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Geometric Extensions of Cutwidth in any Dimension∗

Menelaos I. Karavelas† Spyridon Maniatis‡ Dimitrios M. Thilikos‡§

Dimitris Zoros‡

Abstract

We define a multi-dimensional geometric extension of cutwidth. A graph has d-
cutwidth at most k if it can be embedded in the d-dimensional euclidean space so
that no hyperplane can intersect more than k of its edges. We prove a series of
combinatorial results on d-cutwidth which imply that for every d and k, there is a
linear time algorithm checking whether the d-cutwidth of a graph G is at most k.

1 Introduction

The cutwidth of a (total) vertex ordering of a graph is the maximum number of edges
connecting vertices on opposite sides of any of the “gaps” between successive vertices
in the linear layout. The cutwidth of a graph G, denoted by cw(G), is the minimum
cutwidth over all its possible vertex orderings. The problem that asks, given a n-vertex
graph G and an integer k, whether cw(G) ≤ k, is an NP-complete problem known in
the literature as the Minimum Cut Linear Arrangement problem [4]. From the
parameterized complexity point of view, the same problem is fixed parameter tractable,
as an algorithm that checks whether cutwidth(G) ≤ k in f(k) ·n steps was given in [10].
Cutwidth has been extensively studied both from its combinatorial (see e.g. [2, 7, 1]) as
well as its algorithmic point of view [8, 11, 3, 6].

d-dimensional cutwidth In this note we introduce a multi-dimensional geometric
extension of cutwidth, namely the d-dimensional cutwidth (or, simply, d-cutwidth) that,
roughly, instead of mono-dimensional linear arrangements of the graph G, we consider
embeddings of G in the d-dimensional Euclidean space Rd and define the d-cutwidth
of such an embedding to be the maximum number of edges a hyperplane of Rd can
intersect. Then, the d-cutwidth of G, denoted by cwd(G), is the minimun d-cutwidth
over all such embeddings. Our results are summarized in the following.

Theorem 1 The following hold:
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i. d-cutwidth is immersion closed1.
ii. For every graph G and every d ≥ 1, cwd(G) ≤ cwd+1(G).
iii. For every graph G and every d ≥ 1, cwd(G) ≤ d · cw(G).
iv. For every graph G, cw3(G) ≤ 2 · cw2(G).

2 Preliminaries and definitions

Every (d− 1)-dimensional subspace Π of a d-dimensional space X is called a hyperplane
of X . Here we are interested in hyperplanes of Rd (which are known to be isomorphic
to Rd−1). Let Π be a hyperplane in Rd, then there are a0, a1, . . . , ad ∈ R such that
Π = {(x1, . . . , xd) ∈ Rd | a1x1 + · · ·+ adxd + a0 = 0}. We denote by H(d) the set of all
hyperplanes of Rd. A hypersphere, S(c, r), with center c and radius r in Rd is the set
{(x1, . . . , xd) ∈ Rd |

∑d
i=1(xi−ci)2 = r2}. We denote by S(d) the set of all hyperspheres

of Rd. We call a continuous function C : [0, 1] → Rd a curve of Rd with ends C(0) and
C(1).

Let G = (V,E) be a graph. An embedding of G, denoted by Ed(G), in the euclidean
space Rd is a tuple (f, C), where f : V → Rd is an injection, mapping the vertices of G
to Rd and C = {Ce | e ∈ E} is a set of curves of Rd with the following properties: (a)
for every e = {u, v} ∈ E, the ends of Ce are f(u) and f(v), and (b) for all x ∈ (0, 1)
and v ∈ V it holds that fe(x) 6= f(v). For simplicity, we may sometimes refer to the
elements of f(V ) and C as the vertices and edges of Ed(G) respectively. We denote by
Ed(G) the set of all embeddings Ed(G) = (f, C), of G in Rd, such that for every positive
integer i ≤ d, if S is a subset of V with |S| ≥ i, then the dimension of the subspace
defined by {f(u) | u ∈ S} is i− 1. We call an element of Ed(G) essential-embedding of
G in Rd. Let Ed(G) be a essential-embedding of G in Rd, then if Π is a hyperplane of
Rd (resp. Σ is a hypersphere of Rd) that does not intersect any f(v), v ∈ V , we denote
by ∂G(Ed(G),Π) (resp. ∂G(Ed(G),Σ)) the set of curves of Ed(G) that are intersected by
Π (resp. Σ).

