
HAL Id: lirmm-01088730
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01088730

Submitted on 28 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Diversification in Gossip-Based
Recommendation

Maximilien Servajean, Esther Pacitti, Miguel Liroz-Gistau, Sihem
Amer-Yahia, Amr El Abbadi

To cite this version:
Maximilien Servajean, Esther Pacitti, Miguel Liroz-Gistau, Sihem Amer-Yahia, Amr El Abbadi. Ex-
ploiting Diversification in Gossip-Based Recommendation. Globe 2014 - 7th International Conference
on Data Management in Cloud, Grid and P2P Systems, Sep 2014, Munich, Germany. pp.25-36,
�10.1007/978-3-319-10067-8_3�. �lirmm-01088730�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01088730
https://hal.archives-ouvertes.fr

Exploiting Diversification in Gossip-Based
Recommendation?

Maximilien Servajean1, Esther Pacitti1, Miguel Liroz-Gistau2, Sihem
Amer-Yahia3, and Amr El Abbadi4

1 INRIA & LIRMM, University of Montpellier, France
{servajean,pacitti}@lirmm.fr

2 INRIA & LIRMM, Montpellier, France
miguel.liroz gistau@inria.fr

3 CNRS, LIG
sihem.amer-yahia@imag.fr

4 Dpt of Computer Science, University of California at Santa Barbara
amr@cs.ucsb.edu

Abstract. In the context of Web 2.0, the users become massive pro-
ducers of diverse data that can be stored in a large variety of systems.
The fact that the users’ data spaces are distributed in many different
systems makes data sharing difficult. In this context of large scale dis-
tribution of users and data, a general solution to data sharing is offered
by distributed search and recommendation. In particular, gossip-based
approaches provide scalability, dynamicity, autonomy and decentralized
control. Generally, in gossip-based search and recommendation, each user
constructs a cluster of “relevant” users that will be employed in the pro-
cessing of queries. However, considering only relevance introduces a sig-
nificant amount of redundancy among users. As a result, when a query
is submitted, as the user profiles in each user’s cluster are quite simi-
lar, the probability of retrieving the same set of relevant items increases,
and recall results are limited. In this paper, we propose a gossip-based
search and recommendation approach that is based on a new clustering
score, called usefulness, that combines relevance and diversity, and we
present the corresponding new gossip-based clustering algorithm. We val-
idate our proposal with an experimental evaluation using three datasets
based on MovieLens, Flickr and LastFM. Compared with state of the
art solutions, we obtain major gains with a three order of magnitude
recall improvement when using the notion of usefulness regardless of the
relevance score between two users used.

1 Introduction

In the context of Web 2.0, users become massive producers of diverse data (e.g.
photos, videos, scientific data) that can be stored in a large variety of systems
(e.g. DropBox, Facebook, Flickr, Google+, local computer or smartphone). Users

? Work conducted within the Institut de Biologie Computationnelle and partially
funded by the labex NUMEV and the CNRS project Mastodons.

are often willing to share their data with other users in a community of interest.
However, the fact that their data spaces are distributed in many different systems
makes data sharing especially difficult. For instance, an artist photographer who
wants to share her pictures within an online community of photographers may
have to log in several different Web applications such as deviantArt, Facebook
or Flickr, each with a different interface and account. Similarly, a scientist who
needs to search for scientific datasets within an online community of scientists
will be faced with the problem that the relevant data is typically distributed
in many different labs’ servers or scientists’ local computers. Furthermore, since
this data is hidden to web crawlers, traditional search engines become useless.
In order to mitigate this problem, some Web applications allow grouping several
accounts and data from different systems (e.g. Facebook enables to regroup
DropBox and blogs into a single Facebook account). However, they are limited
to a few well-known systems.

In this context of large scale distribution of users and data, a general solution
to data sharing is offered by distributed search and recommendation [1, 2]. In
this paper, we adopt a peer-to-peer gossip-based approach, because it provides
important properties such as scalability, dynamicity, autonomy and decentralized
control. Within an online community, each user u is associated to a virtual data
space that contains all the data items (stored in different systems) it shares.
Given u and a keyword query q, the goal of our search and recommendation
approach is to recommend to u items that are relevant with respect to q and
that are shared by other users, regardless of the systems that store the items.
Then, a recommended item is simply a reference that can be used to retrieve
the actual data item. In other words, we combine search and recommendation
in the sense that a user u searches relevant items among those recommended by
users similar to u.

