Marie-Christine Rousset
email: marie-christine.rousset@imag.fr

Federico Ulliana
email: ulliana@lirmm.fr

Extracting Bounded-level Modules from Deductive RDF Triplestores

We present a novel semantics for extracting bounded-level modules from RDF ontologies and databases augmented with safe inference rules, à la Datalog. Dealing with a recursive rule language poses challenging issues for defining the module semantics, and also makes module extraction algorithmically unsolvable in some cases. Our results include a set of module extraction algorithms compliant with the novel semantics. Experimental results show that the resulting framework is effective in extracting expressive modules from RDF datasets with formal guarantees, whilst controlling their succinctness.

Introduction

The Semantic Web consolidated a legacy of ontologies and databases today seen as reference systems for building new Semantic Web applications. To illustrate, consider a medical application for anatomy, whose goal is to showcase the structure of the human body, the most common pathologies and diseases, and the scientists that contributed to their study. A structural description of human anatomy can be drawn from FMA 1 or My Corporis Fabrica (MyCF). 2 A taxonomy of clinical terms about diseases can be extracted from SNOMED, 3 while biographical informations about scientists implied in studies can be taken from DBPedia. 4 These reference system contain knowledge that can be reused to minimize the introduction of errors in the application. However, it is inconvenient to integrate in the application the whole datasets, as they contain complementary data and ontology axioms that are logically redundant. It is thus preferable to extract lightweight fragments of these reference systems -the modules -that are relevant for the application, and then to build on top of them.

While extracting modules from ontologies has been largely investigated for Description Logics (DL) [START_REF] Grau | Modular reuse of ontologies: Theory and practice[END_REF][START_REF] Konev | Semantic modularity and module extraction in description logics[END_REF], module extraction from RDF triplestores has received little attention.

Yet, more and more huge RDF datasets are flourishing in the Linked Data and some of them, like DBPedia or YAGO [START_REF] Suchanek | Yago: A core of semantic knowledge[END_REF], are increasingly reused in other more specialized datasets. RDF is a graph data model based on triples accepted as the W3C standard for Semantic Web data, with a simple ontology language, RDF Schema (RDFS). The W3C proposed OWL for writing expressive ontologies based on DL constructors. Whereas OWL is often seen as an extension of RDFS, this is not exactly the case. Both RDFS and the RDF query language (SPARQL) feature the possibility of accessing at the same time the ontology data and schema, by making variables ranging over classes or properties. This domain meta-modeling goes beyond the first-order setting typically considered in DL [START_REF] De Giacomo | Higher-order description logics for domain metamodeling[END_REF]. As a consequence, DL modularization frameworks are not applicable to popular RDF datasets like DBpedia or YAGO. Also, the clear separation between the ABox and the TBox made in DL to define the semantics of modules is not appropriate for RDF where facts and schema statements can be combined within a single RDF triplestore to accommodate heterogeneous knowledge from the Web. Another limit of the current approaches is that the existing semantics do not allow to limit the size of the extracted modules. As discussed in [START_REF] Grau | Modular reuse of ontologies: Theory and practice[END_REF], the risk in practice is to output large portions of the initial ontologies, thus jeopardizing the gains of modularization.

Contributions. As a first contribution, we propose a unifying framework for RDF ontologies and databases we call deductive RDF triplestores, which is based on RDF triplestores equipped with safe Datalog inference rules. This rule language allows to capture in a uniform manner OWL constraints that are useful in practice, such as property transtivity or symmetry, but also domain-specific rules with practical relevance for users in many domains of interest.

