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Introduction

The Erdős-Pósa theorem, proved in 1965 [START_REF] Erdős | On independent circuits contained in a graph[END_REF], revealed the following min-max relation between coverings and packings of cycles in graphs: every graph that does not contain k disjoint cycles, contains a set of O(k log k) vertices meeting all its cycles. They also proved that this result is tight by giving graph contractions where the O(k log k) bound is realized. Various extensions of this result, referring to different notions of packing and covering, attracted the attention of many researchers in modern Graph Theory (see [START_REF] Birmelé | The Erdős-Pósa property for long circuits[END_REF][START_REF] Geelen | The Erdős-Pósa property for matroid circuits[END_REF]).

A model of a graph H is any graph that can be contracted to H. Given two graphs H and G, we denote by pack H (G) the maximum number of vertexdisjoint models of H in G. We also denote by cover H (G) the minimum number of vertices that intersect all minor models of H in G. We are interested in graphs H for which the following relation holds:

for every G, if pack H (G) ≤ k then cover H (G) = O(k • log k) (1) 
Clearly if θ 2 is the graph with two vertices and two edges between them, then Relation (1) holds because of the Erdős-Pósa theorem. In the most general case, Robertson and Seymour proved [START_REF] Robertson | Graph Minors. V. Excluding a planar graph[END_REF] 1) is the best we may expect for non-acyclic planar graphs and the question remains whether the same bound can be achieved for every planar graph H. The most general result in this direction concerns the (parameterized) case where H is the multi-graph containing two vertices and r parallel edges between them. This graph is also known as the r-pumpkin and is denoted by θ r . In [START_REF] Fiorini | Optimal Erdős-Pósa property for pumpkins[END_REF], Fiorini, Joret, and Sau proved that Relation (1) holds for every

H = θ r , r ≥ 2.
Another approach towards improving the bound in Relation ( 1) was to restrict the class of graphs where it applies. In this direction, it was proven by Fomin, Saurabh, and Thilikos in [START_REF] Fedor | Strengthening Erdős-Pósa property for minor-closed graph classes[END_REF] that the log k factor can be dropped in Relation [START_REF] Birmelé | The Erdős-Pósa property for long circuits[END_REF], for all planar H's, in the case when we restrict G to to a graph class that excludes some fixed graph as a minor.

In this paper we provide a common extension of both the results of [START_REF] Fiorini | Optimal Erdős-Pósa property for pumpkins[END_REF] and [START_REF] Fedor | Strengthening Erdős-Pósa property for minor-closed graph classes[END_REF] that indicates how the effect of excluding a graph as a minor is reflected in the transition from O(k • log k) to O(k). Our result is the following: Theorem 1. There exists a function f : N → N such that for every two positive integers r, q, and every graph G excluding K q as a minor, it holds that

cover θr (G) ≤ f (r) • pack θr (G) • log q.
Notice that if pack θr (G) ≤ k then G does not contain a clique of (k+1)(r+1) vertices as a minor. Therefore, if we set q = (k + 1)(r + 1), we conclude that Relation (1) holds when H = θ r . This implies the main result of [START_REF] Fiorini | Optimal Erdős-Pósa property for pumpkins[END_REF].

A consequence of the proof of Theorem 1 is the existence of a polynomial O(log OP T )-approximation algorithm for both cover θr and pack θr (G). This improves the O(log n)-approximation algorithm that was given by Joret, Paul, Sau, Saurabh, and Thomassé in [START_REF] Joret | Hitting and harvesting pumpkins[END_REF] for the same parameters.

The proof

The proof of Theorem 1 is based on three results that we describe in this section.

Given a graph G, a separation of G is a pair (X 1 , X 2 ) such that no edge of G has an endpoint in X 1 \ X 2 and the other endpoint in X 2 \ X 1 . The order of (X 1 , X 2 ) is the cardinality of the set X 1 ∩ X 2 .

We start with an observation in the case where there is no separation

(X 1 , X 2 ) of G for which both G[X 1 \ X 2 ] and G[X 2 \ X 1 ] contain some model of H as a minor.
Observation 1. Let H and G be graphs and let

(X 1 , X 2 ) be a separation of G such that both G 1 = G[X 1 \ X 2 ] and G 2 = G[X 2 \ X 1 ] contain H as a minor. Then • cover H (G) ≤ cover H (G 1 ) + cover H (G 2 ) + |X 1 ∩X 2 | • pack H (G 1 ) + pack H (G 2 ) ≤ pack H (G) • cover H (G i ) < cover H (G), i = 1, 2. • pack H (G i ) < pack H (G), i = 1, 2.
The following lemma reduces the problem to the case where for each separation (X 1 , X 2 ) of G of order at most 2r -2, if G[X 1 ] does not contain a model of H, then |X 1 | is bounded by some function depending only on H. Lemma 1. For every q ∈ N and graph H there exists a function f H : N → N such that for every K q -minor free graph G there is a K q -minor free graph G such that