Distributed search and recommendation has received considerable atten-
tion [1–4]. However, one open problem is the ability to attain high recall results.
A query is generally forwarded only to a subset of users who will be employed to
process queries and return recommendations. To compute this subset of users,
many solutions cluster relevant user profiles implicitly using gossip protocols.
Gossip protocols are known to be highly resilient, scalable and converge quickly
[5], which makes them a good alternative for distributed search and recommen-
dation. A User Network (U-Net in the following) refers to the cluster of relevant
users, a user u is aware of by gossiping, using a score (e.g. similarity between u
and the users in U-Net). At each gossip round, the most relevant users are kept
in U-Net. Since U-Net is used to guide recommendations given a keyword query,
the relevance score used in the clustering process plays a very important role to
increase the number of relevant items retrieved with respect to the whole set of
items (i.e. recall), known as the global corpus.

Relevance scores (e.g. Jaccard, overlap) define how well a user profile v meets
the needs of another user u. Most of the existing solutions exploit different kinds
of relevance scores to increase recall [2–4, 6, 7]. But recall results remain limited.

The reason why recall remains limited is because using relevance as the clus-
tering score introduces a significant amount of redundant user profiles in U-Net.
As a result, when a query is submitted, since many user profiles in U-Net are
quite similar (i.e. redundant), and these users are chosen to provide recommen-
dations to answer the query, the probability of retrieving the same set of relevant
items increases and recall results remain low. In Information Retrieval, useful-
ness is used as a way to overcome redundancy between the items of a result
list by combining relevance with diversity [8, 9]. In our context, we claim that
usefulness can be used when clustering user profiles in U-Net, instead of just
relevance. This way, a more diverse set of results will be returned from different
users and the recall would be enhanced.

In this paper, we propose a gossip-based search and recommendation ap-
proach based on a new clustering score, called usefulness, that combines rele-
vance and diversity. As we show experimentally, this new score is able to increase
significantly the quality of the recommendations returned by the system. How-
ever, existing peer-to-peer clustering algorithms are no longer suitable since they
are optimized for relevance only. Therefore we also propose a new clustering al-
gorithm especially conceived for usefulness.

In summary, we make the following contributions:

1. We show that usefulness is a good way to increase recall and that it should
be expressed as a known probabilistic diversification score [8, 9].

2. We propose a clustering algorithm that maintains a useful U-Net over a
gossip overlay using the usefulness score.

3. We validate our approach with an experimental evaluation using three differ-
ent datasets: MovieLens, Flickr and LastFM. We observe that diversification
enables a huge increase of recall regardless of the relevance score used. Com-
pared with state of the art solutions, we obtain an excellent gain with recall
results up to three times better when using the notion of usefulness.

This paper is organized as follows. Section 2 provides some basic concepts
and gives the problem definition. In Section 3, we describe our new clustering
score and present in details the new clustering algorithm that maintains U-Net.
In Section 4, we provide an experimental evaluation. In Section 5, we compare
our contributions with related work. Finally, Section 6 concludes and provides
directions for future work.

2 Basic Concepts and Problem Definition

In this section, we introduce the background necessary to understand the prob-
lem we address. In our distributed search and recommendation approach, when-
ever a user u submits a query q, the system sends q to a subset of users that we
call U-Net, and who will return their relevant results to u and will also recur-
sively forward the query to the users in their U-Net until the TTL is reached.
To build U-Net, we use a two steps approach. First, based on random gossiping
each user u is aware of other peers available on the network. Second, by means
of a clustering algorithm, u chooses among these users the best ones to answer
u’s queries and keep them in U-Net.

