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Polynomial Gap Extensions of the Erdős–Pósa
Theorem

Jean-Florent Raymond∗† Dimitrios M. Thilikos∗‡

Abstract

Given a graph H, we denote by M(H) all graphs that can be contracted to H.
The following extension of the Erdős–Pósa theorem holds: for every h-vertex planar
graphH, there exists a function fH such that every graph G, either contains k disjoint
copies of graphs in M(H), or contains a set of fH(k) vertices meeting every subgraph
of G that belongs in M(H). In this paper we prove that this is the case for every
graph H of pathwidth at most 2 and, in particular, that fH(k) = 2O(h2) · k2 · log k.
As a main ingredient of the proof of our result, we show that for every graph H on
h vertices and pathwidth at most 2, either G contains k disjoint copies of H as a
minor or the treewidth of G is upper-bounded by 2O(h2) · k2 · log k. We finally prove
that the exponential dependence on h in these bounds can be avoided if H = K2,r.
In particular, we show that fK2,r = O(r2 · k2).

Keywords: Treewidth, Graph Minors, Erdős–Pósa Theorem

1 Introduction

In 1965, Paul Erdős and Lajos Pósa proved that every graph that does not contain k
disjoint cycles, contains a set of O(k log k) vertices meeting all its cycles [9]. Moreover,
they gave a construction asserting that this bound is tight. This classic result can be
seen as a “loose” min-max relation between covering and packing of combinatorial
objects. Various extensions of this result, referring to different notions of packing
and covering, attracted the attention of many researchers in modern Graph Theory
(see, e.g. [2, 14]).
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Given a graph H, we denote by M(H) the set of all graphs that can be contracted
to H (i.e. if H ′ ∈ M(H), then H can be obtained from H ′ after contracting edges).
We call the members of M(H) models of H. Then the notions of covering and
packing can be extended as follows: we denote by coverH(G) the minimum number
of vertices that meet every model of H in G and by packH(G) the maximum number
of mutually disjoint models of H in G. We say that a graph H has the Erdős–Pósa
Property if there exists a function fH : N → N such that for every graph G,

if k = packH(G), then k ! coverH(G) ! fH(k) (1)

We will refer to fH as the gap of the Erdős–Pósa Property. Clearly, if H = K3,
then (1) holds for fK3 = O(k log k) and the general question is to find, for each
instantiation of H, the best possible estimation of the gap fH , if it exists.

It turns out that H has the Erdős–Pósa Property if and only if H is a planar
graph. This beautiful result appeared as a byproduct of the Graph Minors series
of Robertson and Seymour. In particular, it is a consequence of the grid-exclusion
theorem, proved in [20] (see also [6]).

Proposition 1. There is a function g : N → N such that if a graph excludes an
r-vertex planar graph R as a minor, then its treewidth is bounded by g(r).

In [20] Robertson, Seymour, and Thomas conjectured that g is a low degree polyno-
mial function. Currently, the best known bound for g is g(k) = 2O(k log k) and follows
from [7] and [18] (see also [15, 20] for previous proofs and improvements). As the
function g is strongly used in the construction of the function fH in (1), the best, so
far, estimation for fH is far from being exponential in general. This initiated a quest
for detecting instantiations of H where a polynomial gap fH can be proved.

The first result in the direction of proving polynomial gaps for the Erdős–Pósa
Property appeared in [12] whereH is the graph θc consisting of two vertices connected
by c multiple edges (also called c-pumpkin graph). In particular, in [12] it was proved
that fθc(k) = O(c2k2). More recently Fiorini, Joret, and Sau optimally improved
this bound by proving that fθc(k) ! ct · k · log k for some computable constant ct
depending on c [11]. In [21] Fiorini, Joret, and Wood proved that if T is a tree, then
fT (k) ! cT · k where cT is some computable constant depending on T . Finally, very
recently, Fiorini [10] proved that fK4 = O(k log k).

Our main result is a polynomial bound on fH for a broad family of planar graphs,
namely those of pathwidth at most 2. We prove the following:

Theorem 1. If H is an h-vertex graph of pathwidth at most 2 and h > 5, then (1)
holds for fH(k) = 2O(h2) · k2 · log k.

Note that the contribution of h in fH is exponential. However, such a dependence
can be waived when we restrict H to be K2,r. Our second result is the following:

Theorem 2. If H = K2,r, then (1) holds for fH(k) = O(r2 · k2).
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Both results above are based on a proof of Proposition 1, with polynomial g,
for the cases where R consists of k disjoint copies of H and H is either a graph of
pathwidth at most 2 or H = K2,3 (Theorems 3 and 4 respectively). For this, we follow
an approach that makes strong use of the k-mesh structure introduced by Diestel et
al. [7] in their proof of Proposition 1. Our proof indicates that, when excluding copies
of some graph of pathwidth at most 2, the entangled machinery of [7] can be partially
modified so that polynomial bounds on treewidth are possible. Finally, these bounds
are then “translated” to polynomial bounds for the Erdős–Pósa gap using a technique
developed in [13] (see also [12]).

2 Definitions and notations

2.1 Basics

In this paper, logarithms are binary.

Graphs and subgraphs A graph G is a pair (V,E) where V is called the set
of vertices of G and E is called the set of edges of G and satisfies E ⊆ V 2. Two
vertices v, u of G are said to be adjacent if (u, v) ∈ E. A multigraph is a graph
where multiple edges between two vertices are allowed. In this paper, the graphs we
consider are finite, undirected and without loops. Unless otherwise specified, graphs
are assumed to be simple (i.e. multiedges are not allowed).

