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Adaptive terminal sliding mode control of a
redundantly-actuated cable-driven parallel
manipulator: CoGiRo

Gamal El-Ghazaly, Marc Gouttefarde, and Vincent Creuze

Abstract This paper presents an extended adaptive control schentenmgnal
sliding mode (TSM) for cable-driven parallel manipulat¢@DPM). Compared
with linear hyperplane-based sliding mode control, TSMhkdo guarantee high-
precision and robust tracking performances which arismfits main feature of
finite-time convergence. This motivates applying TSM toatidd manipulators in
general and, as presented in this paper, to CDPM in particliee scheme pre-
sented in this paper extends early developed TSM contrellel which are based
on partial knowledge of system dynamics. Instead, makimegafishe property that
the dynamic models of mechanical manipulators are lineamertial parameters,
an adaptive control law is synthesised based on an appteghaice of Lyapunov
function which guarantees finite-time convergence to naghood of sliding mode.
A key challenge of the control of CDPM is that cable tensionstibe admissible,
i.e. lying in a non-negative range of admissible values. &gylas cable tensions
are admissible, the overall dynamics of CDPM can be easilitemrin either ac-
tuator space or operational space which in turn facilitet@strol system design.
The extended adaptive control scheme has been applied tgearkedundantly ac-
tuated CDPR prototype, CoGiRo. Simulation results showeffectiveness of the
proposed control method.

1 Introduction

Cable-driven parallel manipulator (CDPM) is a particulgpe of robots in which
the motion of the platform (end-effector) is provided byyiag the length of the ca-
bles. Compared with classical parallel manipulators whighcharacterised by their

Gamal El-Ghazaly, Marc Gouttefarde, and Vincent Creuze

Laboratoire d’Informatique, de Robotique et de Micro&lecique de Montpellier (LIRMM,
CNRS-UM2), 161 Rue Ada, 34392, Montpellier, France e-maflgamal.elghazaly,
marc.gouttefarde, vincent.cregz@lirmm.fr



2 Gamal El-Ghazaly, Marc Gouttefarde, and Vincent Creuze

limited workspace, CDPMs can have a very large workspaceasstcapable of
manipulating heavy loads at high operating speed [1] whiakerthem useful char-
acteristics for many potential industrial applicationst Erane-like applications [2]
such as pick and place tasks [3], suspended CDPM are ussaitiyas they reduce
the risk of cable collisions in the workspace area. Cab&ssended CDPM are not
fully-constrained and cannot have wrench closure over itiesaworkspace. How-
ever, a suspended CDPM uses the mobile platform and payleihts to keep the
cables in tension. Furthermore, using more cables than ®E&able-suspended
CDPM can allow the robot to have a significantly wider workspgB, 4, 5]. In this
paper, a 6-DOF suspended CDPM prototype with two degreestoétion redun-
dancy is used to evaluate the performance of the proposedctBiviol scheme.

Many challenges arise in CDPMs among which control designdsficult one.
These challenges stem from the fact that cables can only &amsion forces im-
posing a strict constraint on control inputs. For redunigaattuated CDPM, an
infinite number of cable tension distributions exist for aegi external forces ap-
plied to the platform. The redundancy resolution has atihthe attention of many
researchers. The proposed algorithms to resolve redupdande categorised into
two main classes namely, iterative algorithms and noraditex algorithms. Iterative
algorithms are usually based on optimization and are noaydvsuitable for real
time implementations [6, 7, 8]. On the other hand, non-tiegaalgorithms give a
solution in a reasonable amount of time and can be more eagillemented in
real-time [9, 10, 5].

Compared to the great deal of attention that has been paidbtmmcontrol
of rigid-link manipulators, only relatively few results obntrol of CDPM exist in
the literature. Gholamet-al. [11] proposed an operational-space PD controller for
trajectory tracking. Kawamurat-al. proposed a PD controller with gravity com-
pensation in [1]. The PD controller is designed in the actapace with Lyapunov
stability. A robust Lyapunov-based design of PID trackiogtroller has been in-
troduced for a fully-constrained planar CDPM in [12]. A PDntwller with adap-
tive compensation has been applied to fully-constraine@&bn [13]. Computed-
torque control methods appeared in [14]. To make use of theradges of both the
actuator-space and operational-space formulations,lssgdaee adaptive controller
has been proposed in [15].