The second and main contribution of the paper is a parametric semantics for bounded-level modules allowing to effectively control their size. We employ a notion of level of detail for modules in such a deductive setting. For example, a signature (subClassOf, partOf) 3 [eye] limits the moduledata extracted from a triplestore, by allowing to retrieve a description of all subclasses and subparts of the eye up to three levels. t(tendon, subClassOf, anatomical structure) t(anatomical structure, type, anatomical entity) t(tendon gastr. muscle, insertOn, knee) t(tendon gastr. muscle, subClassOf, tendon) t(knee, subClassOf, anatomical structure) t(knee, type, anatomical entity) t(irm 42 , type, knee) The modules in our framework are constituted of both data and rules entailed by a reference system. Dealing with recursive Datalog rules makes properly defining the parametric modules challenging, and module extraction algorithmically unsolvable in some cases. Therefore, we focus on a class of rules meeting a mild condition on indirect recursion. This is still expressive enough to state for instance transitivity rules. As a third contribution, we then provide sound and complete module extraction algorithms, and outline their complexity. Our approach has been implemented on top of an RDF engine and experimentally tested. Proofs and experiment details are reported in [START_REF] Rousset | Extracting boundedlevel modules from deductive RDF triplestores[END_REF].

Deductive RDF Triplestores

Data Along the lines of [START_REF] Calì | New expressive languages for ontological query answering[END_REF] and [START_REF] Libkin | Trial for RDF: adapting graph query languages for RDF data[END_REF], we assume an infinite universe of constants CONST, which forms the triplestore domain, and an infinite set of variables VARS used in rules. We range over constants by a, b, p, q. We denote by x , y, z and x , ȳ, z , variables and sequences of variables belonging to VARS, respectively. A term, denoted by u, v is either a constant or a variable. We define RDF triplestores as relational databases over a schema restricted to a single ternary relation t(•, •, •). An atomic formula t is of the form t = t(u 1 , u 2 , u 3), with u i a term. A triplestore D is a finite set of atoms of the form t(u 1 , u 2 , u 3) with u i ∈ CONST. Triplestores essentially represent RDF graph data over a relational vocabulary. A path

p (u0,un) = t(u 0 , v 1 , u 1), t(u 1 , v 2 , u 2), . . . , t(u n-1 , v n , u n) is a sequence of atoms where each u i , v i are terms.
The length of a path is the number of its atoms, here |p (u0,un) | = n.

Figure 1 presents an RDF triplestore, together with its graph version. The example is inspired by the MyCF ontology [START_REF] Palombi | My Corporis Fabrica: an ontologybased tool for reasoning and querying on complex anatomical models[END_REF], which classifies digital representation of human body parts, acquired by IRMs or tomographies, according to anatomical knowledge. For instance, the type edge connecting irm 42 with knee, corresponds to the triplestore atom t(irm 42 , type, knee), which is the standard RDF syntax for class membership.

Rules Deductive triplestores are equipped with safe Datalog rules. These are first-order logic formulas of the form ∀x ȳ. φ(x , ȳ) → t(x) where x and ȳ are sequences of variables belonging to VARS, and t(x) and φ(x , ȳ) are an atom and a conjunction of atoms over the ternary relation t(•, •, •), constituting the head and the body of a rule, respectively. We denote a rule by r and a set of rules by R. To illustrate, the rules for class subsumption r 1 : t(x , type, y), t(y, subClassOf, z) → t(x , type, z) r 2 : t(x , subClassOf, y), t(y, subClassOf, z) → t(x , subClassOf, z) on D 1 entail that irm 42 has type anatomical structure, and that a subclass of this last one is tendon gastr. muscle.

Datalog supports recursion by design. A rule r is said to be recursive if its conclusion unifies with one of its premises. In this work, we consider sets of rules where recursion is limited to recursive rules, like

r 1 : t(x , hasPart, y) → t(y, partOf, x) r 2 : t(x , insertOn, y), t(y, partOf, z) → t(x , insertOn, z) r 3 : t(x , partOf, y), t(y, partOf, z) → t(x , partOf, z)
and, we exclude the presence of indirect recursion, in all cases where this involves non-recursive rules, like

r 4 : t(x , contains, y) → t(x , partOf, y) r 5 : t(x , partOf, y), t(y, partOf, z) → t(z , contains, x)
This mild restriction on recursion is of practical relevance, as it is enjoyed by the most relevant RDFS rules, like the mutually recursive ones for domain and range. r dom : t(x , domain, z), t(y, x , y) → t(y, type, z) r ran : t(x , range, z), t(y, x , y) → t(y , type, z) Datalog semantics is defined as the least fix-point of the immediate consequence operator (denoted by 1).

