Geometric Extensions of Cutwidth in any Dimension
Menelaos Karavelas, Dimitris Zoros, Spyridon Maniatis, Dimitrios M. Thilikos

To cite this version:

Menelaos Karavelas, Dimitris Zoros, Spyridon Maniatis, Dimitrios M. Thilikos. Geometric Extensions of Cutwidth in any Dimension. ICGT: International Colloquium on Graph Theory and combinatorics, Jun 2014, Grenoble, France. lirmm-01083698
Geometric Extensions of Cutwidth in any Dimension

Menelaos I. Karavelas† Spyridon Maniatis‡ Dimitrios M. Thilikos‡§ Dimitris Zoros‡

Abstract

We define a multi-dimensional geometric extension of cutwidth. A graph has \(d \)-cutwidth at most \(k \) if it can be embedded in the \(d \)-dimensional euclidean space so that no hyperplane can intersect more than \(k \) of its edges. We prove a series of combinatorial results on \(d \)-cutwidth which imply that for every \(d \) and \(k \), there is a linear time algorithm checking whether the \(d \)-cutwidth of a graph \(G \) is at most \(k \).

1 Introduction

The cutwidth of a (total) vertex ordering of a graph is the maximum number of edges connecting vertices on opposite sides of any of the “gaps” between successive vertices in the linear layout. The cutwidth of a graph \(G \), denoted by \(cw(G) \), is the minimum cutwidth over all its possible vertex orderings. The problem that asks, given a \(n \)-vertex graph \(G \) and an integer \(k \), whether \(cw(G) \leq k \), is an NP-complete problem known in the literature as the Minimum Cut Linear Arrangement problem [4]. From the parameterized complexity point of view, the same problem is fixed parameter tractable, as an algorithm that checks whether \(cw(G) \leq k \) in \(f(k) \cdot n \) steps was given in [10]. Cutwidth has been extensively studied both from its combinatorial (see e.g. [2, 7, 1]) as well as its algorithmic point of view [8, 11, 3, 6].

\(d \)-dimensional cutwidth In this note we introduce a multi-dimensional geometric extension of cutwidth, namely the \(d \)-dimensional cutwidth (or, simply, \(d \)-cutwidth) that, roughly, instead of mono-dimensional linear arrangements of the graph \(G \), we consider embeddings of \(G \) in the \(d \)-dimensional Euclidean space \(\mathbb{R}^d \) and define the \(d \)-cutwidth of such an embedding to be the maximum number of edges a hyperplane of \(\mathbb{R}^d \) can intersect. Then, the \(d \)-cutwidth of \(G \), denoted by \(cw_d(G) \), is the minimum \(d \)-cutwidth over all such embeddings. Our results are summarized in the following.

Theorem 1 The following hold:

*The last three authors were co-financed by the E.U. (European Social Fund - ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: “Thales. Investing in knowledge society through the European Social Fund”. Emails: mkaravel@iacm.forth.gr, spyridon.maniatis@gmail.com, sedthilk@thilikos.info, dzoros@math.uoa.gr.

†Dept. of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece.
‡Dept. of Mathematics, National & Kapodistrian University of Athens, Athens, Greece.
§AlGCo project team, CNRS, LIRMM, France.
Observe that any hyperplane \(\Pi \) of \(\mathbb{R}^d \) then there are \(a_0, a_1, \ldots, a_d \in \mathbb{R} \) such that \(\Pi = \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid a_1 x_1 + \cdots + a_d x_d + a_0 = 0 \} \). We denote by \(H(d) \) the set of all hyperplanes of \(\mathbb{R}^d \). A hypersphere, \(S(c, r) \), with center \(c \) and radius \(r \) in \(\mathbb{R}^d \) is the set \(\{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid \sum_{i=1}^{d} (x_i - c_i)^2 = r^2 \} \). We denote by \(S(d) \) the set of all hyperspheres of \(\mathbb{R}^d \).

2 Preliminaries and definitions

Every \((d - 1)\)-dimensional subspace \(\Pi \) of a \(d \)-dimensional space \(X \) is called a hyperplane of \(X \). Here we are interested in hyperplanes of \(\mathbb{R}^d \) (which are known to be isomorphic to \(\mathbb{R}^{d-1} \)). Let \(\Pi \) be a hyperplane in \(\mathbb{R}^d \), then there are \(a_0, a_1, \ldots, a_d \in \mathbb{R} \) such that \(\Pi = \{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid a_1 x_1 + \cdots + a_d x_d + a_0 = 0 \} \). We denote by \(H(d) \) the set of all hyperplanes of \(\mathbb{R}^d \). A hypersphere, \(S(c, r) \), with center \(c \) and radius \(r \) in \(\mathbb{R}^d \) is the set \(\{(x_1, \ldots, x_d) \in \mathbb{R}^d \mid \sum_{i=1}^{d} (x_i - c_i)^2 = r^2 \} \). We denote by \(S(d) \) the set of all hyperspheres of \(\mathbb{R}^d \).