More precisely, our peer-to-peer model is expressed based on a graph G =
(U, I, E), where U = {u1, ..., un} is the set of users distributed over the network,
I = {i1, ..., im} the set of shared data items (in the following, an item refers
to a data item), and E = {e1, ..., ek} the set of directed edges among users
and between users and items. This model is very generic. In our case, users are
independent nodes in the network. A node can be a physical computer or a
virtual node in a server.

Definition 1 (U-Net). Given a user u, its User Network, or U-Net, refers to
the cluster of relevant users u is aware of. There is an edge e(u, v) in the graph
between u and a user v, if v is in u’s U-Net.

With random gossiping [5], each user keeps locally a random view of its
dynamic acquaintances (or view entries). Each view entry corresponds to a user
profile. Periodically, each user chooses randomly a contact (view entry) to gossip
with. The two involved users then exchange a subset of each others view (i.e.
user profiles), and update their view state. Then, after each gossip exchange, the
random view is used to update the U-Net if more relevant profiles are found in
the updated view. We use Jaccard as the relevance score to select the best users:

Jaccard(u,v) = |Iu ∩ Iv| / |Iu ∪ Iv| (1)

Where Iu and Iv are the items shared by user u and v respectively.
Here, we use the vector space model to represent items and user profiles [10].

Specifically, each item it is modelled as a sparse vector containing only the
weights of the keywords k1, ..., kz in it. The weight of each keyword is computed
using tf × idf . Distributed tf × idf can be easily implemented using gossip pro-
tocols. Indeed, the first part of the score, denoted tf, can be computed locally,
and the second part, denoted idf, only needs average information (e.g. average
number of items per user) to be computed. These averages can be easily com-
puted using gossip protocols [11]. Due to lack of space, we do not develop this
protocol in this paper.

Each user profile is defined based on the items the user shares, Iu (i.e. con-
tent based recommendation). We choose a relevance score (i.e. Jaccard) that
works well with content-based recommendation, but other relevance measures
and profiles definition methods could be used as well.

As mentioned before, whenever a user u submits a keywords query q =
k1, ..., kw, the query is redirected to all users in the participating users’ U-Net
recursively, until a predefine upper threshold, TTL (i.e. Time-To-Live). When-
ever a user v receives a query, it computes its top-k most relevant items with
respect to the query using a specific relevance score (e.g. Jaccard). Then, v re-
turns them to u. A recommended item is defined by its identifier, its tf × idf
vector, v’s identifier and v’s profile. Once u receives the set of recommended
items from v1, ..., vn with respect to its query q, it ranks them based on their
relevance with respect to the query:

Recq = rank(rec1q(it1, ...) ∪ ... ∪ recnq (itp, ...)) (2)

Where rec1q(it1, ...) is a recommendation (i.e. a set of recommended items)
coming from a user v1.

To evaluate the quality of search and recommendation, we use the recall
measure [12]. Recall captures the fraction of items that have been successfully
recommended: recall = |Iretq| / |Irelq|, where Iretq ∈ I refers to the relevant
items recommended with respect to a query q, and Irelq ∈ I refers to all the
relevant items with respect to query q.

Problem Definition: Given a user u ∈ U , a query q, I in G, and a gossip
based overlay, the goal is to maximize the number of relevant items with respect
to q returned to u while minimizing TTL.

3 Diversified Clustering and Algorithm

In this section, we show that usefulness is an excellent way to increase recall
results of gossip-based recommendation, and can be used as a clustering score.
In section 3.1, we formally show that to increase recall, usefulness should take
into account relevance and diversity. Next, Section 3.2 presents the Useful U-Net
clustering algorithm deployed over a gossip-based overlay.

3.1 Usefulness Score

The usefulness score should be designed such that it maximizes the probability
that a user u can retrieve relevant items given a random query q, known as
the coverage probability. In other words, u’s neighbors v1, ..., vn ∈ G should be
chosen such that the number of relevant items (with respect to the queries u will
submit) that can be accessed through them is maximized.

Let Q be the set of all possible queries (all the combinations of terms), and
P (Qv) the probability that a user v can return at least one relevant item given a
random query q ∈ Q. In the following, we first define the coverage with respect
to U-Netu = {v1, ..., vn}. Then, based on coverage, we express the usefulness of
a user v with respect to the other users in u’s U-Net.

