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Abstract. Many techniques were recently proposed to automate the linkage of
RDF datasets. Predicate selection is the step of the linkage process that consists in
selecting the smallest set of relevant predicates needed to enable instance compar-
ison. We call keys this set of predicates that is analogous to the notion of keys in
relational databases. We explain formally the different assumptions behind two
existing key semantics. We then evaluate experimentally the keys by studying
how discovered keys could help dataset interlinking or cleaning. We discuss the
experimental results and show that the two different semantics lead to comparable
results on the studied datasets.

1 Introduction

Linked data facilitates the implementation of applications that reuse data distributed on
the web. To ensure the interoperability between applications, data issued by different
providers has to be interlinked, i.e., the same entity in different datasets must be identi-
fied. Many approaches were recently proposed to detect identity links between entities
described in RDF datasets (see [5],[4] for a survey). In most of these approaches, link-
ing rules specify conditions that must hold true for two entities to be linked. Some of
the approaches are fully automatic and exploit datasets to learn expressive rules: data
transformations, similarity measures, thresholds and the aggregation function [12, 8,
11]. These rules are specific to the vocabulary used in the data sets. Other approaches
exploit the axioms that are declared in an ontology such as keys or (inverse) functional
properties [19, 6]. Indeed, keys figure largely in the Semantic Web (SW), especially
since the inclusion in OWL 2 of HasKey construct, which allows to include in an ontol-
ogy an axiom stating that a set of data or object properties is a key of a particular class.
Key axioms can be exploited for different purposes. They can be used as logical rules
to deduce identity links with a high precision rate [18]. They can also guide the con-
struction of more complex linking rules for which elementary similarity measures or
aggregation functions are chosen by user experts [22, 19]. Finally, these keys can also
be exploited to detect entity pairs that do not need to be compared, as it is done with
blocking methods for relational data [9, 3].



Additionally, different approaches have been recently proposed which attempt to
automatically induce keys from RDF datasets, and then exploit discovered keys for
datasets cleansing and interlinking [15, 2]. Nevertheless, these keys may have different
semantics. In [15], each pair of class instances that share at least one value for each
property of the key should be considered as referring to the same entity. In [2], the
authors consider the fact that each pair of instances should coincide for all the prop-
erty values to be considered as referring to the same entity. This last semantics can
be interesting when one can guarantee that local completeness assumption is fulfilled.
This paper contributes to formalize different notions of a key in the context of RDF
dataset cleansing and interlinking, and to show if these different notions can be useful
for dataset cleansing and interlinking.

In section 2, we present the different notions of keys currently proposed in the lit-
erature and show how these rules can be applied to an example. Then in section 3 we
exploit an unifying logic framework to compare the various key notions and how these
keys can be discovered from RDF datasets. In section 4, we give the experimental re-
sults of these different key notions for both problems of cleansing and interlinking and
discuss the differences between the notions of keys theoretically introduced in previous
sections. Finally, we present related work in section 5 and give our conclusion and some
future plans in section 6.

2 Problem Statement

Keys can be exploited for duplicate detection and data interlinking (i.e., owl:sameAs
link discovery) of RDF datasets. In general, if a set of properties is declared to be a key
for a class, then not satisfying the key within a dataset may be due to errors or unknown
duplicates, whereas individuals from different datasets which do not satisfy the key can
be seen as candidates for interlinking. Indeed, each pair of instances that share the same
values for all the properties of a key should be considered as referring to the same entity.

Different definitions of a key can be considered in the semantic web. It is the case
of the two key extraction methods [15] and [2]. For the first approach, two individuals
have to share at least one value for each property of a key to be equal, while, with the
second one, they have to share all the values.

In the following, we define two notions of keys: S-key and F-key. S-key roughly
corresponds to the hasKey axiom of OWL2 and the notion of a key used by [15]. In
[2], a tradeoff between S-key and F-key is considered.