For any graph G, V (G) (resp. E(G)) denotes the set of vertices (resp. edges) of G.
A graph G′ is a subgraph of a graph G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G) and we
write it G′ ⊆ G. If X is a subset of V (G), we note G[X] the subgraph of G induced
by X, i.e. the graph (X, {xy ∈ E(G), x ∈ X and y ∈ X}).

When talking about graphs, unless otherwise stated, by disjoint we mean vertex-
disjoint. We denote by Kn the complete graph on n vertices and by Kp,q the complete
bipartite graph with partitions of size p and q. For any integer k and any graph G,
the graph k · G is the disjoint union of k copies of the graph G. A pair {A,B} is a
separation of a graph G if A ∪ B = V (()G) and G has no edge between A \ B and
B \ A. The integer |A ∩B| is the order of the separation {A,B} . We assume that
the reader is familiar with the basic graph classes: paths, cycles, trees, etc..

Neighbourhood and degree For any vertex v ∈ V (G), the neighbourhood NG(v)
of v in G is the set of vertices that are adjacent to v in G. The degree of v ∈ V (G)
in G, denoted degG(v), is the cardinal of NG(v). The minimum value taken by degG
in V (G) is called the minimum degree of G and denoted by δ(G). When dealing with
multigraphs, the multidegree of a vertex v (written degm(v)) is the number of simple
edges incident to v. In these notations, we drop the subscript when it is obvious.
The average degree over all vertices of a graph G is written ad(G).

Contractions In a graph G, a contraction of the edge e = (u, v) ∈ E(G) is
the operation that transforms G into a graph H such that V (H) = V (G)\{u, v} ∪
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{ve} and E(H) = {(x, y) ∈ E(G), x ̸∈ {u, v} and y ̸∈ {u, v}} ∪ {(x, ve), (x, u) ∈
E(G) or (x, v) ∈ E(G)}. We say that a graph G can be contracted to a graph H if H
is the result of a sequence of edge contractions on G.

Trees An acyclic connected graph is called a tree. The vertices of degree 1 of a
tree are its leaves and its other vertices are called internal vertices. A tree whose
every internal vertex has degree at most 3 is said to be ternary. A binary tree is a
ternary tree whose one of the internal nodes, the root, is distinguished and has degree
at most 2.

2.2 More definitions

Definition 1 (graph Ξr). We define the graph Ξr as the graph of the following form
(see figure 1).

{

V (G) = {x0, . . . , xr−1, y0, . . . , yr−1, z0, . . . , zr−1}
E(G) = {(xi, xi+1), (zi, zi+1)}i∈!0,r−2" ∪ {(xi, yi), (yi, zi)}i∈!0,r−1"

z0 z1 z2 z3 z4

y0 y1 y2 y3 y4

x0 x1 x2 x3 x4

Figure 1: The graph Ξ5

Definition 2 (minor model). A minor model (sometimes abbreviated model) of a
graph H in a graph G is a pair (M,ϕ) where M is a collection of disjoint subsets
of V (G) such that ∀X ∈ M, G[X] is connected and ϕ : V (H) → M is a bijection
that satisfies ∀{u, v} ∈ E(H),∃u′ ∈ ϕ(u),∃v′ ∈ ϕ(v), {u′, v′} ∈ E(G). We say that
a graph H is a minor of a graph G (H !m G) if there is a minor model of H in
G. Notice that H is a minor of G if H can be obtained by a subgraph of G after
contracting edges.

Definition 3 (degeneracies). The degeneracy of G, written δ∗(G), is the maximum
value taken by δ(G′) over all subgraphs G′ of G:

δ∗(G) = max
G′⊆G

δ(G′)

Similarly, the contraction degeneracy of G, introduced in [3] and denoted δc(G),
is the maximum value of δ(G′) for all minors G′ of G:

δc(G) = max
G′!mG

δ(G′)
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Remark that, as a subgraph is a minor, for all graph G we have the following in-
equality

δc(G) " δ∗(G)

These definitions remains the same on multigraphs (we do not take into account the
potential multiplicities of the edges).

Definition 4 (tree decomposition and treewidth). A tree decomposition of a graph G
is a pair (T,X ) where T is a tree and X a family (Xt)t∈V (T ) of subsets of V (G) (called
bags) indexed by elements of V (T ) and such that

(i)
⋃

t∈V (T )Xt = V (G);

(ii) for every edge e of G there is an element of X containing both ends of e;

(iii) for every v ∈ V (G), the subgraph of T induced by {t ∈ V (T ) | v ∈ Xt} is
connected.

The width of a tree decomposition T is defined as equal to maxt∈V (T ) |Xt|− 1.
The treewidth of G, written tw(G), is the minimum width of any of its tree decom-
positions.

Definition 5 (nice tree decomposition). A tree decomposition (T,V of a graph G is
said to be a nice tree decomposition if

1. every vertex of T has degree at most 3;

2. T is rooted on one of its vertices r whose bag is empty (Vr = ∅);
3. every vertex t of T is

• either a base node, i.e. a leaf of T whose bag is empty (Vt = ∅) and different
from the root;

• or an introduce node, i.e. a vertex with only one child t′ such that Vt′ =
Vt ∪ {u} for some u ∈ V (G);

• or a forget node, i.e. a vertex with only one child t′ such that Vt = Vt′ ∪{u}
for some u ∈ V (G);

• or a join node, i.e. a vertex with two child t1 and t2 such that Vt = Vt1 = Vt2 .