Definition 1 (Datalog Inference) The single-step Datalog inference, denoted by D, R 1 D , holds when D =D ∪ {µ(head(r)) | µ(body(r)) ∈ D and r ∈ R}, with µ an homomorphism from variables to constants. Then, we write D, R D when there exists a positive integer n such that D i , R 1 D i+1 for all 0≤i<n, with D=D 0 and D ⊆D n . The triplestore D saturated with R, is defined as

SAT(D, R) = {t ∈ D | D, R D }.
We write D, R p (u0,un) for the entailment of a path that holds if all path atoms are in SAT(D, R). Rule entailment, also referred as the immediate consequence operator for rules defines, by means of semantic conditions, when a Datalog rule r is entailed by a set R.

Definition 2 (Rule Entailment) A rule r is entailed by a set R, denoted by R r, if for all triplestore D it holds that SAT(D, r) ⊆ SAT(D, R). A set R is entailed from R, denoted by R R when R r for all r ∈ R .

A deductive RDF triplestore is a pair D, R where D is a triplestore and R is a finite set of (possibly recursive) rules. Triplestore entailment, denoted by D, R D , R , holds when D, R D and R R . We say that an atom conforms to Σ, denoted by

t(v 1 , u, v 2) • • Σ, if u is a property of Σ or u ∈ VARS.
A set of atoms ∆ conforms to Σ if all of its atoms do. Then, D, R conforms to Σ if so do D and R. In Figure 2

(c) it holds that D 3 • • (partOf, subClassOf) 2 [knee]. However, it does not hold that D 3 • • (subClassOf) 1 [knee].
Restricting the module paths is a way to effectively control the module size. Nevertheless, for the completeness of the module data, it is essential to guarantee that the module entails all of such bounded paths entailed by D, R . In a deductive setting, adding new paths in the graph, defining properly D M becomes challenging.

First, we observe that to avoid incomplete modules, the paths of D M have to be drawn from SAT(D, R). To see this, consider D 2 in Figure 2(a) and a rule inferring pairs of organs (y, z) physically connected by a tendon r 2 : t(x , insertOn, y), t(x , insertOn, z), t(x , subClassOf, tendon)→t(y, tendonConnected, z) A user interested in the organs directly and indirectly connected to the femur of this triplestore can declare the module signature Σ 2 =(tendonConnected) 2 [femur]. By restricting the module data D M to the paths in D 2 of length bounded by 2 that are rooted at femur and that use the property tendonConnected only, we get D M = {t(femur, tendonConnected, gastroc.Muscle)}. This dataset has however to be considered incomplete.

As shown in Figure 2(b), the rule r 2 entails on D 2 also the fact t(gastroc.Muscle, tendonConnected, knee). This forms a path of length two together with the original triple t(femur, tendonConnected, gastroc.Muscle), that should be included in D M . The example illustrates clearly that D M depends from the rules in R.

However, taking into account all paths in SAT(D, R) is not desirable for defining modules of bounded size. In some cases, the triples entailed by recursive rules may produce new edges in the data graph that behave like shortcuts between resources, thereby wasting the module parametricity. Consider D 3 in Figure 2(c) and the recursive rule r 3 defining the transitivity of partOf r 3 : t(x , partOf, y), t(y, partOf, z) → t(x , partOf, z) The saturated triplestore SAT(D 3 , r 3) is depicted in Figure 2(d). It contains t(patella, partOf, knee) but also t(patella, partOf, leg) and t(patella, partOf, inferiorBody). More generally, it contains all triples of the form t b = t(patella, partOf, b) entailed by the transitivity of partOf. This means that if we take into account the recursive rule r 3 for defining the module paths, then all triples t b are likely to be part of the module induced by signature (partOf) 1 [knee]. This undermines the module parametricity because it retrieves all resources connected with knee regardless of the level of detail k.

Our solution to both keep into account implicit triples and make parametricity effective, is to define the module data as a subgraph of a partially-saturated triplestore obtained by applying non-recursive rules only, while fully delegating to the module the recursive rules. This leads to the following novel definition of module.