Sliding mode control (SMC) has been found effective to detth wlynamic
systems with uncertainties, time-varying parameters,tmmahded external distur-
bances [16]. The main idea of SMC is to force the states of ysm to stay in
a chosen switching manifold satisfying a desired dynamiakm®r. The choice of
linear hyperplanes as switching manifolds guarantee agytiogstability i.e. the
closed-loop error converges to the neighborhood of theroag the time approachs
to infinity. Although classical SMC gave reasonable perfance for robotic manip-
ulators, only few results for CDPMs exist in the literatut@]. The performance of
classical SMC could be enhanced if the closed-loop err@saced to reach the
origin in finite time. SMC with finite-time stabilization alled terminal sliding
mode (TSM). Several ideas of designing TSM based contr@msels have been de-
veloped to achieve finite-time stabilization in [18, 19, 2@]. The control schemes
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based on those ideas are able to guarantee high-precisiomlbunst tracking per-
formances due to finite-time convergence even with high daicgy. This prop-
erty justifies adopting TSM based control schemes for robwi@nipulators and
motivates us to use it for CDPMs. TSM control schemes deweldpr rigid-link
manipulators may not exploit their properties very welleBwadaptive TSM control
schemes developed for rigid-link manipulators do not relyte linearity of inertial
parameters [22]. In [18], a robust TSM control has been agea for robotics ma-
nipulators. However, the main problem of this scheme is ¢batroller singularity
may be reached in sliding mode. A non-singular TSM has begpqgsed for robotic
manipulators in [19] where a new terminal sliding manifoltstbeen proposed to
avoid controller singularity. However, this control schedid not eliminate chatter-
ing in control inputs. A continuous and non-singular TSMitohscheme has been
proposed also for robotic manipulators in [20] to avoid badthttering and singular-
ity. However, the proposed schemes in [18, 19, 20] did nosictam the aforemen-
tioned property of the dynamic model of robotics manipulated therefore cannot
be directly applied to control CDPM for which high uncertgimay appear spe-
cially when manipulating payloads of varying sizes and \widglnstead, adaptive
TSM control scheme has been proposed also for robotic mimtdus in [23] where
the Coriolis, centrifugal and gravity terms are approxieaddty polynomials of first
order. The role of the adaptive mechanism is to estimate dlefficients of these
polynomials which approximate the manipulator dynamioswelver, [23] did not
estimate the true inertial parameters of the manipulataclwvimay give relatively
large control inputs specially when loads are introduced.

This paper extends an early developed non-singular canis' SM control
scheme for robotic manipulators proposed in [20] by incoaing an adaptive
mechanism to estimate dynamic parameters and by applyitgg @DPM. The
scheme in [20] is based on the assumption that the nomina¢salf inertial ma-
trix components as well as of Coriolis, centrifugal and gsaforces are known
and their corresponding uncertainties have known bounds.worth noting that
the CDPMs considered in this paper are designed to carryhemxoads having
different weights so that the mobile platform inertial paeters are subjected to
large variations. Therefore, if the scheme in [20] is diyeapplied, very high con-
trol input torques may be required especially during logdiituations. The most
appropriate solution to this problem is to estimate onlime dynamic parameters
of the CDPM via an adaptive mechanism. In this paper, theatvdynamics of
CDPMs (both winches and platform) is formulated to be lini@aall inertial and
friction parameters. Thereby, it facilitates the desigthefadaptive control scheme.
The whole control scheme is synthesised and analysed baskeghpunov stabil-
ity theory. Moreover, it guarantees the finite-time coneerce of the closed-loop
system. To show its effectiveness, the proposed contrelrsetis applied to a large
redundantly actuated CDPM, CoGiRo [3].