It is known that every graph has an optimal tree decomposition which is nice [16].

Definition 6 (path decomposition and pathwidth). A path decomposition of a graphG
is a tree decomposition T of G such that T is a path. Its width is the width of the
tree decomposition T and the pathwidth of G, written pw(G), is the minimum width
of any of its path decompositions.

Definition 7 (linked and externally k-connected). Let k be a positive integer, G be
a graph and X,Y be two subsets of V (G).

X and Y are said to be linked by a path if there is a path in G from an element
of X to an element of Y .

X and Y are said to be k-connected in G if for all disjoint subsets X ′ ⊆ X and
Y ′ ⊆ Y such that |X ′| = |Y ′| ! k there are |X ′| disjoint paths between X ′ and Y ′
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in G. If these paths have no internal vertices nor edges in G[X ∪ Y ], then X and Y
are said to be externally k-connected in G. If X = Y , X is said to be (externally) k-
connected in G.

Definition 8 (k-mesh, [6]). An (ordered) pair (A,B) of subsets of V (G) is a called
a k-mesh of order s in G if V (G) = A ∪ B and G[A] contains a ternary tree T such
that

(i) A ∩B ⊆ V (T ) and A ∩B ∩ V (T ) are nodes of degree at most 2 in T ;

(ii) at least one leaf of T is in A ∩B;

(iii) |A ∩B| = s;

(iv) A ∩B is externally k-connected in B.

3 Preliminaries

Proposition 2 ( [6], (12.14.5)). Let G be a graph and let p " q " 1 be integers. If G
contains no q-mesh of order p then G has treewidth less than p+ q − 1.

Proposition 3 (follows from [6], (2.14.6)). Let k " 2 be an integer. Let T be a tree of

maximum degree at most 3 and X ⊆ V (T ). Then T has
⌊

|X|
2k−1

⌋

− 1 vertex-disjoint

subtrees each containing at least k vertices of X.

Proposition 4 ( [4]). For any integer r " 1 and any graph G,

G ̸"m K2,r ⇒ tw(G) < 2r − 2

Proposition 5 ( [22]). For any integer k " 1 and any graph G, there exist sets
V1, . . . , Vk partitioning V (G) ( i.e. -i∈!1,k"Vi = V (G)) such that

∀i ∈ !1, k",∀u ∈ Vi, degVi
(v) "

degG(v)

k
− 1

In particular, if δ(G) " p then ∀i ∈ !1, k", δ(G[Vi]) "
p
k − 1

Proposition 6 (Erdős–Szekeres Theorem, [8]). Let k and ℓ be two strictly positive
integers. Then any sequence of (ℓ− 1)(k − 1) + 1 distinct integers contains either an
increasing subsequence of length k or a decreasing subsequence of length ℓ.

Proposition 7 ( [17], [23], [6] (7.2.3)). There is a real constant c such that every
graph of average degree more than a function c(t) = (c+ o(1))t

√
log t contains Kt as

minor. According to [17], c(t) < 648 · t
√
log t.
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4 Excluding packings of planar graphs

Theorems 1 and 2 follow combining the two following results with the machinery
introduced in [13] (see also [12]). They have independent interest as they detect
cases of Theorem 1 where g depends polynomially on k.

Theorem 3. Let H be a graph of pathwidth at most 2 on r > 5 vertices. If G does
not contain k disjoint copies of H as minors then tw(G) ! 2O(r2) · k2 · log 2k.

Theorem 4. For every positive integer r, if G does not contain k disjoint copies of
K2,r as a minors then tw(G) < 20k2r2 − 8k2r + 2r − 1.

4.1 Auxiliary results

Lemma 1. Let G be a graph and let p " q " 1 be integers. If tw(G) " 5pq − 2q + 2p− 1,
then there exist 2q disjoint sets X1, . . . ,X2q of V (G) and a set P of pq disjoint paths
in G of length at least 2 and such that

(i) ∀i ∈ !1, 2q", Xi is of size p and is connected in G by a tree Ti using the elements
of some set A ⊆ V (G);

(ii) any path in P has one of its ends in some Xi with i ∈ !1, q", the other end in
some Xj with j ∈ !q+1, 2q" and its internal vertices are in none of the Xl, for
all l ∈ !1, 2q", nor in A.

(iii) ∀i, j ∈ !1, 2k", i ̸= j ⇒ Ti ∩ Tj = ∅

Proof. LetG be a graph, p " q " 1 two integers and assume that tw(G) " 5pq − 2q + 2p− 1.
According to Proposition 2,G contains a (pq)-mesh of order (2p−1)(2q+1). Let (A,B)
be this mesh, X = A∩B and let T be the tree related to A. By definition of a mesh,
T is a tree of maximum degree 3 and X ⊆ V (T ).

Using Proposition 3, there exist
⌊

|X|
2p−1

⌋

− 1 = 2q disjoint subtrees T1, . . . T2q of

V (T ) such that for all i ∈ !1, 2q", |V (Ti) ∩X| " p. For all i ∈ !1, 2q", let Xi be a
subset of V (Ti) ∩X such that |Xi| = p.