Definition 3 (Module) Let D, R be a deductive triplestore and Σ = (p 1 , . . . ,

p n) k [a] a signature. Then, M = D M , R M is a module for Σ on D, R if 1. D M , R M • • Σ 2. D, R D M , R M 3. if p (a,b) • • Σ and |p (a,b) | ≤ k then (a) D, R NonRec p (a,b) implies D M , R M p (a,b) (b) D M , R p (a,b) implies D M , R M p (a,b)
Point 1 and 2 of the definition state the well-formedness and the logical entailment of the modules, respectively. Point 3 is the crux of the definition. Property 3(a) says that every path rooted at a of k-bounded length and conforming to Σ, that is entailed by the non-recursive rules of the reference system R NonRec , must also be inferable by M . Property 3(b) enforces that the module rules R M infer the same paths conforming to Σ as the whole set of rules R, but only when applied to the module data D M . In contrast with the spirit of previous approaches (e.g., [START_REF] Grau | Modular reuse of ontologies: Theory and practice[END_REF])), our definition does not enforce that every fact in the signature entailed by the reference triplestore also belongs to the module. Relaxing the module conditions in this way allows to control the module size, and cope with recursive rules.

To illustrate the definition, consider the triplestore D 4 of Figure 3(a) equipped with the rules below. r 4 : t(x , hasFunction, y) → t(x , participatesTo, y) r 4 : t(x , participatesTo, y), t(y, subClassOf, z) → t(x , participatesTo, z) Note that if the recursive rule r 4 is considered, then the triple t 1 =t(knee, participatesTo, bodyPosture) is included in the module dataset, which is not desirable. In contrast, t 2 = t(knee, participatesTo, kneePosture) is expected to be in a module for the signature Σ 4 . A structure satisfying Definition 3 is M 4 = D M4 , R M4 with D M4 depicted in Figure 3(c) and R M4 = {r 4 }. Note that t 2 is not explicitly in the module dataset D M4 but can be inferred by r 4 as shown in Figure 3(d).

Next, we present two algorithms for extracting module data and rules compliant with this novel semantics.

Extracting Module Data

The extraction of the module dataset can be done by leveraging on the evaluation of Datalog queries and implemented on top of existing engines. Given a module signature Σ = (p 1 , . . . , p n) k [a], the set of Datalog rules Π Σ below computes all paths rooted at a, of length bounded by k, and built on the properties of interest of Σ. It does so, in the extension of the relation m, starting from a triplestore modeled with a single relation t.

Π Σ =      m 1 (a, p i , x) ← t(a, p i , x) m j+1 (x , p i , y) ← m j (x 1 , y 1 , x) , t(x , p i , y) m(x , y, z) ← m j (x , y, z)
An instance of the rules is included for each i = 1..n and j = 1..k. Π Σ is a non-recursive set of rules of size O(nk) that can always be evaluated in at most k steps. Then, to infer all paths of bounded length entailed by non-recursive rules of a reference system, the set Π Σ is evaluated together with R NonRec . As a result, the union Closest competitor approaches Relevant methods to our work are Traversal Views [START_REF] Noy | Specifying ontology views by traversal[END_REF] and Locality-based modules [START_REF] Grau | Modular reuse of ontologies: Theory and practice[END_REF]. Traversal Views (TV) compute a bounded-level view of an RDF database, in the same spirit as our approach. This method does not support inference rules, and it does not give any guarantee about extracted modules. In practice, in the presence of rules, a traversal view may miss relevant triples. Locality-Based (LB) module extraction computes a conservative extension of an ontology by checking logical conditions on its schema. In contrast with our method, it cannot modularize untyped RDF data and, because it enforces strong logical guarantees on a module, it cannot control a priori its size. Results of module data extraction Figure 4(a-b) reports on the size of bounded-level modules, compared with those of TV and LB. The graphs show the average number of triples, for modules grouped by the same number of properties and k value, in logarithmic scale. In Figure 4(c) we report the test on Yago2 * with our approach, since LB does not support this RDF dataset.