The paper is organised as follows. In Section 2, kinematitdymamic model-
ing of CDPMs are presented and some properties of the dynmaodel are recalled.
Section 3 focuses on the proposed adaptive terminal slidiode control scheme
where finite-time convergence stability of the overall elddoop system is analysed
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via Lyapunov direct method. Finally, to show the effectigss of the proposed con-
trol scheme, a simulation study for pick-and-place tasleisgymed on the CoGiRo
CDPM in Section 4. Section 5 concludes this paper.

2 Kinematic and Dynamic Modeling of CDPM

i/ Fixed Base

2 Moving Platform

Fig. 1: Schematic Diagram of a General CDPM

In this section, kinematic and dynamic modeling of CDPM aespnted. We as-
sume that the elasticity of cables is negligible and callesst behave as massless
rigid strings. Modeling of CDPM has been presented in masgaech work before
e.g. [24, 25, 26, 3]. However, in this section, our main otiyecis to present the
overall dynamics of CDPM (botwinchesandplatform) in compact form and linear
in all dynamic parameters. This compact form facilitatesdbsign of adaptive con-
trol schemes in general [22, 27] and is particularly sugdbl the adaptive control
scheme introduced in this paper. The notations of a gen@&NCfor kinematic
modeling is shown in Fig. 1.
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2.1 Kinematic Model

As shown in Fig. 1, CDPM is composed of a moving platform like a fixed base
through cables with varying lengths via winches which amegally attached to the
base structure. Le¥, andZp, denote two frames assigned to the base and moving
platform, respectively. In the case of CDPM withcables, let cableconnects the
pointA; at which it extends from the base frame to pd@nat which it is attached to
the moving platform. The position and orientati@f with respect ta%,, is defined

by the configuration vector = [p" ¢ '] wherep =[xy 2" is the position vector
and¢ = [@6 )T is a vector representing the orientationdgf with respect to%,
using Euler angles. The rotation matrix frofi to # denoted b)RE is represented

by three successive rotations as

RP(9,6, ) = Rot(x, p)Rot(y, 8)Rot(z ). @)

Using the definition of elementary rotations around coaitﬁraxesRE can be
written as

cocy —Cosy S0
RP(9.0.) = |CoSy + SpSHCY CeCy — SpSOSY —SeCh| . (2)
SpSy — CeSOCY SpCy +CpSHSY CeCo
whereC(-) = cog-) andS(-) = sin(-). If g; denotes motor angular position and
represents motarangular position to cable length transmission ratio, tiencgble
lengthl; can be expressed as

li =rig;. 3)
Letq= (o102 ... qm}T €RM andL = [I1 12 ... Im}T € R™ be two vectors
gathering angular position variables and cable lengtispeetively. Then, one can
write (3) in a vector matrix form as

whereR is a diagonal matrix containing the transmission ratjase.
R =diag{r1, rz, ..., rm}. (5)

Let & denotes the position vector corresponding to pirgxpressed ¥}, b
denotes the position vector corresponding to pBintxpressed iwZp, andu; is a
vector along the direction of cabl@nd has the same magnitude of the cable length.
Given the position and orientation of the moving platfoxirithe loop closure of
cablei expressed iz, can be written as follows

Ui = p—a + REbi. (6)
The length of cabléis then computed as

12=ul u = [p+Rbi —a] [p+REb —a. (7)
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Differentiating (7) with respect to time together with (4yes

L = Rg = J(X)X, (8)

wherel(x) defines a 6« mJacobian matrix of the CDPM. The second-order deriva-
tive (7) with respect is then written as

L =Rg = I(X)%+ I (X, X)X. 9)

2.2 Platform Dynamics

LetS=[S S, SZ]T be a position vector of the platform COM in Z%p. Letl, =

lo — MSS be the inertia tensor of the platform with respect to theioraj %, and
expressed in the same frame, whhkyés the inertia tensor with respect to COM of
the platform, M is the total platform mass, aSdenotes the & 3 skew-symmetric
maitrix associated t8. Let us denote the matriy as

XX XY XZ
lp=|XYYYYZ]|. (10)
XZ YZ z2Z
Let MS be a vector representing the first moment of the moving platfwhich
can be expressed as
MS=M[SS S = [MXMY MX ] . (11)