The set X is externally (pq)-connected in B (by definition of a mesh), i.e. any
two subsets of X of size pq are linked by pq disjoint paths whose internally vertices
are in B. Thus, the sets Z1 =

⋃

i∈!1,q" Xi and Z2 =
⋃

i∈!q+1,2q" Xi (whose each is of
size pq) are externally connected in B. Let P be these pq paths between Z1 and Z2.
We now check the conditions (i), (ii) and (iii) on {Xi}i∈!1,2q" and P.

(i) by definition of {Xi}i∈!1,2q", for all i ∈ !1, 2q", |Xi| = p and Xi belongs to V (Ti),
therefore Xi is connected in G by the tree Ti;

(ii) P contains disjoint paths such that

• they do not use elements of A (by definition);

• they are external to Z1 and Z2 (i.e. none of their internal vertices belongs
to Xi, for all i ∈ !1, 2q");
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• any p ∈ P links Z1 to Z2, thus p have one end in Z1 and the other end
in Z2, put another way p have one end in some Xi for i ∈ !1, 2q" and the
other end in some Xj for some j ∈ !q + 1, 2q".

(iii) by definition the Ti’s are all disjoint.

The sets {Xi}i∈!1,2q" satisfies the properties (i), (ii) and (iii) so we found these
sets we were looking for.

Lemma 2. For any integer a " 1 and for any graph G, V (G) contains more than
(1− 1

a) |V (G)| vertices of degree strictly less than 2aδ∗G. In particular, V (G) contains

at least |V (G)|
2 vertices of degree strictly less than δ∗(G).

Proof. Let a " 1 be an integer and let G be a graph.
Let nh be the number of vertices of G with degree at least h = 2a × δ∗(G),

i.e. nh = |{v ∈ V (G), deg(v) " h}| and n−h the number of vertices of degree strictly
less than h, i.e. n−h = |V (G)| − nh. Clearly, there is at least 1

2hnh edges incident
the nh vertices of degree at least h. We thus have:

1

2
hnh ! |E(G)| (because there may be other edges)

!
1

2

∑

v∈V (G)

deg(v) (Handshaking lemma)

hnh

|V (G)| !
∑

v∈V (G) deg(v)

|V (G)|

< 2δ∗(G)

(

because

∑

v∈V (G) deg(v)

|V (G)|
= ad(G) < 2δ∗(G)

)

nh < |V (G)| 2δ
∗(G)

h

n−h > |V (G)|
(

1− 2δ∗(G)

h

)

> |V (G)|
(

1− 1

a

)

(by replacing h by its value)

Finally, we found that G contains more than |V (G)|
(

1− 1
a

)

vertices of degree strictly
less than 2a× δ∗(G), what we wanted to prove.

Lemma 3. Let k, r be two positive integers and G a graph such that δc(G) " 2kr.
Then G contains k disjoint copies of K2,r as minors.

Proof. Let k, r be two positive integers and G a graph of contraction degeneracy at
least 2kr. Then G has a minor G′ such that δ(G′) " 2kr.

According to Proposition 5, there is a partition V = {V1, . . . , Vk} of V (G′) such
that

∀Vi ∈ V, δ(G′[Vi]) "
2kr

k
− 1 = 2r − 1
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The minimum degree of a graph is a lower bound for its treewidth, then any
Vi ∈ V has treewidth at least 2r − 1, and thus by Proposition 4 Vi contains K2,r as
a minor. V is a partition of size k of V (G′) and each element of V contains K2,r as a
minor consequently G′ contains k disjoint copies of K2,r as minors. As G′ is a minor
of G, G contains k disjoint copies of K2,r as minors, what we wanted to show.

Lemma 4. Let T be a ternary tree and X = {v ∈ V (T ), degT (v) ! 2}. Then

(i) for any path P on l vertices in T , T has a partition M such that

a) every vertex of P belongs to a different element of M;

b) every element of M contains an element of X.

(ii) T has diameter at least 2 log 2
3 |X|.

Proof of (i). Let T, X, P be as in the statement of the lemma. For every u ∈ V (P ),
we set Mu as the set of vertices of the connected component G\(P \{u}) that contains
u. Let M = {Mu}u∈P . Clearly, for all u, v ∈ V (P ), if u ̸= v then Mu ∩Mv = ∅. Also,
since T is connected, there is no vertex of V (T ) that is not in an element of . Therefore
M is a partition of V (T ). By definition, for every u ∈ V (P ), u ∈ Mu. Besides, every
element M of M contains either exactly one element, which is necessarily a vertex of
degree 2 in T , or more than one element ad in this case it induces in G a tree whose
leaves are also leaves of G. In both cases M contains an element of X as required.

Proof of (ii). Let P = p0 . . . pk be a longest path in T . In order to be able to use
the notions of height and of child, we root T at node n⌊ k

2 ⌋ (which is clearly not a

leave).
We prove the proposition for the case where T has no vertices of degree two. If

this is not the case, we can just add a leaf as child of every vertex of degree two. As
these vertices have an other child, there is at least one longest path that use none of
the new vertices.

Let ℓ = |X| . By contradiction, assume that k < 2 log 2
3ℓ.