Π Σ ∪ R NonRec
As expected, the succinctness of bounded-level modules depends on k. The transitivity of the properties declared in the signature also has an impact. This is evident with Yago2 * in Figure 4(c). Group 2 has properties inherently transitive (isLocatedIn, isConnectedWith) dominating for example (created, owns) in group 1 and (hasGender, isAffiliatedTo) in group 3. Hence, bounded-level modules can be very helpful to control the data succinctness with transitive properties.

Being TV unaware of rules, it may miss relevant data when implicit triples are not considered. We tested this claim, over the non-saturated MyCF ontology. Indeed, 42% (15072/35740) of the (non-empty) modules extracted by TV were missing relevant triples wrt our approach, as some subproperty rules were not evaluated. To overcome this limitation, we tested TV over the saturated MyCF. For concision, in Figure 4(a) we report only the minimal level of detail (k = 1). This already outlines a lower bound for the module size. As we can see, k = 1 already produces fairly larger modules than our approach. This is because of the MyCF rules for transitivity and property-chains. Increasing k gives modules of size in the order of the saturated triplestore. The same discussion holds for GO in Figure 4(b). Hence, by having modules made of both data and rules our approach allows to retain succinctness wrt TV.

LB extraction for top-locality modules has been tested thanks to the available prototype www.cs.ox.ac.uk/ isg/tools/ModuleExtractor/. For MyCF and GO, it outputs almost the whole ontology (Figures 4(a-b)). This is due to ontology axioms that cannot be ignored for the logical completeness of the method.

To conclude, the experiments outline the advantages of bounded-level modules as i) flexibility, to accomodate diverse Semantic Web datasets, and ii) succinctness, when dealing with transitive properties and rules.

Related Work and Conclusion

Module extraction has been extensively studied for DL. Related works employ basically two approaches that consist in inferring a conservative extension of an ontology [START_REF] Grau | Modular reuse of ontologies: Theory and practice[END_REF][START_REF] Konev | Semantic modularity and module extraction in description logics[END_REF], and forgetting non-interesting relations of ontology schemas [START_REF] Grau | Reasoning over ontologies with hidden content: The import-by-query approach[END_REF]. Approximations and heuristics have also been devised to mitigate the complexity costs [START_REF] Nortje | Reachability modules for the description logic SRIQ[END_REF], and have been validated by statistical analysis [START_REF] Vescovo | Empirical study of logic-based modules: Cheap is cheerful[END_REF]. Differently from our approach, all of these techniques focus exclusively on the ontology schema, and do not permit to modularize Semantic Web datasets starting also from ontology instances or RDF facts. The closest work to our, at least in spirit, is [START_REF] Noy | Specifying ontology views by traversal[END_REF]). However, it does not consider inference, which makes module extraction challenging. Answering Datalog queries over RDF has been investigated in [START_REF] Libkin | Trial for RDF: adapting graph query languages for RDF data[END_REF] and [START_REF] Bry | RDFLog: Its like Datalog for RDF[END_REF].

We presented a novel approach for the extraction of bounded-level modules from deductive RDF triplestores, which provides new means to reuse of Linked-Data datasets, and favorizes the development of Semantic Web applications. The key contribution of the work is a novel module semantics allowing to bound their size, and compliant module extraction algorithms. As shown by our experiments, the resulting framework allows to efficiently extract expressive modules from Semantic Web ontologies and databases with formal guarantees, whilst effectively controlling their succinctness. Future works include the study of module robustness to updates [START_REF] Goasdoue | Robust modulebased data management[END_REF], the extension towards Datalog± rules [START_REF] Arenas | Expressive languages for querying the semantic web[END_REF], and the connections between module extraction and recursive Datalog optimisation [START_REF] Hillebrand | Undecidable boundedness problems for datalog programs[END_REF].

Figure 1 :

 1 Figure 1: Triplestore D 1

Figure 2 :

 2 Figure 2: Triplestore examples

Figure 3 :

 3 Figure 3: Triplestore and module examples

 gives a non-recursive set of rules that can be evaluated in LOGSPACE data-complexity. The completeness of module data extraction follows from the completeness of Datalog query evaluation. Below, we write Q m (D, Π Σ ∪R NonRec) for the answer set of the evaluation of the Datalog program Π Σ ∪R NonRec defining the relation m, on top of the dataset D. This constitutes the module data D M . Theorem 4 (Module Data Extraction) For all path p (a,b) • • Σ with |p (a,b) | ≤ k we have D, R NonRec p (a,b) if and only if p (a,b) ∈ Q m (D, Π Σ ∪R NonRec).