The dynamics of the platform can be written in the followiogrh

A(X)% 4+ C(x, X)X +Q(x) = —Jt, (12)

whereA(x) denotes the generalized inertia mat@(x, x) is the Coriolis and cen-
trifugal matrix,Q(x) is a vector of gravity forces, artds a vector of cable tensions.
It is worth noting that the dynamics of the platform is linéathe inertial param-
eters i.e. inlp, MS, and M [22]. Letxp € R0 be a vector collecting the inertial
parameters of the platform as
Xp= [XX XY XZ YY YZ ZZ MX MY MZ M ]T. (13)

Consequently, one can easily express the dynamics of ttfenptein the follow-

ing regression form

Dp (X, %, %) xp = —Jt. (14)

The details of the regress@r, (X, X, X) is given in [15].
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2.3 Winches Dynamics

The dynamics of the winches can be written as follows [15]

Ma=1a0+F.q+Fcsign(q) + Rt (15)

wherel, € R™M F, € R™M andF; € R™™ are diagonal matrices denoting, re-
spectively, the inertia, the viscous friction coefficieraad the dry friction coeffi-
cients of the motors, drums and other other rotating paesll.F,, and k. € R™
be vectors corresponding to the diagonal elements,df,, andF., respectively.
Then, one can gather all dynamic parameters of the winchasdvectory, € R
defined as follows

Xa=[1F] F]" (16)

Now, the winch dynamics can be written in a regression forfiobewvs

Ma=®a(q,q9,4)Xa+ Rt (17)
where®,(q,q,q) is given by

®a(0,4,4) = [ diag@) | diagq) | diagsign(@)) ] (18)

As cable tensions must be within admissible non-negativgeai.e. < tyin <
t < tmax the limits of the actuator torques should be within a lowet apper limits
defined respectively as follows

M = ®4(0, 4, ) Xa + Rtmin (19)
and

F3® = ®a(d,d,)Xa + Rtmax (20)

In this paper, the dynamics of winches will be projected ahi® operational
space and then cable tensions will not be directly accessiidtead, the tension dis-
tribution algorithm will be applied on the bounds defined loy B.9) and Eg. (20).

2.4 CDPM Dynamicsin Operational Space

Using the first-order and second-order differential modeitned by Eqg. (8) and
Eqg. (9), one can compute the winch regression matrix in texfresther the plat-
form or the winch acceleration, velocity, and position weste.g.®,(q,q,q) <
P,(X,X,X). Using Eq. (17), the cable tension can be expressed as

t =R (Ma— Da(x,%,%)Xa) (21)
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Substituting cable tensions in Eq. (21) into platform dyiengiven by Eq. (14)
yields
Pp(X, %, X) Xp — I TR 1 Da(X, X, X)Xa = —J "R T4 (22)

Eqg. (22) can be written in a more compact form as

d(x,x,X)x =—-J"RII, (23)

where
D(x,%,X) = [@p(x,%,%) —IT R1Da(x,5%,%)] and x = [xI xI]7  (24)

Solving Eq. (23) for the actuator torquEg taking into account the torque limits
defined by Eqg. (19) and Eqg. (20), gives the following genewhltion

Fa=RW*d(x,%,X)x + RNA, (25)

whereW* € R™6 andN € R™™-6 are the Moore-Penrose pseudo-inverse and the
null-space basis matrix 6fJ", respectivelyA € R™6 is an arbitrary vector to be
obtained such that cable tensions (and actuator torqueapanissible. For the sake
of controller synthesis and analysis, the dynamic modeh@f@DPM expressed in
terms of an inertia matrix, Coriolis, centrifugal, gravftyrces, and friction forces
are needed. Straightforward manipulations after sultstgueq. (15) into Eq. (12),
and considering an external disturbanEgsallow us to write the dynamics of the
CDPM in the following form

Aeq(X)X + Ceq(x, X)X + Qeq(X) + Feq(x, ).(7 X) - Fext+ Fd (26)

whereAeq(x) = A(x) = JTRH 3R 13, Ceq(X, %) = C(%,X) —ITRH 3R 1J, Qeq(X) =
Q(X), Feg(X,X,%) = —IJTR7IF,R1Ix— ITR1FcsignR1Ix), andFex = —JTR 1T,