Let T ′ be the full ternary tree of height
⌈

k′

2

⌉

. As T ′ is complete, it has 3·2⌈
k
2 ⌉−1

leaves. The tree T ′ clearly contains T as subgraph because they have same height,

thus T ′ has at most as much leaves as T, i.e. l ! 3 · 2⌈
k
2 ⌉−1. If we use our first

assumption, we get:

l ! 3 · 2⌈
k
2 ⌉−1

< 3 · 2⌈ log 2
3 ℓ ⌉−1

l < l

We obtain a contradiction, thus our assumption k < 2 log 2
3ℓ was false: T has diameter

at least 2 log 2
3 |X| .
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Lemma 5. Let k, r be two positive integers and G = ((V1, V2), E) a bipartite multi-
graph such that

|V1| = |V2| " 4k2r

∀v ∈ V (G), degm(v) = 2kr2

δ∗(G) < 2kr

Then G has at least k (vertex-)disjoint multiedges of multiplicity at least r.

Proof. Let G be a graph that fill the conditions of the lemma. For (u, v) ∈ E(G),
let mult(u, v) denote the multiplicity of the edge (u, v). According to lemma 2, G
contains at least 1

2V (G) " 4k2r vertices of degree strictly less than δ∗(G) < 2kr.
Then, one of V1, V2 contains at least 2k2r such vertices. We assume without loss of
generality that this is V1. Let L be a subset of V1 of size 2k2r containing vertices of
degree strictly less than 2kr. For all v ∈ L, v has degree less than 2kr (by definition
of L) and multidegree 2kr2 (by initial assumption) so there is a least one u ∈ V2 such
that mult(u, v) " r.

We now define an auxiliary function. Let f : L → V2 a function such that
∀v ∈ L, mult(v, f(v)) " r. According to the previous remark, such a function exists.
For all u ∈ f(L), the multidegree of u is by assumption 2kr2 thus u cannot be the

image of more than degm(u)
r = 2kr elements of L. Consequently, f(L) has size at least

|L|
2kr " k. Remark that for all u1, u2 ∈ f(L) with u1 ̸= u2, the preimages of u1 and u2
are disjoint.

We finally show k disjoint multiedges of multiplicity at least r in G. Choose k
distinct elements u1, . . . , uk of f(L) and for all i ∈ !1, k" let vi be an element of L
in the preimage of ui (i.e. such that f(vi) = ui). As said before, the preimages
of distinct elements of f(L) are distinct so the vi’s are all distinct. By definition
∀i ∈ !1, k", f(vi) = ui so there is an edge of multiplicity r between ui and vi in G.
Therefore, {(vi, ui)}i∈!1,k" is the set of edges we were looking for.

In [19] we prove the following lemma.

Lemma 6 ( [19]). For all graph G, if n = |V (G)|, then pw(G) ! 2 ⇒ G !m Ξn.

Lemma 7. For all positive integers p, q and all graph G, if tw(G) " 20p2q2−8p2q+
2q− 1 and δc(G) < 2pq then G contains 2p disjoint subsets X1, . . . ,X2p of V (G) and
a set P of pq disjoint paths of length at least 2 in G such that

(i) ∀i ∈ !1, 2p", Xi is of size q and is connected in G by a tree Ti using the elements
of some set A ⊆ V (G);

(ii) any path in P has one of its ends in some Xi with i ∈ !1, p", the other end
in X2i with j ∈ !q + 1, 2p" and its internal vertices are in none of the Xl, for
all l ∈ !1, 2p", nor in A;

(iii) ∀i, j ∈ !1, 2p", i ̸= j ⇒ Ti ∩ Tj = ∅.
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Proof. According to lemma 1, G contains 8p2q disjoint sets Y1, . . . , Y8p2q of V (G) and
a set P of 4p2q2 disjoint paths in G of length at least 2 and such that

(i) ∀i ∈ !1, 8p2q", Yi is of size q and is connected in G by a tree Ti using the
elements of some set A ⊆ V (G);

(ii) any path in P has one of its ends in some Yi with i ∈ !1, 4p2q", the other end in
some Yj with j ∈ !4p2q+1, 8p2q" and its internal vertices are in none of the Yl,
for all l ∈ !1, 8p2q", nor in A;

(iii) ∀i, j ∈ !1, 8p2q", i ̸= j ⇒ Ti ∩ Tj = ∅.
Let us consider the bipartite multigraph H defined by

• V (H) = {Yi}i∈!1,8p2q" ;

• for all n integer and i, j ∈ !1, 8p2q" there is an edge of multiplicity m between
the two vertices Yi and Yj iff there is exactly m paths from a vertex of Yi to a
vertex of Yj in P .

Clearly, H is a minor of G. Consequently 2pq > δc(G) " δc(H) " δ∗(H).
The three conditions required on H by lemma 5 are filled, so H contains p disjoint

multiedges of multiplicity q.
By construction of H, having an edge of multiplicity m in H is equivalent to

having m distinct paths in P between two sets Yi and Yj , then having p disjoint
multiedges of multiplicity q inH is equivalent to having p disjoint pairs (Xi,X2i)i∈!1,p"

of elements of {Yi}i∈!1,4p2q" and a set P of pq paths that contains q paths that links
the two elements of each of the p pairs. The set {Xi}i∈!1,2p" is thus the one we were
looking for.