Figure 4 :

 4 Figure 4: Size of Extracted Modules

Acknowledgements

This work has been partially supported by the project PAGODA (ANR-12-JS02-007-01) and by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

Extracting Module Rules

We now present an algorithm for module rule extraction that, together with the dataset extracted in the previous section, yields a module compliant with our semantics.

By Definition 3, a module is constituted of rules entailed by that of the reference system, and built on the properties of interest only. As the properties of interest of a module may restrict those employed by a reference system, the module rules cannot be just a subset of the original ones. Rule extraction is thus performed by an unfolding algorithm, that proceeds by replacing the premises of a rule with that of another one, until obtaining a set conforming to the signature. To illustrate, consider Σ = (p, q) k [a] and the rules below. r 1 : t(x , q, y), t(y, partOf, x) → t(x , q, y) r 2 : t(x , p, y) → t(x , partOf, y) Although the rule r 1 does not conform to Σ, it can be unfolded with r 2 so as to obtain a module rule. As the atom t(y, partOf, x) in the body of r 1 unifies with the conclusion of r 2 , it can be replaced by t(y, p, x), so as to get the rule r = t(x , q, y), t(y, p, x) → t(x , q, y). Rule r is called an unfolding of r 1 with r 2 .

In the above example, one unfolding step is enough to have a rule r that is conform to the module signature and that, by construction, is entailed by {r 1 , r 2 }. It is easy to see that this can be generalized, and that rules belonging to unfoldings of a set of rules R are entailed by R. However, in presence of recursive rules the set of unfoldings of a rule may be infinite, as illustrated below.

Example 5 Consider Σ = (p, q) 3 [a 1] and R with r 1 : t(x , partOf, y) → t(x , q, y) r 2 : t(x , partOf, y), t(y, partOf, z) → t(x , partOf, z) r 3 : t(x , p, y) → t(x , partOf, y)

Here, r 1 can be unfolded with r 2 and r 3 , thus obtaining r : t(x 1 , p, x 2), t(x 2 , p, x 3) → t(x 1 , q, x 3) However, there exist infinitely many unfoldings of rule r 2 with itself that yield expressions of the form t(x 1 , p, x 2), t(x 2 , p, x 3), t(x 3 , p, x 4) → t(x 1 , q, x 4) that use any finite sequence of variables x 1 , . . . , x n . This set of unfoldings cannot be strictly speaking a set of triplestore or module rules, because it is infinite.

To avoid ending up with infinite sets of module rules, we devised an unfolding algorithm based on a breadth-first strategy. Algorithm MRE performs Module Rules Extraction. It takes as input a set of rules to be unfolded N ToUnfold , a set of rules to be used for the unfolding R ToApply , and a signature Σ. Given a deductive triplestore D, R the first call to the algorithm is MRE(N ToUnfold , R, Σ). The set N ToUnfold ⊆ R is constituted of all rules r ∈ R that conclude on a property of interest, that is head(r) •

• Σ. Any rule belonging to N ToUnfold (whose premises use properties that are Algorithm 1: MRE(N ToUnfold , R ToApply , Σ)

is unfolded in a breadth-first fashion until no rule in R ToApply can be applied. All rules in R are considered for unfolding (R ToApply = R). Procedure RuleUnfolding(r 1 , r 2) progressively unfolds each subset of atoms in the body of r 1 that unify with the conclusion of r 2 . For example, the three breadth-first unfoldings of r 1 : t(x , p, y), t(x , p, z) → t(x , p, y) with r 2 : t(x , partOf, y) → t(x , p, y) are r3 : t(x , p, y), t(x , partOf, z) → t(x , p, y)