2.5 Properties of the Dynamic Model

Some properties of the dynamic model (26) are recalled [M2¢se properties are
necessary for the controller synthesis and stability aisly

Propertyl The inertia matriXAeq(X) is a positive-definite symmetric matrix and
bounded away from singularity whatever the uncertaintieigértial
parameters. The boundednes#égf(x) implies

Amle < Aeq(x) <Awmle (27)

or
Am < [[Aeq(X)[| < Am (28)

wherelg is the 6x 6 identity matrix and\,, andAy are positive scalars.
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Property2  The external disturbance force vediris assumed to be bounded i.e.
IFall < ¢ (29)

where( is a positive constant.

3 Adaptive TSM Control of CDPM

In this section, an adaptive TSM control is synthesized lfier CODPM dynamic
model given in (26). The main idea of TSM is first presentediassg that the
dynamic parameters of the CDPM are known. Then, the ideatendrd to the
adaptive case where the dynamic parameters are assumednéri@vn and must
be estimated.

3.1 TSM Control

For CDPM dynamics given by (26), let;, X4, andXq be a desired trajectory and
definee = x — xq as the tracking error. The control objective is to desigreafimck
control lawFey such that the platform posturketracks the desired trajectory in
finite time.

In order to have a terminal convergence of tracking errosiding surface is
defined as follows [18]

s=é+peP/ (30)

wheref3 > 0 is a design constant paramefeandq are positive odd integers satis-
fying p> g. In order to ensure that the terminal sliding mode existderstwitching
surface and equilibrium is reached in finite time, the follogw -reachability con-
dition must be satisfied [28]

d
> aS s<-nls (31)
wheren > 0 is a constant. If the dynamic parametgref the CDPM are known
and the bounds on disturbangare also known, then, one can choose the following
control law to satisfy they-reachability condition [19].

Fext = ®(X, X, V)X (32)

wherev is an auxiliary control input defined by

V:Xd+B%e Pla-la (p+n)sign(s) (33)
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wherep = An. If 5(0) # 0O, then the sliding modse = 0 will be reached in finite
time t; which satisfied, < \s\ /n. When the sliding mode is reached, the system
dynamics is described by the following nonlinear diffefalgequation

e+pePi=0 (34)

Eq. (34) has an equilibrium ate0 which is a globally finite-time stable attractor.
And the convergence time for any initial conditior=x(t, ) is finite and given by

p 1-a/p
ts < B(p—q) ’X(tr)’ (35)

However, the choice of such terminal sliding surface mayseasingularity at
convergence due to fractional powfg. In addition, the control laws (32) and (33)
is discontinuous and may cause chattering [19].

3.2 Non-Singular TSM Control

In order to avoid the singularity problem of (30), anotheoicle of terminal sliding
mode is defined as follows [20]

s=e+B¢"signe) (36)
where3 >0and 1< y < 2.
Remark 1 The terminal sliding mode defined by (36) has a global firnitestequi-

librium i.e. for any given initial conditior(0) # 0, the variables reaches zero in a
finite timet, given by [20]

yBYY -1y

tr < ——|e(0 37

Remark 2 The terminal sliding mode defined by (36) is continuous ame: tiiffer-
entiable. Its first time derivative is written as [20]

s—e+Byle te (38)

Remark 3Finite time stability is guaranteed for a given Lyapunovdtion candi-
date \(s) if it satisfies [20]

V(s)+aVv(s)+bVSs)<0; a>0b>0, and O<c<1 (39)
Moreover, the finite reaching time is given by

1 n ave(s(0))+b
—all-c) b

A

t

(40)



Adaptive terminal sliding mode control of a redundantlyeated of CDPM 11

Now, if we assume that the dynamic parameters of CDPMyi.ate known and
the disturbanc&y = 0, then to design a non-singular TSM controller, let us ckoos
the following Lyapunov function candidate

= §S S (42)

The time derivative of the non-singular TSM (38) can be réemi as follows

. . y—1 1 1 1-12— . : .