Definition 2 (Coverage). Given Q and U-Netu = {v1, ..., vn}, the users in u’s
U-Net. The coverage is the probability that at least one of the user in u’s U-Net
can return at least one item given a random query q ∈ Q. Coverage is denoted
P (Qv1 ∪Qv2 ∪ ... ∪Qvn).

The user profiles v1, ..., vn must be selected such that the coverage probability is
maximized. Formula 3 develops the coverage probability with respect to every
user in u’s U-Net.

P (Qv1 ∪ ... ∪Qvn) =
∑

j∈1,...,n

(P (Qvj)− P (Qvj ∩ (Qvj+1 ∪ ... ∪Qvn))) (3)

P (Qvj) − P (Qvj ∩ (Qvj+1
∪ ... ∪ Qvn)) represents the coverage added by user

vj with respect to the users vj+1, ..., vn. As a consequence, when j = n, only
P (Qvj) is considered as there is no more user profiles to compare with.

In the following, we define the usefulness of a user profile vi with respect to
the coverage probability.

Definition 3 (Usefulness). Given u’s U-Net, the usefulness of a user profile
vj is the probability that it can return relevant items for a random query q, that

could not be returned by other users in u’s U-Net. In other words, it is defined
as follows:

usefulness(vj |vj+1, ..., vn) =P (Qvj)− P (Qvj ∩ (Qvj+1 ∪ ... ∪Qvn)) (4)

Formula 4 shows that the usefulness score should consider relevance P (Qvj)
and take into account P (Qvj ∩ (Qvj+1

∪ ... ∪ Qvn)) which corresponds to the
redundancy of user profile vj with respect to the other user profiles vj+1, ..., vn.

In the following, we show that usefulness(vj |vj+1, ..., vn) can be expressed
into a known probabilistic diversification model [8, 9]. In Formula 5 we first inte-
grate usefulness (the right hand side of Formula 4) into a conditional probability.

P (Qvj)− P (Qvj ∩ (Qvj+1 ∪ ... ∪Qvn)) =P (Qvj)× (1− P (Qvj+1 ∪ ... ∪Qvn |Qvj))

=P (Qvj)× P (Q̄vj+1 ∩ ... ∩ Q̄vn |Qvj)
(5)

Similar to [8, 9, 13], we assume that the redundancy of a user profile v1 with
another user profile v2 is independent of its redundancy with other users and we
derive Formula 6.

P (Qvj)× P (Q̄vj+1 ∩ ... ∩ Q̄vn |Qvj) =P (Qvj)×
∏

i∈j+1,...,n

(1− P (Qvi |Qvj)) (6)

Finally, we observe that the usefulness of a user profile is clearly similar to the
probabilistic diversification problem used in [8, 9] and presented in Formula 7.

usefulness(vj |vj+1, ..., vn) =rel(vj)×
∏

i∈j+1,...,n

(1− red(vj , vi)) (7)

where rel(vj) = P (Qvj) is the relevance of user profile vj and red(vj , vi) =
P (Qvi |Qvj) is the redundancy of user profile vj with respect to the other user
profile vi.

3.2 Useful U-Net Clustering

We now present in details our clustering algorithm that maintains a useful U-Net
over a random gossip overlay using the usefulness score.

Given the set of users in the random view, the goal of the clustering algorithm
is to compute the usefulness of each user found in the view, with respect to
those that were previously added to the U-Net, taking into account relevance
and diversity, as defined in Equation 7, and to update the U-Net as consequence.