We call a continuous function \(C : [0, 1] \rightarrow \mathbb{R}^d \) a curve of \(\mathbb{R}^d \) with ends \(C(0) \) and \(C(1) \).

Let \(G = (V, E) \) be a graph. An embedding of \(G \), denoted by \(\mathcal{E}_d(G) \), in the euclidean space \(\mathbb{R}^d \) is a tuple \((f, \mathcal{C}) \), where \(f : V \rightarrow \mathbb{R}^d \) is an injection, mapping the vertices of \(G \) to \(\mathbb{R}^d \) and \(\mathcal{C} = \{C_e \mid e \in E\} \) is a set of curves of \(\mathbb{R}^d \) with the following properties: (a) for every \(e = \{u, v\} \in E \), the ends of \(C_e \) are \(f(u) \) and \(f(v) \), and (b) for all \(x \in (0, 1) \) and \(v \in V \) it holds that \(f_e(x) \neq f(v) \). For simplicity, we may sometimes refer to the elements of \(f(V) \) and \(\mathcal{C} \) as the vertices and edges of \(\mathcal{E}_d(G) \) respectively. We denote by \(\mathcal{E}_d(G) \) the set of all embeddings \(\mathcal{E}_d(G) = (f, \mathcal{C}) \), of \(G \) in \(\mathbb{R}^d \), such that for every positive integer \(i \leq d \), if \(S \) is a subset of \(V \) with \(|S| \geq i \), then the dimension of the subspace defined by \(\{f(u) \mid u \in S\} \) is \(i - 1 \). We call an element of \(\mathcal{E}_d(G) \) essential-embedding of \(G \) in \(\mathbb{R}^d \). Let \(\mathcal{E}_d(G) \) be a essential-embedding of \(G \) in \(\mathbb{R}^d \), then if \(\Pi \) is a hyperplane of \(\mathbb{R}^d \) (resp. \(\Sigma \) is a hypersphere of \(\mathbb{R}^d \) that does not intersect any \(f(v) \), \(v \in V \), we denote by \(\partial_G(\mathcal{E}_d(G), \Pi) \) (resp. \(\partial_G(\mathcal{E}_d(G), \Sigma) \)) the set of curves of \(\mathcal{E}_d(G) \) that are intersected by \(\Pi \) (resp. \(\Sigma \)).

Definition 1 Let \(G = (V, E) \) be a graph and \(k, d \) be positive integers, where \(d \geq 2 \). Then we define the \(d \)-dimensional cutwidth of \(G \), or simply \(d \)-cutwidth, to be

\[
\text{cw}_d(G) = \min_{\mathcal{E}_d(G) \in \mathcal{E}_d(G)} \max_{\Pi \in H(d)} |\partial_G(\mathcal{E}_d(G), \Pi)|
\]

Observe that any hyperplane \(\Pi \) of \(\mathbb{R}^d \) that meets a curve \(C_e \in \mathcal{C} \) once, also meets the unique straight line segment of \(\mathbb{R}^d \) with parametric equation \(\sigma_e(t) = t \cdot C_e(0) + (1 - t) \cdot C_e(1), t \in \mathbb{R} \), i.e., the straight line segment of \(\mathbb{R}^d \) that is defined by the “images” of the endpoints of edge \(e \). Therefore, without loss of generality, we can consider only straight-line embeddings where \(\mathcal{C} = \{\sigma_e \mid e \in E\} \). Notice that every straight line embedding \(\mathcal{E}_d(G) = (f, \mathcal{C}) \) is fully defined by the function \(f \), therefore, for simplicity, for now on we will omit \(\mathcal{C} \). Observe that the definition of 1-cutwidth, where hyperplanes degenerate to subspaces of \(\mathbb{R} \) of dimension 0 (i.e., points) is equivalent to the usual definition of

1 A graph \(H \) is an immersion of a graph \(G \) if it can be obtained from \(G \) after a sequence of vertex/edge removals or edge lifts (the operation of lifting two edges \(\{x, y\} \) and \(\{y, z\} \) incident to the same vertex \(y \) is the operation of replacing these edges by the edge \(\{x, z\} \)). A graph invariant is immersion closed if its value on a graph \(G \) is always smaller or equal than its value on its immersions.
cutwidth. Therefore, d-cutwidth is the intuitive generalization of the notion of cutwidth in any dimension $d \geq 2$. Also observe that our demand of essential embeddings is expressed here by our demand of injective functions.