s=Bylel" (B ty e Vsigne)+¥) (42)
Let us choose a control law which is defined by

Fex = B(X, X,V)X — K15~ K2 8|’ sign(s) (43)

WhereK1 = diag(kll, klg, kle), Ko = diag(kzl, k22, k26), with kjj >0,i¢e
{1,2},j€{1,2,...,6},andp < 1, and

o 1, 2—y .
v==X4—— |€" "sign(e 44
d ﬁV’ ’ gn(e) (44)
The control laws (43) and (44) reduces the time-derivatiié
V = —s"His—s"H,|s|” sign(s) (45)
where
Hi=diaghi1, iz, ... his) = ByAm|e]” 'Ky (46)
and
Hp = diagihaa, hoa. ... hoe) = ByAm|€]" K (47)

are positive diagonal matrices anywhere except at slidingenAfter straightfor-
ward manipulations of (45), one can get

V < —2hV — 2(P+D/2 _pyy(p+1)/2 (48)

According to the finite-time stability (39), it is clear thgt8) ensures that the
tracking errore converges to zero along TSM in finite time. However, in p@sti
the vector of dynamic parameteyss not exactly known since it changes with pay-
loads. Also, external disturbances exist and must be talteraccount in controller
design. Therefore, an adaptive control scheme is recomeaetadcope with load
changes and at the same time to guarantee robustness afnpenfzes. The main
contribution of this paper is to extend the non-singular T&\trol scheme ex-
plained above such that the dynamic parameters of CDPM a&eg online via an
adaptation mechanism to ensure convergence.
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3.3 Adaptive TSM Control Scheme

In this section, a non-singular adaptive TSM is developedioPM based on the
classical formulations presented in Sections 3.1 and h2.dynamic parameters
are assumed to be unknown and have to be estimated. The realts ref the pro-
posed non-singular adaptive TSM control scheme are sursethtinrough the fol-
lowing theorem.

Theorem 1.Consider a CDPM described by (23) and (26) and satisfying, (2B),
and (29) and assume that the vector of dynamic parametassunknown. If the
non-singular TSM (36) is chosen and the following contrblesoe is applied:

Fext = ®(X,X,V)X + Us (49)

wherey is an estimate of, and

. 1. 2—-y . .
vV=Xq— — |€|” "sign(e), 50
d BVH gn(e) (50)
Us= —K15— K> |s|” sign(s), (51)
and
X = BYA®T (x,%,v)|g[* s (52)

whereA is a positive-definite diagonal matrix with appropriate @nsions, then the
closed-loop system reaches a neighborhood of TSM in fimite &nd the tracking
error reaches the neighborhood of the origin also in finitedi

Proof. Let ¥ = x — X be dynamic parameters estimation error. Let us choose a
Lyapunov function candidate as follows

V= %5T5+ % XTA (53)

The time derivative of V is given by

V=s's-%TAx (54)
The time derivative of the terminal slidingcan be rewritten in the following
form
. Cyv—1 . 1 1102—y . . .
5=Pyle" " Acq(Aea(By " |6 "sign(e)) + Acct) (55)

whereAgq, Ceq, Qeq andFeq are the inertia matrix, Coriolis and centrifugal matrix,
gravity forces, and friction forces where the argumentsappressed for simplicity.
The second-order time derivative of tracking efg@an be written as

Aeqé: —Aeqxd - Ceqx - Qeq— I:eq‘f' Fext+ Fd (56)
Substituting (56) into (55) gives
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. Y= _ I . 12— . . . .
S=BV|9|V 1Aeq1(Aeq(B y 1‘9‘ ys'gn(e)—Xd)—ceqX—Qeq_Feq+Fext+Fd)

(57)
By definition ofv in (50), Eq. (57) can rewritten as
5=By|e]” T A (— DX, X,V)X + Fext+ Fa) (58)
Substituting the control law (51) and (49), then (58) canibwpéfied to
5= Byle] P ALL(@(x,%, V)X — Kis— K2|s| sign(s) + Fq) (59)

Substituting (59) intd/ in (60) and substituting with the adaptive law (52), one
can easily get

\'/gBysT\'e|V*1A,;ql(—Kls—Kz\s\”sign(s)+Fd) (60)
Using the properties (28) and (29), then one can simplify &0

V < Bys' [6]" " Am(—Kas— K |s|” sign(s) + ¢) (61)

Following the same line of proof as in [20], we can see thastrstem can reach
neighborhood sliding-mode in finite-time which is defined by

Il <& =min(3;, ) (62)

whered; = Aml /h1, & = (Am{/h2)/P). In addition, once the sliding variable is
within the regiond, the tracking error can reach the neighborhood of the o&tsa
in finite time as well. This completes the proof.