4.2 Proof of Theorem 3

Proof of theorem 3. We prove the contrapositive. Let k be a integer, H a graph
on r > 5 vertices and of pathwidth at most 2 and G a graph. From Proposi-
tion 6, H !m Ξr. If we show that G contains k disjoint copies of Ξr as minors
then we are done. Let g : N → N such that

g(k, r) = k2 log 2k
(

180 · 2r(r−2) − 24 · 2
1
2 r(r−2)

)

+ 6 · 2
1
2 r(r−2) − 1

We prove the following statement: for all graphG, tw(G) " g(k, r) implies thatG "m

k · Ξr. Let k and r > 5 be two positive integers and assume that tw(G) " g(k, r).
First case: δc(G) " c · 3rk

√
log 3rk.

By definition of the contraction degeneracy, there is a graph G′ minor of G and
such that δ(G′) " c · 3rk

√
log 3rk. The average degree is at least the minimum degree,

so ad(G′) " c · 3rk
√
log 3rk. According to Proposition 7, G′ contains K3kr as minor.

The graph Ξr have 3r vertices, therefore K3kr contains k · Ξr as minor. We then
have k ·Ξr !m K3kr, K3kr !m G′ and G′ !m G, therefore by transitivity of the minor
relation, G contains k · Ξr as minor, what we wanted to show.
Second case: δc(G) < c · 3rk

√
log 3rk.
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Observe that c · 3rk
√
log 3rk < c · 3r

√
log 6r · k

√
log 2k. Let k0 = k

√
log 2k and

r0 = 3 · 2
r(r−2)

2 , and remark that k0 " k and, r0 " c · 3r
√
log 6r (remember that

c ! 648 and r > 5). With these notations, we have δc(G) < 2k0r0. We will show that
G "m k0 ·K2,r from which yields that G "m k ·K2,r. By assumption, tw(G) " g(k, r).
Therefore, by Lemma 7 (applied for p := k0 and q := r0), G contains 2k0 subsets

X1, . . . ,X2k0 of V (G) and a set P of k0r0 = 3k0 · 2
r(r−2)

2 disjoint paths of length at
least 2 in G such that

(i) ∀i ∈ !1, 2k0", Xi is of size r0 = 3 · 2
r(r−2)

2 and is connected in G by a tree Ti

using the elements of some set A ⊆ V (G);

(ii) any path in P has one of its ends in some Xi with i ∈ !1, k0", the other end
in X2i and its internal vertices are in none of the Xl, for all l ∈ !1, 2k0", nor
in A;

(iii) ∀i, j ∈ !1, 2k0", i ̸= j ⇒ Ti ∩ Tj = ∅.

We assume that for all i ∈ !1, 2k0", Xi = {v ∈ V (Ti), degT (v) ! 2}. It is easy to
come down to this case by considering the minor of G obtained after deleting in Ti

the leaves that are not in Xi and contracting one edge meeting a vertex of degree 2
which is not in X while such a vertex exists.

As Ti is a ternary tree, one can easily prove that for all i ∈ !1, 2k0", Ti contains a
path containing 2 log 2

3 |Xi| = (r − 1)2 + 1 vertices of Xi. Let us call Pi such a path
whose two ends are in Xi. Let us consider now the paths {Pi}i∈!1,2k0" and the paths
that link the elements of different Pi’s. For each path i ∈ !1, 2k0", we choose in Pi

one end vertex (remember that both are in Xi) that we name pi,0. We follow Pi from
this vertex and we denote the other vertices of Pi ∩ Xi by pi,1, pi,1, . . . , pi,(r−1)2 in
this order. The corresponding vertex of some vertex pi,j of Pi ∩Xi (for i ∈ !1, k0") is
defined as the vertex of P2i ∩X2i to which pi,j is linked to by a path of P.

As said before, the sets {Pi ∩ Xi}i∈!1,2k0" are of size (r − 1)2 + 1. Accord-
ing to Proposition 6, one can find for all i ∈ !1, k0" a subsequence of length r in
pi,0, pi,1, . . . , pi,(r−1)2 , such that the corresponding vertices in X2i of this sequence are
either in the same order (with respect to the subscripts of the names of the vertices),
or in reverse order. For all i ∈ !1, k0", this subsequence, its corresponding vertices
and the vertices of the paths that link them together forms a Ξr model. We have
thus k0 models of Ξr in G, that gives us k disjoint models of Ξr in G (since k ! k0).

We showed that for all k and r > 5 positive integers, if a graph G has tw(G) "
g(k, r), then G "m k · Ξr. For every graph H on r vertices and of pathwidth at
most 2, H is a minor of the subdivided grid Ξr (Proposition 6). Consequently, if G
has treewidth at least g(k, r), then G contains k disjoint copies of H and we are
done.

4.3 Proof of Theorem 4

Proof of theorem 4. We prove the contrapositive. Let k and r be two positive integers
and G a graph such that tw(G) " 20k2r2 − 8k2r + 2k − 1. We want to show that G
contains k disjoint copies of K2,r.

12



First case: δc(G) " 2kr
According to lemma 3, G contains k disjoint copies of K2,r, what we wanted to

show.
Second case: δc(G) < 2kr

According to lemma 7, there exist 2k disjoint subsets X1, . . . ,X2k of V (G) and a
set P of disjoint paths of length at least 2 such that

(i) ∀i ∈ !1, 2k", Xi is of size r and is connected in G by a tree Ti using the elements
of some set A ⊆ V (G);

(ii) any path in P has one of its ends in some Xi with i ∈ !1, k", the other end
in X2i with j ∈ !q+1, 2k" and its internal vertices are in none of the Xl, for all
l ∈ !1, 2k", nor in A;

(iii) ∀i, j ∈ !1, 2k", i ̸= j ⇒ Ti ∩ Tj = ∅.