Based on random gossiping [5], each user u maintains a set of random view
entries corresponding to the users profile u is aware of. Periodically, users gossip,
and exchange a random subset of their views entries. After the random gossip
merging phase, the clustering algorithm, which corresponds to the Useful U-Net
Algorithm depicted in Algorithm 1, is triggered. In fact, taking into account the
previous gossip exchange, the algorithm selects the most useful users from the
random view considering the useful users previously selected (i.e. from the previ-
ous gossip rounds) in the U-Net. The algorithm uses three main data structures:
random view, U-Net, and the candidate list. The random view and the U-Net
are initialized when u joins the network, and continuously updated as a result of
random gossip. The candidates list contains the user profiles that will potentially

0.92v2

v4

v5

0.78

0.65

0.45

v3 } Need to be
recomputed

v8 0.65

v9 0.22

v6 0.21

v7 0.89

v3

v4

v5

0.12

0.42

0.41

v6

v7

v8

v9

v1

0.89v7

v1

Move from U-Net
to candidates list

RandomView

U-Net

Candidates List

compute
scores

2a

0.95

ID Usefulness

ID Usefulness

1b & 3a

2b

3bInitialization of
the candidate list

Most useful
user (best)

}Retained
Users}Already in U-Net }

}

i=1

i=2

i=3

i=4

i=5

1a

Fig. 1: An example of the execution of Useful-Unet.

be added to the U-Net and is initialized each time the clustering algorithm is
triggered.

In the following we present in more details the Useful U-Net algorithm based
on the example of Figure 1. The random view entries correspond to the profiles
of users v1, v6, v7, v8, v9. The previous useful user profiles are v1, v2, v3, v4, v5 and
are stored in U-Net. Assuming that the algorithm is executed in u’s node, the
algorithm input is u’s profile, its random view denoted RandomViewu and its
U-Net denoted U-Netu. The data structure used for U-Net is an array of size
N of user profiles, associated to their usefulness score and sorted in decreasing
order of usefulness. The output of the algorithm is the updated U-Net. Useful
U-Net algorithm has three main parts:

1. The first part (lines 1 to 6) finds the best useful user profile from the random
view, and the position i where it should be inserted in the U-Net (recall that
the usefulness score of a user depends on its position in the U-Net). As a
consequence, the update of the U-Net will only concern the user profiles
from position i to N . To find the best useful user from the random view,
the algorithm first initializes the candidates list with all users in the random
view except those already in the U-Net (line 2). In Figure 1, v1 is already
in the U-Net, so the candidates list is initialized with the users v6, v7, v8, v9
(1a). For each position i in U-Net, all the usefulness scores of the candidates
are computed using Formula 7 taking into account the set of users in the
U-Net at positions 1, ..., i − 1, and compared with the usefulness score of
the user profile in U-Netu[i]. If the best user profile in candidates is more
useful than U-Netu[i], then, the algorithm stops iterating (line 6). If there is
more than one best user profile, the best user profile is chosen randomly with
respect to the set of best user profiles. In Figure 1, v7 is more useful than
v3 at the third position in u’s U-Net because v3’s usefulness is 0.78 while
v7’s usefulness is 0.89 (1b). If there is no user profile in the candidate list
whose profile score is superior to any user profile in the U-Net, position N is
reached and the algorithm stops. Only the scores of the user profiles up to
position i are definitive. Thus, in our example, the scores of v4, v5, v6, v8, v9
are not definitive because they are either not in the U-Net or after i.

2. The second part (lines 7 to 10) copies and deletes the remaining user profiles
(from position i to N) from the U-Net to the candidates (2a) list because
their scores need to be recomputed using Formula 7 and with respect to the
best user profile in candidates (computed in part 1). Then, the best user
profile is inserted in position i. In the on-going example of Figure 1, the user
profiles v3, v4, v5 are copied and removed from the U-Net to the candidates
list and user profile v7 is added in the U-Net at position 3 (2a and 2b).

3. Finally, in the last part (lines 11 to 15), the algorithm iteratively computes,
for each empty position i in the U-Net (positions emptied in part 2), the
scores of the user profiles in the candidates list using Formula 7 and taking
into account the set of users in the U-Net at positions 1, ..., i−1 (lines 12 and
13 and step 3a in the figure). Then, the most useful candidate is moved to
the U-Net at that position (line 15 and step 3b in the figure). The algorithm
repeats these steps until all the positions in U-Net are filled out (line 11).

Recall that gossip protocols converge quickly [3]. As a consequence the U-
Net will also converge quickly and, in general, tends to stabilize. Therefore, the
algorithm will stop at step 1b more and more frequently.