4 Simulation Study: Control of CoGiRo

Fig. 2: CoGiRo CDPM prototype developed by LIRMM and Tecaali
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Table 1: Cable Attach Points

Base Points Platform Points

X Yo % Xp Yp %
a -7.5 -5.5 6 by 0.5 -0.5 0
a 75 5.5 6 by -0.5 0.5 1
as 7.5 55 6 bs -0.5 -0.5 0
ay -7.5 5.5 6 by 0.5 0.5 1
as 75 55 6 bs -0.5 0.5 0
ag 7.5 5.5 6 bs 0.5 -0.5 1
ay 7.5 5.5 6 by 0.5 0.5 0
ag 7.5 -5.5 6 bg -0.5 -0.5 1

units are irm

Table 2: Platform inertial parameters
Parameter XX YY Y4 XY XZ YZ MX MY Mz M

XPNL 62.00 60.00 22.00 -0.32 -0.02 450 0.00 -750 0.00 79.00
XpPL 132.00 135.00 45.00 0.00 -3.00 -2.00 -28.00 -7.50 0.00 200.0

a xpaL and xpL denote platform inertial parameters without and with laadpectively. Units are
in kg.m?, kg.m, andkg

Table 3: Winch dynamic parameters

Parameter la F Fe r

Value 0.0311 0.0200 3.0000 0.0225

units are inkg.nm?, N.m.rad~1.se¢ N.m, m

4.1 CoGiRo Prototype

The CoGiRo prototype shown in Fig. 2 is a redundantly-aeiaable-suspended
CDPM developed by LIRMM and Tecnalia. CoGiRo occupies asgaaracterised
by a 15min length, 11min width, and 15min length giving a potential workspace
of 677m?. The mobile platform is a cube withriiside length with a total mass of 79
kg. CoGiRo has 8-actuators with a 6-DOF moving platform i.&@ai$ 2-degrees of
actuation redundancy. CoGiRo is capable of manipulatirydpaals of 30Ckg over

the entire workspace and up to 5R@if the task to be performed is not too close
to the boundaries of the workspace. The lower limit of cableston istmin =0 N

and the upper limit ismax= 5000N. The base and platform cable attachment points
of CoGiRo which are given Table 1 in units of The inertial parametengy, of
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the moving platform from the CAD model of CoGIiRO are given @ble 2. The
inertial parametergp of the platform with a typical payload previously used in an
experimental study are used to assess the robustness obfgitespd control scheme
in this simulation study. The dynamic parameters of CoGiRmhes are shown in
Table 3.

4.2 Simulation Results

Table 4: Interpolated trajectory point sequence

Point X y z 0] e] 1}

Xo 0.000 0.000 1.296 0.000 0.000 0.000
X1 0.000 0.000 2.296 0.000 0.000 0.000
X2 -3.850 1.200 2.296 0.000 0.000 -45.840
X3 -3.850 1.200 1.307 0.000 0.000 -45.840
Xq -3.000 2.000 1.307 0.000 0.000 -45.840
X5 -3.000 2.000 1.796 0.000 0.000 -45.840
X6 4.000 -1.000 1.796 0.000 0.000 11.460
X7 4.000 -1.000 1.307 0.000 0.000 11.460
Xg 4300 -2.000 1.307 0.000 0.000 11.460
X9 4300 -2.000 2.296 0.000 0.000 11.460

X10 0.000 0.000 2.296 0.000 0.000 0.000
X11 0.000 0.000 1.296 0.000 0.000 0.000

Table 5: Maximum velocity and acceleration along the tri@jgc
DOF X y z 0] [¢] 1/}