• pack H (G) = pack H (G ) • cover H (G) = cover H (G ) • for every separation (X 1 , X 2 ) of G , if G [X 1 \ X 2 ] is a H-minor-free graph in G , then |X 1 | ≤ f H (|X 1 ∩X 2 |).
The proof of Lemma 1 is too long to fit in this extended abstract. It uses protrusion replacement techniques that have been developed in [START_REF] Bodlaender | Meta) kernelization[END_REF] (see also [START_REF] Hans | Reduction algorithms for graphs of small treewidth[END_REF] and [START_REF] Borie | Automatic generation of lineartime algorithms from predicate calculus descriptions of problems on recursively constructed graph families[END_REF]) that permit the replacement of the part of graph induced by X 1 by another graph so that none of the parameters pack H and cover H change in the new graph.

We say that a graph G is (α, β)-loosely connected if for every separation

(X 1 , X 2 ) of G, |X 1 ∩X 2 | ≤ α ⇒ min{|X 1 |, |X 2 |} ≤ β.
Observation 1 and Lemma 1, applied for separators of order at most 2r -2 reduce the proof of Theorem 1 to the case where G is (2r -2, f θr (2r -2))-loosely connected. The second lemma derives from this assumption and is able to detect in such a graph a model of θ r that contains O(log q) vertices.

Lemma 2. There is a function g : N → N such that every (2r -2, f θr (2r -2))loosely connected K q -minor free graph G contains a model of θ r with at most g(r) • log q vertices. The proof of Lemma 2 is the core of our results and is technical. We enumerate below its main steps.

1. Take into account that every K q -minor free graph has some vertex of degree < c • q • √ log q (see e.g., [START_REF] Kostochka | Lower bound of the hadwiger number of graphs by their average degree[END_REF][START_REF] Thomason | The extremal function for complete minors[END_REF]). Let d = f θr (2r -2) • log((r -1) • c • q • √ log q) and our target is to find a model of θ r in G with at most 4 • r • d + 2 vertices. 2. Let S = {s 1 , . . . , s l } be a maximal 2d-scattered set (all its elements are in distance ≥ 2d from each other) and consider a partition

V 1 , . . . , V l of V (G) such that • ∀ i,j ∀ u∈Vi dist G (u, s i ) ≤ dist G (u, s j ) • ∀ i,j V i ∩ V j = ∅. 3. Let G in i = G[B d G (s i )] and G i = G[V i ]. (B i G (x)
are the vertices that are in distance at most i from x.) 4. Let D i = ({X t } t∈V (Ui) , U i ) be an s i -rooted tree-distance decomposition of G i (for the definition of a rooted tree-distance decomposition, see [START_REF] Yamazaki | Isomorphism for graphs of bounded distance width[END_REF]). 5. Observe that ∀ i ∀ u,v∈Vi dist G (u, v) ≤ 2d and that all edges between G i and G j have endpoints from their d-th layer and then. 6. Prove that, unless we are done, all bags of D i have ≤ r -1 vertices. 7. Prove that, unless we are done, in each G i,j = G[V (G i ) ∪ V (G j )] there are at most r -1 paths from the d-th level of G i to the d-th level of G j . 8. Deduce from the previous step and the (2r -2, f θr (2r -2))-loose connectivity of G that there are at least 2 d/f θr (2r-2) pairwise vertex-disjoint paths between vertices in the d-th level of G i and the union of the vertices of the d-th levels of all other G j 's. 9. Deduce from the previous two steps that there is a collection of pairwise vertex-disjoint paths P in G, such that • if for some i = j there is a path P i,j ∈ P joining a vertex from G in i with a vertex of G in j then this is unique path in P with this property and • G i contains the endpoints of at least 2 d/f θr (2r-2) r-1 paths from P. 10. Contract all edges of every G i , contract all but one edge of the paths in P and remove all other edges and isolated vertices. Let H be the resulting minor of G. Prove that, from Step 8, δ(H) ≥ 2 d/f θr (2r-2) r-1 = c•q • √ log q, a contradiction to what we took into account in the 1st step.

We now require the following observation. It is now easy to verify that, taking into account Observation 2, Theorem 1 follows by successively applying Observation 1, and Lemmata 1 and 2.

Observation 2 .

 2 If k = pack θr (G) and W is the set of vertices of a model as in Lemma 2, then• pack θr (G \ W ) ≤ pack θr (G) -1 ≤ k -1 • cover θr (G) ≤ cover θr (G \ W ) + |V (W )| ≤ cover θr (G \ W ) + g(r) • log q.
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