3 Properties of d-cutwidth

This section is devoted to the last two statements of Theorem 1.

Proof of Theorem 1.iii. Consider the d-dimensional moment curve C with parametric equation $C(t) := (t, t^2, t^3, \ldots, t^d)$, $t \in \mathbb{R}$. Consider also an ordering of the nodes of G that realizes the cutwidth of G. Embed a node v_i of G to the point $p_i = C(t_i)$, for an appropriate value t_i. By appropriate we mean that if a node v_i is after a node v_j in the cutwidth ordering, then the parametric value t_i corresponding to v_i is strictly greater than the parameter value t_j corresponding to node v_j. Now embed an edge $e_{ij} = (v_i, v_j)$ of G by connecting the points p_i and p_j on C with the minimum length arc of C connecting these points.

Consider a generic hyperplane Π with equation $a_1x_1 + a_2x_2 + \ldots + a_dx_d + a_0 = 0$, where, for all i, $a_i \in \mathbb{R}$. Π can cut C at at most d points. To see that, solve the system of equations $a_1x_1 + a_2x_2 + \ldots + a_dx_d + a_0 = 0$, and $x_i = t^i$, $i = 1, \ldots, d$ for t. This gives the polynomial equation $q(t) := a_0 + a_1t + a_2t^2 + \ldots + a_dt^d = 0$, in t of maximum degree d. Since $q(t) = 0$ has at most d real roots, we deduce that Π intersects C at at most d points. At each point of intersection at most $\text{cw}(G)$ edges of the embedding of G pass through that point. Hence, Π intersects at most $d \cdot \text{cw}(G)$ edges of G, i.e., $\text{cw}_d(G) \leq d \cdot \text{cw}(G)$. □

Spherical d-cutwith Given a graph $G = (V, E)$ and two positive integers k and d, where $d \geq 2$, we define the spherical d-dimensional cutwidth of G, or simply spherical d-cutwidth, to be equal to

$$\text{scw}_d(G) = \min_{E_{d}(G) \in \mathcal{E}_{d}(G)} \max\{|\partial_G(E_{d}(G), \Sigma)| \mid \Sigma \in S(d)\}$$

The proof of Theorem 1.iv is a consequence of Theorem 1.iii and the following two lemmata.

Lemma 1 For every graph G and any $d \geq 2$, $\text{cw}_{d+1}(G) \leq \text{scw}_d(G) \leq (d + 1) \cdot \text{cw}(G)$.

Lemma 2 For every graph G and every $d \geq 1$, $\text{cw}_{d+1}(G) \leq \text{scw}_d(G)$.

The above results clarify the relation between d-cutwidth and spherical d-cutwidth and we believe that they have independent interest. We omit the proofs as they are too lengthy to fit in this extended abstract.
4 Algorithmic remarks about d-cutwidth

As a consequence of the result in [9], for every k, the class of immersion minimal graphs with d-cutwidth bigger than k contains a finite set of graphs. We call this class immersion obstruction set for cutwidth at most k and we denote it by O_k. This fact, combined with Theorem 1.i, implies that $\text{cw}_d(G) \leq k$ if and only if none of the graphs in O_k is contained in G as an immersion. According to the result of Grohe, Kawarabayashi, Marx, and Wollan in [5], checking whether an n-vertex graph contains as an immersion some k-vertex graph H, can be done in $f(k) \cdot n^3$ steps. As a consequence, checking whether $\text{cw}_d(G) \leq k$ can be done in $f(k) \cdot n^3$ steps. This running time can become linear (on n) using the first inequality of Theorem 1.iii. Indeed, the algorithm first checks whether $\text{cw}(G) \leq k$. If the answer is negative then we can safely report that $\text{cw}_d(G) > k$. If not, then it is known (see e.g. [10]) that G has a tree decomposition of width $\leq k$ and to check whether some of the graphs in O_k is contained in G as an immersion can be done using dynamic programming in $f(k) \cdot n$ steps.

Unfortunately, the above algorithm is non-constructive as we have no other knowledge about the set O_k, except from the fact that it is finite. To obtain a constructive $f(k) \cdot n$ step algorithm for d-cutwidth remains an insisting open problem.

References