_REF] Kawarabayashi | Hadwiger's conjecture is decidable[END_REF]. Also results where the irrelevant vertex idea is applied an a more general sense, without using directly results of the GMT, can be found in [START_REF] Dawar | Domination problems in nowhere-dense classes[END_REF][START_REF] Fomin | Hitting forbidden minors: Approximation and kernelization[END_REF][START_REF] Heggernes | Parameterized complexity of vertex deletion into perfect graph classes[END_REF][START_REF] Marx | Chordal deletion is fixed-parameter tractable[END_REF].

Conclusions

Covering the whole range of the contributions of the GMT to the design of parameterized algorithms is a task that cannot fit in the space of this short presentation. The progress over the last years towards building an Algorithmic Graph Minors Theory has been noticeable and we believe that there is much more "algorithmic material" to be extracted from this deep and fascinating theory.

As we expect more results to emerge from GMT, not only in parameterized algorithms by also in other fields of algorithm design, we hope that this small portion of the material covered will be of use as in invitation to this direction.
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 1 Figure 1. The (11, 11)-grid G 11 .
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 2 Figure 2. The graph H is the result of the contractions of the bold edges in G to the vertex v.

  respectively. Consider the following parameterized problem: H-Minor Checking Instance: Two graphs G and H. Parameter: k = |V (H)|. Question: Is H a minor of G?
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 3 Figure 3. The graph 6 .
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 3 Figure 3. The graph Γ 6 .
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 4 Figure 4. A subdivided wall of height 5 and its two first layers. The first layer is its boundary.

Figure 5 .

 5 Figure 5. A subdivided wall W and the way a 13-linkage L is traversing its compass K . The only vertices that are depicted are the endpoints of the paths in L (white vertices). The only edges that are depicted are those of the paths in L and the edges of W . The grey area contains the vertices and the edges of the graph G that do not belong to K .
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 6 Figure 6. A graph of treewidth 17 and a vital 5-linkage in it.
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 6 Figure 6. A graph of treewidth 17 and a 5-linkage in it.
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 60 An 2 O(k 3/2 ) • n O(1) time algorithm for the Odd Induced Cycle Packing on planar graphs: Given a graph G and an integer k, does G contains k induced odd cycles? [79] An O k (n O(1) ) time algorithm for the Odd Cycle Packing problem: Given a graph G and an integer k, does G contains k vertex-disjoint odd cycles? [64] An O k (n) time algorithm for the Bipartite Contraction problem: Given a graph G and an integer k, can we obtain a bipartite graph from G by a sequence of at most k edge contractions in G? [49] Subexponential 2 O( √ k) • n time algorithms for the Partial Vertex Cover and Partial Dominating Set problems for apex minor-free graphs: Given a graph G and integers k, t, can we cover (resp. dominate) at least t edges (resp. vertices) with at most k vertices? [61] An O k (n 3 ) algorithm for the Topological Minor Containment and the Immersion Containment problems: Given two graphs G and H, where n(H) = k, does G contain H as a topological minor (resp. immersion). The results in [61] can be seen as a major extension of the algorithm in [108]. [45] A proof of the following result on kernelization: Let G r be the class of all K r -minor free graphs. Then the Dominating Set Problem and the Connected Dominating Set problem, whether a graph G has a (connected) dominating set of size k, has a linear O r (k)-size kernel when restricted in graphs in G r . [69] An O k+g (n 3 ) algorithm for the Contraction Containment problem restricted to graphs of Euler genus g. The Contraction Containment problem asks, with input two graphs G and H, where n(H) = k, whether H is a contraction of G.

Notice that in the definition of FPT f is not necessarily a recursive function.

As mentioned in[START_REF]Well-quasi-ordering, the tree theorem, and Vazsonyi's conjecture[END_REF], the same theory was also developed in some unpublished manuscript of Erdős and Rado, while its first hints can be traced back to B. H. Neumann[START_REF] Neumann | On ordered division rings[END_REF] 

A shorter and quite elegant proof of Vázsonyi's conjecture was given by Nash-Williams in 1963[START_REF] Nash-Williams | On well-quasi-ordering finite trees[END_REF].

[START_REF] Alber | Fixed parameter algorithms for dominating set and related problems on planar graphs[END_REF] Perhaps the word "immense" is somehow moderate here. Instead, Fellows and Langston used the expression "mind-boggling" in[START_REF] Fellows | On search, decision, and the efficiency of polynomial-time algorithms[END_REF].

Branchwidth was introduced in the paper X of the Graph Minor Series [106] and, from that point and then, was used as an alternative for treewidth (defined formally in Section 4). Treewidth and branchwidth can be seen as twin parameters, as the one is a constant factor approximation of the other.

We should stress that CMSOL is not only a logic on graphs but also on more general combinatorial objects called strucures.
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