Algorithm 1: Useful U-Net

Input: u profile, U-Netu (array[1..N]), RandomViewu

Output: U-Netu is updated with respect to the RandomView
1 candidates : unsorted list of user profiles;
2 candidates ← RandomViewu − U-Netu; best ← ∅; i← 0;
3 repeat
4 i++;
5 for each cj ∈ candidates do score(cj)← usefulness(cj ,u,U-Netu[1..i− 1])

best ← arg maxc∈candidates(score(c));

6 until i=N or score(best) > score(U-Net[i]);
7 if score(best) > score(U-Net[i]) then
8 after← U-Netu[i..N]; U-Netu[i]← best ; i++;
9 candidates ← candidates − best ;

10 candidates ← after ∪ candidates; U-Netu ← U-Netu − after ;
11 while i < N and candidates6= ∅ do
12 for each cj ∈ candidates do
13 score(cj)← usefulness(cj , u,U-Netu[1..i− 1]);

14 best ← arg maxc∈candidates(score(c)); U-Netu[i]← best ;
15 candidates ← candidates − best ; i++;

4 Experimental Evaluation

In this section, we provide an experimental evaluation to validate our approach
and compare it to other state-of-the-art solutions. We conducted a set of experi-
ments using three datasets which correspond to MovieLens, Flickr and LastFM.
In Section 4.1, we introduce the experimental setup of our evaluation. Then, in
Section 4.2, we present and discuss the experimental results.

4.1 Experimental Setup

We ran our experiments on the PeerSim simulator5. We used three different
datasets: MovieLens, Flickr and LastFM. MovieLens dataset is composed of
users that rated movies. Flickr dataset is composed of users that submitted or
added a picture to their favorites. Each user also associates tags to the pictures
he/she submits. Finally, LastFM dataset is composed of users who listen and
associate tags to artists. Each dataset has different features, in particular users
are more or less redundant if the number of items per user is more or less
respectively. The characteristics of the datasets are summarized in the following
table.

dataset items # items # users avg items/user

MovieLens Movies 3, 900 6, 040 166

Flickr Pictures 2, 029 2, 000 3.7

LastFM Artists 23, 346 2, 000 98

The queries used in the experiments consist of: In MovieLens, for each user,
a random subset of movies are shared and the rest are used as the queries to
submit. In particular, the words in the title are used as separate keywords. In
Flickr and LastFM queries are computed as the random association of several
tags submitted by a given user on a given item. An experiment is composed
of two parts. First, all users gossip during 400 rounds until convergence. Then,
every 20 gossip rounds all users submit one of their queries. The experiment stops
at 500 gossip rounds. We measure the average recall results. The recall enables
to compute the fraction of items that has been successfully recommended as
presented in Section 2. On the MovieLens dataset, the recall value is 1 if the
movie has been found and 0 otherwise. On Flickr and LastFM, the recall is the
proportion of pictures in the whole dataset that contains all query’s keywords
that have been returned to the user. On the Flickr and LastFM experiments,
we have computed the variance which enables to compute the variability of the
recall and is computed as follows: V (X) = 1/N ×

∑n
i=1(xi−m)2 where m is the

average recall.
In our experiments, we use the following relevance scores:

overlap(u,v) = |Iu ∩ Iv| over big(u,v) = |Iu ∩ Iv|+ |Iv|

Jaccard(u,v) = |Iu ∩ Iv| / |Iu ∪ Iv| cosine(u,v) = Iru × Irv / ||Iru|| × ||Irv||
where Iu and Iv are the items shared by u and v, respectively, and where

Iru and Irv are the set of ratings u and v gave to the items they share. We
have fixed the U-Net ’s size to 16 and TTL to 3. Other values have been tested
and showed similar results. The size of the random view (5 in our case) is not
important as it only modifies the convergence speed.

