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Geometric Extensions of Cutwidth in any Dimension *

We define a multi-dimensional geometric extension of cutwidth. A graph has dcutwidth at most k if it can be embedded in the d-dimensional euclidean space so that no hyperplane can intersect more than k of its edges. We prove a series of combinatorial results on d-cutwidth which imply that for every d and k, there is a linear time algorithm checking whether the d-cutwidth of a graph G is at most k.

Introduction

The cutwidth of a (total) vertex ordering of a graph is the maximum number of edges connecting vertices on opposite sides of any of the "gaps" between successive vertices in the linear layout. The cutwidth of a graph G, denoted by cw(G), is the minimum cutwidth over all its possible vertex orderings. The problem that asks, given a n-vertex graph G and an integer k, whether cw(G) ≤ k, is an NP-complete problem known in the literature as the Minimum Cut Linear Arrangement problem [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF]. From the parameterized complexity point of view, the same problem is fixed parameter tractable, as an algorithm that checks whether cutwidth(G) ≤ k in f (k) • n steps was given in [START_REF] Thilikos | Cutwidth I: A linear time fixed parameter algorithm[END_REF]. Cutwidth has been extensively studied both from its combinatorial (see e.g. [START_REF] Fan | On the cutwidth and the topological bandwidth of a tree[END_REF][START_REF] Korach | Tree-width, path-width, and cutwidth[END_REF][START_REF] Chung | Graphs with small bandwidth and cutwidth[END_REF]) as well as its algorithmic point of view [START_REF] Monien | Min cut is NP-complete for edge weighted trees[END_REF][START_REF] Yannakakis | A polynomial algorithm for the min-cut linear arrangement of trees[END_REF][START_REF] Jung | Polynomial time algorithms for the MIN CUT problem on degree restricted trees[END_REF][START_REF] Hans | Derivation of algorithms for cutwidth and related graph layout parameters[END_REF].

d-dimensional cutwidth

In this note we introduce a multi-dimensional geometric extension of cutwidth, namely the d-dimensional cutwidth (or, simply, d-cutwidth) that, roughly, instead of mono-dimensional linear arrangements of the graph G, we consider embeddings of G in the d-dimensional Euclidean space R d and define the d-cutwidth of such an embedding to be the maximum number of edges a hyperplane of R d can intersect. Then, the d-cutwidth of G, denoted by cw d (G), is the minimun d-cutwidth over all such embeddings. Our results are summarized in the following.

Theorem 1
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i. d-cutwidth is immersion closed1 .

ii. For every graph G and every d ≥ 1, cw d (G) ≤ cw d+1 (G).

iii. For every graph G and every

d ≥ 1, cw d (G) ≤ d • cw(G). iv. For every graph G, cw 3 (G) ≤ 2 • cw 2 (G).
2 Preliminaries and definitions

Every (d -1)-dimensional subspace Π of a d-dimensional space X is called a hyperplane of X .
Here we are interested in hyperplanes of R d (which are known to be isomorphic to R d-1 ). Let Π be a hyperplane in R d , then there are a 0 , a 1 , . . . ,

a d ∈ R such that Π = {(x 1 , . . . , x d ) ∈ R d | a 1 x 1 + • • • + a d x d + a 0 = 0}.
We denote by H(d) the set of all hyperplanes of R d . A hypersphere, S(c, r), with center c and radius r in R d is the set

{(x 1 , . . . , x d ) ∈ R d | d i=1 (x i -c i ) 2 = r 2 }. We denote by S(d) the set of all hyperspheres of R d . We call a continuous function C : [0, 1] → R d a curve of R d with ends C(0) and C(1). Let G = (V, E) be a graph. An embedding of G, denoted by E d (G), in the euclidean space R d is a tuple (f, C), where f : V → R d is an injection, mapping the vertices of G to R d and C = {C e | e ∈
E} is a set of curves of R d with the following properties: (a) for every e = {u, v} ∈ E, the ends of C e are f (u) and f (v), and (b) for all x ∈ (0, 1) and v ∈ V it holds that f e (x) = f (v). For simplicity, we may sometimes refer to the elements of f (V ) and C as the vertices and edges of E d (G) respectively. We denote by 

E d (G) the set of all embeddings E d (G) = (f, C), of G in R d , such that for every positive integer i ≤ d, if S is a subset of V with |S| ≥ i, then the dimension of the subspace defined by {f (u) | u ∈ S} is i -1. We call an element of E d (G) essential-embedding of G in R d . Let E d (G) be a essential-embedding of G in R d , then if Π is a hyperplane of R d (resp. Σ is a hypersphere of R d ) that does not intersect any f (v), v ∈ V , we denote by ∂ G (E d (G), Π) (resp. ∂ G (E d (G), Σ))
cw d (G) = min E d (G)∈E d (G) max{|∂ G (E d (G), Π)| | Π ∈ H(d)}
Observe that any hyperplane Π of R d that meets a curve C e ∈ C once, also meets the unique straight line segment of R d with parametric equation σ e (t) = t • C e (0) + (1 -t) • C e (1), t ∈ R, i.e., the straight line segment of R d that is defined by the "images" of the endpoints of edge e. Therefore, without loss of generality, we can consider only straightline embeddings where C = {σ e | e ∈ E}. Notice that every straight line embeding