Maximum velocityK,, [{m,rad}/sed 1.0000 1.0000 1.0000 1.5708 1.5708 1.5708
Maximum acceleratiol ; [{m rad}/se@] 0.1000 0.1000 0.1000 0.1571 0.1571 0.1571

CoGiRo is supposed to perform pick-and-place tasks. Indinmlation study,
a trajectory of 11 mobile platform poses corresponding tick-pnd-place task is
given in Table 4. It has been generated by a 5th-order polyalanterpolation sub-
jected to the velocity and acceleration constraints gimefable 5. In order to assess
the performance of the proposed adaptive TSM control schemeonsider two
simulation cases. I€ase Athe adaptive TSM controller is simulated considering
only 20% of parametric uncertainty where@ase B we consider loading the plat-
form at configuratiorxs and releasing the load at configuratianand, at the same
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Table 6: Adaptive TSM Controller Parameters

Parameter  Value

B 1.00
y 1.50

o 0.33

K1 diag{70.00, 70.00, 10500, 10500, 10500, 70.00}

K diag{25.00, 25.00, 37.50, 25.00, 25.00, 30.00}

A, diag{100Q00, 100000, 100000, 100000, 100000, 100000}
Awis diag{20000, 200,00, 20000}

A, diag{0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10}

Ar, diag{0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01}

Ae, diag{0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10}

time, the adaptive TSM control algorithm is initialised WR0% of parametric un-
certainty for the no-load platform inertial parametggg L. The parameters shown
in Table 6 have been used in simulation of both cases wherg the adaptation
gains corresponding to the parameters of

Fig. 3, 4, 5, and 6 show the simulation resultsGdse A It can be seen that
the proposed adaptive TSM control scheme is able to achmve acking perfor-
mance even with parametric uncertainty. Fig. 7, 8, 9, andhbdvghe simulation
results ofCase B It can be seen that at the loading instant, both cabledrrasid
control input torques increase instantaneously. Howdweiatdaptive TSM is able
to restore the tracking error in short period of time and ewds a good tracking
performance over the whole trajectory.

Case A
T

w IS o o ~
=] 1<) =] =3 =}
S S =] =] S

Cable Tensions [N]

N
=3
=}

[

Q

=}
T

o

i i i i i i i
10 20 30 40 50 60 70
Time [sec.]

o

Fig. 3: Cable Tensions: Case (A)
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Case A
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Control Input Torques [N.m]
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Fig. 4: Control Input Torques: Case (A)

x10° Case A
T T T T

Position Error [m]
o

T

i i i i i i i
0 10 20 30 40 50 60 70
Time [sec.]

Fig. 5: Position Error: Case (A)

5 Conclusion

The main contribution of this paper is extending an earlyettgved non-singular
TSM control by synthesizing an adaptive law for CDPM dynapacameters. The
main motivation of using TSM for CDPMs is its finite-time stigtly which generally
results in high tracking performances. Stability of corti@mal TSM for robotic ma-
nipulators are based on the assumption that the dynamigsetally known while
the uncertain part is bounded. This assumption is true, hervé may results in
large control input torques especially when heavy payl@adgo be manipulated.
To tackle this problem, an adaptive mechanism is introdtcextimate online the
dynamic parameters. The overall dynamics of CDPM has bdemmalated in this
paper in a regression form to facilitate the design of theptida control. Redun-
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x10° Case A
T T

Orientation Error [rad]

i i i i i i i
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Fig. 6: Orientation Error: Case (A)

Case B
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Fig. 7: Cable Tensions: Case (B)

dancy resolution is then solved based on the limits of coiviput torques corre-
sponding to the tension limits. The adaptive TSM controksch has been applied
in simulation to a large cable-suspended CDPM - CoGiRo. ®oGs supposed to
perform pick-and-place of heavy payloads. The simulatshww the effectiveness
of the proposed scheme for large values of parametric wain&gs and loading con-
ditions. However, the real benefit of the proposed adaptifel Tontrol will appear
through experimental studies on CoGiRo. Our future worklvéldedicated to these
experimental validations.
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