4.2 Experiments

Figure 2 presents the results of our experiments. More precisely, Figures 2a, 2b
and 2c compare the recall results of the used relevance scores with and without

5 www.peersim.sourceforge.net

0

0.2

0.4

0.6

0.8

1

Jaccard Cosine over_big Overlap

R
ec

al
l

(a) MovieLens

0

0.2

0.4

0.6

0.8

1

Jaccard Cosine over_big Overlap

R
ec

al
l

(b) Flickr

0

0.2

0.4

0.6

0.8

1

Jaccard Cosine over_big Overlap

R
ec

al
l

(c) LastFM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Jaccard Cosine over_big Overlap

R
ec

al
l

Diversified
Undiversified

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(d) MovieLens

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(e) Flickr

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(f) LastFM

0
0.2
0.4
0.6
0.8

1
1.2

R
ec

al
l

Usefulness (Jaccard)
xQuad (Jaccard)
MMR (Jaccard)
Jaccard

Fig. 2: Effect on recall of diversification

including our usefulness score, while Figures 2d, 2e and 2f compare the recall
results of several diversification methods.

Not surprisingly, diversifying the U-Net enables for all relevance score to sig-
nificantly increase recall. On the MovieLens dataset, the recall results without
diversification range between 0.58 and 0.62 while they range between 0.978 and
0.999 with diversification. On the Flickr dataset, the gains are slightly smaller.
Since all users share their own pictures, their profiles are very different and al-
ready diversified. Therefore, diversification has less impact on the recall. Finally,
the LastFM dataset recall results are up to 3.26 times higher.

In addition to improve the recall, diversified solutions enable to reduce the
variance compared to undiversified solutions. For instance, on Flickr, the vari-
ance decreases from 0.116 to 0.013 when using Jaccard. This can be explained
by the fact that in the undiversified solution, users in U-Net are very similar
among them. As a consequence, either all are relevant to the query, and hence
they provide a high recall; or none of them is, thus producing a low recall. Diver-
sification enables to increase coverage and therefore, it increases the probability
to answer any kind of query.

In addition, we ran these experiments with different sizes of U-Net and values
of TTL. For instance, on the MovieLens dataset, with a U-Net of size 5 and a
TTL of 2, the recall is in average 2.37 times higher compared to undiversified
solutions. Indeed, without diversification, recall values are in average of 0.26
while they reach 0, 61 using usefulness.

We have also compared three different diversification methods. The first is
the usefulness score presented in Equation 7. The second method we use is the
Maximal Marginal Relevance, known as MMR [13]. MMR chooses users that
minimize the maximum similarity between any two users in u’s U-Net. Finally,
the last method is Explicit Query Aspect Diversification known as xQuad [14].
xQuad chooses users such that each user vi in u’s U-Net is similar to u in a
different way. For instance, suppose that u shares items i1 and i2. If v1 is in u’s
U-Net and is similar to u because it also shares i1, then, xQuad chooses a user
v2 such that v2 is similar to u because it shares the item i2. In this experiment,
we use Jaccard as the similarity measure.

Figures 2d, 2e and 2f show that all diversification methods enable to increase
the recall values compared to undiversified methods. Among them, usefulness
obtains the best gain in terms of recall closely followed by xQuad. Finally, MMR
shows the worst gain in terms of recall. Indeed, MMR chooses users that minimize
the maximum similarity between any two users in u’s U-Net. Therefore, it prefers
users that are a little bit similar with every user in u’s U-Net, and that do not
necessarily increase recall results.

5 Related Work

Distributed recommendation for web data based on collaborative filtering has
been recently proposed with promising results. In this section, we compare our
recommendation approach with state of the art solutions.

In [15], Loupasakis and Ntarmos propose a decentralized approach for social
networking with three goals in mind: privacy, scalability with profitability and
availability. They propose an architecture based on a DHT for keywords query
search. Since, DHTs are better suited for exact-match queries, the author pro-
pose to decompose each query into several single word exact-match queries. The
main drawback is that responses that have medium scores with respect to each
keyword but high scores with respect to all the keywords are likely to be missed.