We then perform the following operations on G.

1. for all i ∈ !1, 2k", we contract the set Xi to a single vertex xi (this is possible
because Xi is connected by the tree Ti);

2. for all path p ∈ P, we contract some edges of p until it have length exactly 2.

Because it has been obtained by contraction of edges, the graph G′ we get by these
operations is a minor of G. This new graph has the following properties.

1. for all i ∈ !1, k", the vertex xi is linked to the vertex x2i by r disjoint paths of
length 2;

2. for all i, j ∈ !1, k" i ̸= j ⇒ xi ̸= xj because the trees Ti and Tj contracted to
obtain xi and xj are disjoint.

Remark that for all i ∈ !1, k", the subgraph of G′ induced by the vertices xi, x2i and
the r middle vertices of the paths of length 2 that links xi and x2i is the graph K2,r.
We consequently found k disjoint copies of K2,r in a minor of G, so G contains k×K2,r

as minor, what we wanted to prove.

5 From planar graph exclusion to Erdős–Pósa

Property

In the section, we adapt to our needs the technique introduced in [13] (and also used
in [12]) to translate a bound on the treewidth of a graph that does not contain a
planar graph as minor to a gap for the Erdős–Pósa Property. We need two lemmata
and a theorem in order to prove Theorems 1 and 2.

Lemma 8 (adapted from [13]). Let H be a connected planar graph. Every graph
G of treewidth w such that packH(G) = k has a separation (A,B) of order at most
w + 1 satisfying packH(G[A \B]) !

⌊

2k
3

⌋

and A ∪B = V (G).
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Proof. Let H be a connected planar graph, G be a graph of treewidth w such that
packH(G) = k and (T, V ) be a nice optimal tree decomposition of G. For every
t ∈ V (T ), we denote by Gt the subgraph of G equal to G[

(

∪u∈descT (t)Vu

)

\ Vt]. We
consider the function p : V (T ) → N defined by ∀t ∈ V (T ), p(t) = packH(Gt). Let
us now state some remarks about the function p.

Remark 1. For every two vertices u, v ∈ V (T ), if v ∈ descT (u) then p is non-
decreasing along the (unique) path of T from v to u. To see this, it suffices to
remark that if t ∈ V (T ) has child t′, then Gt ⊇ Gt′ (what implies that Gv ⊇ Gu).

In particular, p is non-decreasing along the path from every vertex of T to the
root of T .

Remark 2. As T is a nice decomposition of G, its vertices can be of four different
kinds:

• Base node t : p(t) = 0 because as t has no descendant, Gt = ∅;
• Introduce node t with child t′ : as the unique element of Vt \ Vt′ cannot appear

in the elements of descT (t′) (by definition of a tree decomposition), Gt = Gt′

and then p(t) = p(t′);

• Forget node t with child t′ : in this case, the unique element of Gt \Gt′ may be
part of at most one model of H in Gt (because we want vertex-disjoint models)
therefore either p(t) = p(t′) or p(t) = p(t′) + 1;

• Join node t with children t1 and t2 : the graphs Gt1 and Gt2 are disjoint and
Gt = Gt1 ∪ Gt2 . As H is connected, there is no model of H in Gt that is
simultaneously in Gt1 and in Gt2 , consequently p(t) = p(t1) + p(t2).

Let t be a vertex of T such that p(t) > 2
3k and for every child t′ of t, p(t′) ! 2

3k.
We make some claims about this vertex t:

(1) such t exists;

(2) t is unique;

(3) t is either a forget node or a join node.

Proof of Claim (1). The value of p on the root r of T is k (because Gr = G) and
the value of p on every base nodes b is 0 (because Gb is the empty graph). As p is
non decreasing on a path from a base node to the root (Remark 1), a vertex such t
exists. ♦

Proof of Claim (2). To show that t is unique, we assume by contradiction that there
is another t′ ∈ V (T ) with t′ ̸= t and p(t′) > 2

3k and for every child t′′ of t, p(t′′) ! 2
3k.

Three cases can occur:

• either t′ is a descendant of t. However, p is non decreasing on a path from a
vertex to the root (Remark 1) and p(t′) " 2

3k whereas the value of p for each
child of t is at most 2

3k (by definition of t): this is a contradiction.

• or t is a descendant of t′ and the same argument applies (symmetric situation).
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• or t and t′ are not in the above situations. Let v ∈ V (T ) \ {t, t′} be the least
common ancestor of t and t′. As p is non decreasing along any path from a
vertex to the root (Remark 1), the child vt (resp. vt′) of v whose t (resp. t′) is
descendant of should be such p(vt) > 2

3k (resp. p(vt′) > 2
3k). By definition of

v, we have vt ̸= vt′ . As v is a join node, p(v) = p(vt) + p(vt′) > 4
3k, what is

impossible.

♦

Proof of Claim (3). By definition the value of p on t is strictly positive and different
from the value of p on every child of t. As this cannot occur with introduce nodes
(where p take on t the same value it takes on the child of t) nor on base nodes (where
p is null), t is either a join node or a forget node.

♦

We now present a separation (A,B) of order at most w + 1 in G.
Case 1: t is a forget node with t′ as child.

Let A = V (Gt) ∪ Vt and B = V (G) \ V (Gt).
Case 2: t is a join node with t1, t2 as children.