E d (G) = (f, C
) is fully defined by the function f , therefore, for simplicity, for now on we will omit C. Observe that the definition of 1-cutwidth, where hyperplanes degenerate to subspaces of R of dimension 0 (i.e., points) is equivalent to the usual definition of cutwidth. Therefore, d-cutwidth is the intuitive generalization of the notion of cutwidth in any dimension d ≥ 2. Also observe that our demand of essential embeddings is expressed here by our demand of injective functions.

Properties of d-cutwidth

This section is devoted to the last two statements of Theorem 1.

Proof of Theorem 1.iii. Consider the d-dimensional moment curve C with parametric equation C(t) := (t, t 2 , t 3 , . . . , t d ), t ∈ R. Consider also an ordering of the nodes of G that realizes the cutwidth of G. Embed a node v i of G to the point p i = C(t i ), for an appropriate value t i . By appropriate we mean that if a node v i is after a node v j in the cutwidth ordering, then the parametric value t i corresponding to v i is strictly greater than the parameter value t j corresponding to node v j . Now embed an edge e ij = (v i , v j ) of G by connecting the points p i and p j on C with the minimum length arc of C connecting these points. Consider a generic hyperplane Π with equation a 1 x 1 + a 2 x 2 + . . . + a d x d + a 0 = 0, where, for all i, a i ∈ R. Π can cut C at at most d points. To see that, solve the system of equations a 1 x 1 + a 2 x 2 + . . . + a d x d + a 0 = 0, and x i = t i , i = 1, . . . , d for t. This gives the polynomial equation q(t) := a 0 + a 1 t + a 2 t 2 + . . . + a d t d = 0, in t of maximum degree d. Since q(t) = 0 has at most d real roots, we deduce that Π intersects C at at most d points. At each point of intersection at most cw(G) edges of the embedding of G pass through that point. 

scw d (G) = min E d (G)∈E d (G) max{|∂ G (E d (G), Σ)| | Σ ∈ S(d)}
The proof of Theorem 1.iv is a consequence of Theorem 1.iii and the following two lemmata.

Lemma 1 For every graph G and any

d ≥ 2, cw d (G) ≤ scw d (G) ≤ (d + 1) cw(G).
Lemma 2 For every graph G and every d ≥ 1, cw d+1 (G) ≤ scw d (G).

The above results clarify the relation between d-cutwidth and spherical d-cutwidth and we believe that they have independent interest. We omit the proofs as they are too lengthy to fit in this extended abstract.

Algorithmic remarks about d-cutwidth

As a consequence of the result in [START_REF] Robertson | Graph minors XXIII. Nash-Williams' immersion conjecture[END_REF], for every k, the class of immersion minimal graphs with d-cutwidth bigger than k contains a finite set of graphs. We call this class immersion obstruction set for cutwidth at most k and we denote it by O k . This fact, combined with Theorem 1.i, implies that cw d (G) ≤ k if and only if none of the graphs in O k is contained in G as an immersion. According to the result of Grohe, Kawarabayashi, Marx, and Wollan in [START_REF] Grohe | Finding topological subgraphs is fixed-parameter tractable[END_REF], checking whether an n-vertex graph contains as an immersion some k-vertex graph H, can be done in f (k) • n 3 steps. As a consequence, checking whether cw d (G) ≤ k can be done in f (k) • n 3 steps. This running time can become linear (on n) using the first inequality of Theorem 1.iii. Indeed, the algorithm first checks whether cw(G) ≤ k. If the answer is negative then we can safely report that cw d (G) > k. If not, then it is known (see e.g. [START_REF] Thilikos | Cutwidth I: A linear time fixed parameter algorithm[END_REF]) that G has a tree decomposition of width ≤ k and to check whether some of the graphs in O k is contained in G as an immersion can be done using dynamic programming in f (k) • n steps.

Unfortunately, the above algorithm is non-constructive as we have no other knowledge about the set O k , except from the fact that it is finite. To obtain a constructive f (k) • n step algorithm for d-cutwidth remains an insisting open problem.
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A graph H is an immersion of a graph G if it can be obtained from G after a sequence of vertex/edge removals or edge lifts (the operation of lifting two edges {x, y} and {y, z} incident to the same vertex y is the operation of replacing these edges by the edge {x, z}). A graph invariant is immersion closed if its value on a graph G is always smaller or equal than its value on its immersions.