Definition 1 Let G = (V,E) be a graph and k, d be positive integers, where d ≥ 2.
Then we define the d-dimensional cutwidth of G, or simply d-cutwidth, to be

cwd(G) = min
Ed(G)∈Ed(G)

max{|∂G(Ed(G),Π)| | Π ∈ H(d)}

Observe that any hyperplane Π of Rd that meets a curve Ce ∈ C once, also meets the
unique straight line segment of Rd with parametric equation σe(t) = t ·Ce(0) + (1− t) ·
Ce(1), t ∈ R, i.e., the straight line segment of Rd that is defined by the “images” of the
endpoints of edge e. Therefore, without loss of generality, we can consider only straight-
line embeddings where C = {σe | e ∈ E}. Notice that every straight line embeding
Ed(G) = (f, C) is fully defined by the function f , therefore, for simplicity, for now on we
will omit C. Observe that the definition of 1-cutwidth, where hyperplanes degenerate
to subspaces of R of dimension 0 (i.e., points) is equivalent to the usual definition of

1A graph H is an immersion of a graph G if it can be obtained from G after a sequence of vertex/edge
removals or edge lifts (the operation of lifting two edges {x, y} and {y, z} incident to the same vertex y
is the operation of replacing these edges by the edge {x, z}). A graph invariant is immersion closed if
its value on a graph G is always smaller or equal than its value on its immersions.
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cutwidth. Therefore, d-cutwidth is the intuitive generalization of the notion of cutwidth
in any dimension d ≥ 2. Also observe that our demand of essential embeddings is
expressed here by our demand of injective functions.

3 Properties of d-cutwidth

This section is devoted to the last two statements of Theorem 1.

Proof of Theorem 1.iii. Consider the d-dimensional moment curve C with parametric
equation C(t) := (t, t2, t3, . . . , td), t ∈ R. Consider also an ordering of the nodes of
G that realizes the cutwidth of G. Embed a node vi of G to the point pi = C(ti), for
an appropriate value ti. By appropriate we mean that if a node vi is after a node vj
in the cutwidth ordering, then the parametric value ti corresponding to vi is strictly
greater than the parameter value tj corresponding to node vj . Now embed an edge
eij = (vi, vj) of G by connecting the points pi and pj on C with the minimum length
arc of C connecting these points.

Consider a generic hyperplane Π with equation a1x1 + a2x2 + . . . + adxd + a0 = 0,
where, for all i, ai ∈ R. Π can cut C at at most d points. To see that, solve the system
of equations

a1x1 + a2x2 + . . .+ adxd + a0 = 0, and xi = ti, i = 1, . . . , d

for t. This gives the polynomial equation q(t) := a0 + a1t + a2t
2 + . . . + adt

d = 0, in
t of maximum degree d. Since q(t) = 0 has at most d real roots, we deduce that Π
intersects C at at most d points. At each point of intersection at most cw(G) edges
of the embedding of G pass through that point. Hence, Π intersects at most d · cw(G)
edges of G, i.e., cwd(G) ≤ d cw(G). �

Spherical d-cutwith Given a graph G = (V,E) and two positive integers k and d,
where d ≥ 2, we define the spherical d-dimensional cutwidth of G, or simply spherical
d-cutwidth, to be equal to

scwd(G) = min
Ed(G)∈Ed(G)

max{|∂G(Ed(G),Σ)| | Σ ∈ S(d)}

The proof of Theorem 1.iv is a consequence of Theorem 1.iii and the following two
lemmata.

Lemma 1 For every graph G and any d ≥ 2, cwd(G) ≤ scwd(G) ≤ (d+ 1) cw(G).

Lemma 2 For every graph G and every d ≥ 1, cwd+1(G) ≤ scwd(G).

The above results clarify the relation between d-cutwidth and spherical d-cutwidth
and we believe that they have independent interest. We omit the proofs as they are too
lengthy to fit in this extended abstract.
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4 Algorithmic remarks about d-cutwidth

As a consequence of the result in [9], for every k, the class of immersion minimal graphs
with d-cutwidth bigger than k contains a finite set of graphs. We call this class immersion
obstruction set for cutwidth at most k and we denote it by Ok. This fact, combined
with Theorem 1.i, implies that cwd(G) ≤ k if and only if none of the graphs in Ok

is contained in G as an immersion. According to the result of Grohe, Kawarabayashi,
Marx, and Wollan in [5], checking whether an n-vertex graph contains as an immersion
some k-vertex graph H, can be done in f(k) · n3 steps. As a consequence, checking
whether cwd(G) ≤ k can be done in f(k) · n3 steps. This running time can become
linear (on n) using the first inequality of Theorem 1.iii. Indeed, the algorithm first
checks whether cw(G) ≤ k. If the answer is negative then we can safely report that
cwd(G) > k. If not, then it is known (see e.g. [10]) that G has a tree decomposition
of width ≤ k and to check whether some of the graphs in Ok is contained in G as an
immersion can be done using dynamic programming in f(k) · n steps.

Unfortunately, the above algorithm is non-constructive as we have no other knowl-
edge about the set Ok, except from the fact that it is finite. To obtain a constructive
f(k) · n step algorithm for d-cutwidth remains an insisting open problem.
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