By definition of t we have p(t) " 2k
3 . As p(t) = p(t1) + p(t2) (according to

Remark 2) there is a i ∈ {1, 2} such that p(ti) " k
3 . Let A = V (Gti) ∪ Vt and

B = V (G) \ V (Gti)
In both cases, we have

(i) there is no edge between A \B and B \ A therefore (A,B) is a separation;

(ii) |A ∩B| ! w + 1 because A ∩ B = Vt and Vt is a bag in an optimal tree
decomposition of G which have treewidth w, thus (A,B) is a separation of
order at most w + 1;

(iii) packH(G[A \B]) ! 2
3k by definition of A and t;

(iv) A ∪B = V (G) by definition of B.

Consequently, the pair (A,B) is a separation of the kind we were looking for.

Lemma 9 (adapted from [13]). Let H be a connected planar graph, let ε > 0 be a
real, and let g : N → N be a function such that g(n) = Ω(n1+ε). For every integer
k > 0 and graph G of treewidth less than g(k), if G contains less than k disjoint
models of H then G has a H-hitting set of size O(g(k)).

Proof. We assume that tw(G) < g(k) and that packH(G) < k. According to
Lemma 8, there is inG a separation (A,B) of order at most g(k) such that packH(G[A\
B]) !

⌊

2k
3

⌋

and A ∪B = V (G).
Remark that as {A \ B,A ∩ B,B \ A} is a partition of V (G) such that there is

no edge between A \ B and B \ A (because (A,B) is a separation), every model of
the connected graph H that use vertices of A \ B and of B \ A also use vertices of
A ∩B. Consequently we have

coverH(G) ! coverH(G[A \B]) + coverH(G[B \A]) + |A ∩B| (2)
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As H is connected and A \B is disjoint from B \ A, we also have

packH(G) " packH(G[A \B]) + packH(G[B \A])

Let α ∈ [0, 1] be a real such that

packH(G[A \B]) ! α · packH(G) (3)

packH(G[A \B]) ! (1− α) · packH(G) (4)

We are looking for a function f satisfying the inequality coverH(G) ! f(packH(G))
for every graph G and for every planar connected graph H. A consequence of the
grid-exclusion theorem (see [20] and Theorems 12.4.4 and 12.4.10 of [6]) is that every
planar graph has the Erdős–Pósa Property, thus a function such f exists. We assume
without loss of generality that

f(packH(G)) ! coverH(G[A \B]) + coverH(G[B \ A]) + |A ∩B| (5)

(to ensure this we can choose as value for f(packH(G)) the minimum of the right
part of the inequality on all graphs F such that packH(F ) = packH(G)).

By combining the definition of f with (5), (2) and (3) and using the fact that
(A,B) has order at most g(k), we get

f(packH(G)) ! coverH(G[A \B]) + coverH(G[B \ A]) + |A ∩B|
! f(packH(G[A \B])) + f(packH(G[B \A])) + |A ∩B|
! f(packH(G[A \B])) + f(packH(G[B \A])) + g(k)

f(packH(G)) ! f(α · packH(G)) + f((1− α) · packH(G)) + g(k)

By the Akra–Bazzi Theorem [1], the recurrence h(p) = h(αp)+h((1−α)p)+g(p)
where g(p) = Ω(p1+ε) is satisfied by a function f(p) = O(g(p)). Therefore we have
coverH(G) ! f(k) = O(g(k)), which means that G has a H-hitting set of size
O(g(k)), what we wanted to prove.

The proofs of Theorems 1 and 2 immediately follow from this theorem combined
with lemmata 3 and 4.

Theorem 5 (adapted from [13]). Let H be a connected planar graph, let ε > 0 be
a real. Assume that there is a function g : N → N such that g(n) = Ω(n1+ε) and for
all graph G, for all integer k > 0, tw(G) " g(k) ⇒ G "m k · H. Then H has the
Erdős–Pósa Property with gap fH(k) = O(g(k)).

Proof. Let H, ε and g be as in the statement of the lemma. Let G be a graph.
Case 1: tw(G) " g(k)

By definition of g, G contains k ·H.
Case 2: tw(G) < g(k)

If G does not contain k disjoint models of H, it has a H-hitting set of size O(g(k))
according to Lemma 9.
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Consequently, either G contains k disjoint models of H, or G has a H-hitting set
of size O(g(k)), in other words: H has the Erdős–Pósa Property with gap fH(k) =
O(g(k)).

Proof. Proofs of Theorems 1 and 2 According to Theorem 3, there is a function
f(k) = 2O(h2) · k2 · log k such that for every graph H on h vertices and of pathwidth
at most 2, every graph G of treewidth more than f(k) contains k disjoint copies of
H. The application of Theorem 5 immediately yields that the graphs of pathwidth
at most 2 have the Erdős–Pósa Property with gap at most f.

Similarly, since Theorem 4 ensure that every graph of treewidth more than some
function g(k, r) = O(k2r2) contains k disjoint copies of K2,r, the application of Theo-
rem 5 gives that for every integer r > 0, the graph K2,r has the Erdős–Pósa Property
with gap at most g.

Postscript. Very recently, the general open problem of estimating fH(k) when
H is a general planar graph has been tackled in [5]. Moreover, very recently, using
the results of [18] we were able to improve both Theorems 3 and 2 by proving low
degree polynomial (on both k and |V (H)|) bounds for more general instantiations of
H [19].
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