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Contraction Obstructions for Connected Graph Searching∗

Micah J. Best† Arvind Gupta‡† Dimitrios M. Thilikos§¶ Dimitris Zoros§

Abstract

We consider the connected variant of the classic mixed search game where, in each
search step, cleaned edges form a connected subgraph. We consider graph classes
with bounded connected monotone mixed search number and we deal with the
the question weather the obstruction set, with respect of the contraction partial
ordering, for those classes is finite. In general, there is no guarantee that those sets
are finite, as graphs are not well quasi ordered under the contraction partial ordering
relation. In this paper we provide the obstruction set for k = 2. This set is finite,
it consists of 174 graphs and completely characterizes the graphs with connected
monotone mixed search number at most 2. Our proof reveals that the “sense of
direction” of an optimal search searching is important for connected search which
is in contrast to the unconnected original case.

1 Introduction

A mixed searching game is defined in terms of a graph representing a system of tunnels
where an agile and omniscient fugitive with unbounded speed is hidden (alternatively,
we can formulate the same problem considering that the tunnels are contaminated by
some poisonous gas). The fugitive is occupying the edges of the graph and the searchers
can be placed on its vertices. In the beginning of the game, the fugitive chooses some
edge and there are no searchers at all on the graph. The objective of the searchers is
to deploy a search strategy on the graph that can guarantee the capture of the fugitive.
The fugitive is captured if at some point he resides on an edge e and one of the following
capturing cases occurs.
A: both endpoints of e are occupied by a searcher,
B: a searcher slides along e, i.e., a searcher is moved from one endpoint of the edge to
the other endpoint.
A search strategy on a graph G is a finite sequence S containing moves of the following
types.

∗The second author of this paper where funded by the Natural Science and Engineering Research
Council of Canada, Mitacs Inc, and the University of British Columbia. The third and the fourth author
of this paper where co-financed by the E.U. (European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: “Thales. Investing in knowledge society through the
European Social Fund”. Emails: mjbest@cs.ubc.ca, arvind@mitacs.ca, sedthilk@thilikos.info,
dzoros@math.uoa.gr .

†Department of Computer Science, University of British Columbia, B.C., Canada.
‡Mathematics of Information Technology & Complex Systems (MITACS).
§Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece.
¶AlGCo project team, CNRS, LIRMM, France.

1



p(v): placing a new searcher on a vertex v,
r(v): deleting a searcher from a vertex v,
s(v, u): sliding a searcher on v along the edge {v, u} and placing it on u.

We stress that the fugitive is agile and omniscient, i.e. he moves at any time in the
most favorable, for him, position and is invisible, i.e. the searchers strategy is given “in
advance” and does not depend on the moves of the fugitive during it.

Given a search S, we denote by E(S, i) the set of edges that are clean after applying
the first i steps of S, where by “clean” we mean that the search strategy can guarantee
that none of its edges will be occupied by the fugitive after the i-th step. More formally,
we set E(S, 0) = ∅ and in step i > 0 we define E(S, i) as follows: first consider the set
Qi containing all the edges in E(S, i− 1) plus the edges of E(i) the set of edges that are
cleaned after the i-th move because of the application of cases A or B. Notice that E(i)

may be empty. In particular, it may be non-empty in case the i-move is a placement
move, will always be empty in case the i-th move is a removal move and will surely be
non-empty in case the i-th move is a sliding move. In the third case, the edge along
which the sliding occurs is called the sliding edge of E(i). Then, the set E(S, i) is define
as the set of all edges in Qi minus those for which there is a path starting from them
and finishing in an edge not in Qi. This expresses the fact that the agile and omniscient
fugitive could use any of these paths in order to occupy again some of the edges in Qi.
In case E(S, i) ⊂ Qi, we say that the i-th move is a recontamination move. Notice that
in such a case we have that E(S, i− 1) ̸⊆ E(S, i).

The object of a mixed search is to clear all edges using a search. We call search S
complete if at some step all edges of G are clean, i.e. E(S, i) = E(G) for some i.