Note that a rule is never unfolded with itself by the algorithm (thus avoiding a depth-first fashion). The fact that r 2 used for the unfolding is discarded from R ToApply (line 10) ensures the termination of the extraction procedure, even in the presence of recursive rules. Theorem 6 (Rule Extraction Algorithm) Let R be a set of rules and Σ a module signature. Algorithm MRE always terminates in O(2 |R|×|r|) and produces a set of rules R M conforming to Σ such that for all r

Algorithm MRE is sound, in the sense that it computes a set of rules entailed by R. Furthermore, for the case where all recursive rules in R conform to Σ, the algorithm is also complete, in the sense that it produces a set of rules R M that entails all rules R can entail on the properties of Σ. As a consequence, any dataset D M (computed as for Theorem 4) paired with R M constitutes a module meeting Definition 3, and in particular the point 3(b). If this condition does not hold, module extraction may be incomplete. To see this, consider again D, R of Example 5 with D = {t(a 1 , p, a 2), t(a 2 , p, a 3), t(a 3 , p, a 4)}. Recall that Σ = (p, q) 3 [a 1], and then notice that the recursive rule r 2 • • Σ. Here, module data extraction yields D M = D. Observe now that the atom t(a 1 , q, a 4) belongs to SAT(D M , R). As MRE outputs the set R M = {t(x , p, y), t(y, p, z) → t(x , q, z)}, the triple t(a 1 , q, a 4) does not belong to SAT(D M , R M), while it should. Hence, D M , R M does not satisfy Definition 3. Surprisingly enough, this case of incompleteness is independent of algorithm MRE. In fact, when R includes recursive rules that do not conform to Σ, it does not exist an algorithm that outputs a finite set of rules R M such that R r implies R M r, for all r • • Σ. As Example 5 illustrates, the extracted R M must mimic an infinite set of rules of the form t(x 1 , p, x 2), t(x 2 , p, x 3). . .t(x n-1 , p, x n)→t(x 1 , q, x n). One may think of capturing this infinite set by adding a recursive rule r p : t(x , p, y), t(y, p, z) → t(x , p, z) together with r : t(x 1 , p, x 2), t(x 2 , p, x 3) → t(x 1 , q, x 3). However, adding this recursive rule makes infer triples using p that are not entailed by the reference system, thereby violating point 2 of Definition 3. We can also ask whether this infinite set of rules can be reduced to a finite set that directly depends on k.

Unfortunately, the answer is negative. Furthermore, it is unpractical for real systems to consider a specific module data D M and bound by O(|D M |) the number of self-unfolding of a recursive rule during extraction, as this can output an unmanageable set of rules, that are (still) not robust to updates. Therefore, understanding when algorithm MRE is complete is key for module extraction.

This kind of unfolding issues have also been recognized and studied by earlier works on the optimization of recursive Datalog [START_REF] Hillebrand | Undecidable boundedness problems for datalog programs[END_REF].

Finally, note that Theorem 6 is actually stronger than what required by Definition 3, because (i) it is based on semantic conditions and therefore it holds for any rule r entailed by R (unfoldings are just a particular case) and (ii) it is independent from the module data, and thus suitable for other module semantics.

A characterization of the whole module extraction task follows as a corollary of Theorems 4 and 6.

Experiments

We implemented bounded-level module extraction on top of Jena 2.11.2 TDB, and compared it against two related approaches to show its benefits in terms of flexibility and succinctness of the extracted modules. We considered the following three Semantic Web datasets. MyCF 0.5M triples 11 domain-specific rules GO 1M triples 15 domain-specific rules Yago2 * 14M triples 6 RDFS rules Yago2 * is the union of Yago2Taxonomy, Yago2Types and Yago2Facts datasets. We sampled classes and properties from these ontologies, and combined them to obtain a set of signatures used to run module extraction. We considered 2500 MyCF ontology classes combined with 20 subsets of its properties, of size 1-4. For the GO ontology (www.geneontology.org), we sampled 350 classes and 12 property sets (size 1-4). Since Yago knowledge is more diverse than a domain-specific ontology, to avoid empty modules we first selected three groups of properties that are frequently used together, and then subset them (size 2, 4, 6). We tested 100 Yago resources for each group. Finally, we made k ranging over {1, 2, 3, 5, 10}.