P2PRec [3] has been proposed as a gossip-based search and recommendation
solution. The profile of each user u is represented as a set of topics computed
based on the items u shares. Then, using gossip protocols, similar users in term
of topics, are clustered together and used to guide recommendation as we do.
However, since diversity is not taken into account, users within each cluster
can be redundant, thus limiting recall results. In [6], Kermarrec et al. focus on
recommendation and propose to combine gossip algorithms and random walks.
First, the users are clustered based on relevance through gossip protocols. A
user has knowledge of the items shared by its neighbors. To compute the recom-
mendation, each user runs locally a random walk using a transition similarity
matrix. However, computing this matrix and its inverse seems not scalable due
to the computational complexity of the algorithm with respect to the size of the
neighborhood and the number of items. Also in the context of recommendation,
in [7] Kermarrec et al. claim that, because of the heterogeneity of the users
in the network, a single similarity measure to cluster users is not sufficient to
achieve good recall results. Instead they propose that each user employ its own
similarity measure to build its view (clustering layer) of the network. Neverthe-
less, the concept of diversity is different from ours as it represents the usage of
various relevance scores depending on each user’s profile. As a consequence, each
user’s cluster may still carry redundant user profiles, because there is no explicit
diversification. In [1], Bai et al. propose a solution for personalized P2P top-k
search in the context of collaborative tagging systems, called P4Q. In this so-
lution, the users are clustered based on relevance through gossip protocols. The
users in each cluster are split into two groups: 1) the c closest users from which
u replicates all items metadata (i.e. tagging actions) and 2) the n less similar

users from which u knows only the profile (i.e. bloom filter). Still, diversity is
not taken into account and users within the clusters are likely to be redundant.

6 Conclusion and Future Work

In this paper, we proposed a new gossip-based search and recommendation ap-
proach with new measures and techniques. We first showed that usefulness, by
combining relevance and diversity, is very effective in increasing recall results and
can be used as a clustering score. Then, we designed a new clustering algorithm
based on usefulness that combines relevance and diversity. We validated our pro-
posal with an experimental evaluation using the MovieLens dataset. Compared
with state of the art solutions, we obtain major gains with recall results more
than two times better.

In future work we intend to exploit other recommendation scenarios such as
multisite recommendation.

References

1. Bai, X., et al.: Collaborative personalized top-k processing. Transactions on
Database Systems 36(26) (December 2011)

2. Carretero, J., et al.: Geology: Modular georecommendation in gossip-based social
networks. In: ICDCS. (2012) 637–646

3. Draidi, F., Pacitti, E., Parigot, D., Verger, G.: P2Prec: a social-based P2P recom-
mendation system. In: CIKM. (2011) 2593–2596

4. Voulgaris, S., Steen, M.: Epidemic-style management of semantic overlays for
content-based searching. In: Euro-Par. (2005) 1143–1152

5. Jelasity, M., Babaoglu, O.: T-man: Gossip-based overlay topology management.
In: ESOA. Volume 3910 of Lecture Notes in Computer Science., Berlin, Heidelberg
(2005) 1–15

6. Kermarrec, A., Leroy, V., Moin, A., Thraves, C.: Application of random walks to
decentralized recommender systems. In: OPODIS. Volume 6490 of Lecture Notes
in Computer Science. (2010) 48–63

7. Kermarrec, A., Täıani, F.: Diverging towards the common good: Heterogeneous
self-organisation in decentralised recommenders. In: SNS. (2012) 3–8

8. Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIGMOD. (2011)
781–792

9. Chen, H., Karger, D.: Less is more: Probabilistic models for retrieving fewer rele-
vant documents. In: SIGIR. (2006) 429 – 436

10. Manning, C., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

11. Kowalczyk, W., Jelasity, M., Eiben, A.: Towards data mining in large and fully
distributed peer-to-peer overlay networks. In: BNAIC. (2003) 203–210

12. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
Longman Publishing Co., Inc. (1999)

13. Carbonell, J., Goldstein, J.: The use of MMR, diversity-based reranking for re-
ordering documents and producing summaries. In: SIGIR. (1998) 335–336

14. Santos, R., Peng, J., Macdonald, C., Ounis, I.: Explicit search result diversification
through sub-queries. In: ECIR. (2010) 87–99

15. Loupasakis, A., Ntarmos, N.: eXO: Decentralized autonomous scalable social net-
working. In: CIDR. (2011) 85–95