Connected monotone mixed search number The mixed search number of a search
is the maximum number of searchers on the graph during any move. A search without
recontamination moves is called monotone. Mixed search number has been introduced
in [2]. A search is connected if E(S, i) induces a connected subgraph of G for every step
i. The mixed search number, s(G), of a graph G is the minimum mixed search number
over all the possible complete searches on it (if G is an edgeless graph, then this number
is 0). The monotone (resp. connected or monotone connected) mixed search number,
ms(G) (resp. cs(G) or cms(G)), of G is the minimum mixed search number over all
the possible complete monotone (resp. connected or monotone and connected) searches
of it (connected variants are defined only under the assumption that G is a connected
graph). The concept of connectivity in graph searching was introduced for the first time
in [1] and was motivated by application of graph searching where the “clean” territories
should be maintained connected so to guarantee the safe communication between the
searchers during the search.
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Figure 1: The set O1 (left) and the set of rooted graphs A (right).
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Obstructions Given a graph invariant p, a partial ordering relation on graphs ≤,
and an integer k we denote by obs≤(G[p, k]) the set of all ≤-minimal graphs G where
p(G) > k and we call it the k-th ≤-obstruction set for p. We also say that p is
closed under ≤ if for every two graphs H and G, H ≤ G implies that p(H) ≤ p(G).
Clearly, if p is closed under ≤, then the k-th ≤-obstruction set for p provides a complete
characterization for the class Gk = {G | p(G) ≤ k}: a graph belongs in Gk iff none of the
graphs in the k-th ≤-obstruction set for p is contained in G with respect to the relation
≤.
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Figure 2: Some of the graphs in D1.

Our result In this paper we are interested in obstruction characterizations for the
graphs with bounded connected and connected monotone mixed search number. While
it is known that ms is closed under taking of minors, this is not he case for cs and
cms where the connectivity requirement applies. From Robertson and Seymour the-
orem [3], then k-th ≤-obstruction set for ms is always finite. Moreover this set has
been found for k = 1 (2 graphs) and k = 2 (36 graphs) in [4]. However, much less
is known on obstruction characterizations of the connected and connected monotone
mixed search number. As we prove in this paper, cs and cms is closed under contrac-
tions. Unfortunately, graphs are not well quasi ordered with respect to the contraction
relation, therefore there is no guarantee that the k-th contraction obstruction set for
cs or cms is finite for all k. The finiteness of this set is straightforward if k = 1 as
obs⪯(G[cms, 1]) = {K3,K1,3}. In this paper we completely resolve the case where
k = 2. We prove that obs⪯(G[cs, 2]) = obs⪯(G[cms, 2]) and that this is a finite set by
providing all 174 graphs that it contains. The proof of our results is based on a series
of lemmata that confine the structure of the graphs with connected monotone mixed
search number at most 2. We should stress, that, in contrary to the case of ms the
direction of searching is crucial for cms. This makes the detection of the corresponding
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obstruction sets more elaborated as special obstructions are required in order to force a
certain sense of direction in the search strategy. For this reason, our proof makes use of
a more general variant of the mixed search strategy that forces the searchers to start and
finish to specific sets of vertices. Obstructions for this more general type of searching
are combined in order to form the required obstructions for cms.

2 Description of the obstruction set

Let D1 = O1∪ · · ·∪O12 where O1 is depicted in the left part of Figure 1, O2, . . . ,O9

are depicted in Figure 2 and O10 and O11 and O12 are constructed as follows.
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Figure 3: The sets of rooted graphs B (on the left) and C (on the right).

O10 : contains every graph that can be constructed by taking three disjoint copies of
some graphs in the right part of Figure 1 and then identify the vertices denoted
by v in each of them to a single vertex. There are, in total, 35 graphs generated
in this way.

O11 : contains every graph that can be constructed by taking two disjoint copies of some
graphs in the left part of Figure 3 and then identify the vertices denoted by v in
each of them to a single vertex. There are, in total, 78 graphs generated in this
way.

O12 : contains every graph that can be constructed by taking two disjoint copies of some
graphs in the right part of Figure 3. and then identify the vertices denoted by v
in each of them to a single vertex. There are, in total, 21 graphs generated in this
way.

Observe that, D1 contains 174 graphs. The proof of its correctness is lengthy and is
omitted in this extended abstract.
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