Definition 1 ( S-key ). The S-key {p1, . . . , pn} for a class expression C is the rule
defined as follows:

∀x∀y∀z1...zn(C[x] ∧ C[y] ∧
n∧

i=1

(pi(x, zi) ∧ pi(y, zi))→ x = y)

where C[.] is a unary lambda formula having exactly one free variable. C[.] is still
named the target expression class of the key.
Declaring that the set {p1, . . . , pn} is a S-key for an atomic class C is denoted by
S-key(C, (p1, . . . , pn)).



The definition of the hasKey axiom given in OWL 2 (c.f. Section 9.5 of [17] and
Section 2.3.5 of [16]) enforces the considered instances to be named (i.e. they have to
be URIs or literals, but not blank nodes). Hence an OWL 2 key can be defined with the
following rule:

∀x∀y∀z1...zn(C[x] ∧ C[y] ∧ Const(x) ∧ Const(y)∧
n∧

i=1

(pi(x, zi) ∧ pi(y, zi) ∧ Const(zi)) → x = y)

where Const is a built-in unary predicate which is true for a constant and false
otherwise.

Since KD2R [15] approach discovers S-keys without considering blank nodes, it
follows the above OWL 2 key definition.

S-key and OWL 2 hasKey do not require that the two instances x and y of C
coincide on all values of the key properties to be equal: it suffices to have at least one
pair of values that coincide for all pi to decide that x and y refer to the same entity.
However, in case of not functional properties that represent a full list of items (e.g.,
a list of authors of a given paper, a list of actors of a given movie) it can be more
meaningful to consider the fact that the instances should coincide for all the property
values. We call this second semantics Forall-key and we give its formal definition in the
following.

Definition 2 (F-key). The F-key for a class C is the rule defined as follows:

∀x∀y(C[x] ∧ C[y] ∧
n∧

i=1

(∀zi(pi(y, zi)→ pi(x, zi))∧

(∀wi(pi(x,wi)→ pi(y, wi))) → (x = y))

Declaring that the set {p1, . . . , pn} as a F-key for an atomic class C is denoted by
F-key(C, (p1, . . . , pn)).

Atencia et al. [2] propose an approach that automatically discovers F-keys by con-
sidering only class instances for which all the key properties are instantiated. This vari-
ant of F-key is called SF-key.

Illustrative Example. Figure 1 and Figure 2 help to compare the two notions of a key
described above in a scenario of datasets cleansing. First, consider the RDF graph G1
shown in Figure 1. If the datatype property myLab:hasEMail is declared to be a S-key
of the class myLab:Researcher then the two researchers myLab:ThomasDupond and
myLab:TomDupond must be the same, since they share “thomas.dupond@mylab.org”1.
If the datatype property myLab:hasEMail is declared to be a F-key of the class my-
Lab:Researcher then we cannot infer that these two researchers are the same. In this
case declaring myLab:hasEMail as a S-key is more appropriate. Now, consider the graph
G2 depicted in Figure 2. It seems not to be appropriate to declare that the object prop-
erty myLab:isAuthor is a S-key for myLab:Researcher. Indeed, this would lead us to

1 This is solved by adding myLab:ThomasDupond owl:sameAs myLab:TomDupond to the graph.



myLab:ThomasDupond

myLab:JulesMartin

myLab:Researcher

rdf:type

rdf:type

myLab:TomDupondrdf:type "tom.dupond@mylab.org"

"thomas.dupond@mylab.org"

myLab:hasEmail

myLab:hasEmail

"jules.martin@mylab.org"myLab:hasEmail

myLab:hasEmail

Fig. 1. A RDF graph G1

infer that myLab:TomDupond and myLab:JulesMartin are the same just because they
have coauthored http://papersdb.org/conf/145. On the other hand, it is unlikely that dif-
ferent researchers are authors of exactly the same publications. If we declare that the
object property myLab:isAuthor as a F-key for myLab:Researcher then we can infer
only that the two researchers myLab:ThomasDupond and myLab:TomDupond are the
same person. Indeed, using this F-key would not lead us to equate myLab:TomDupond
and myLab:JulesMartin because the latter is not an author of http://papersdb.org/conf/26.

myLab:ThomasDupond

myLab:JulesMartin

myLab:Researcher

rdf:type

rdf:type

myLab:TomDupondrdf:type http://papersdb.org/conf/145

http://papersdb.org/conf/26

myLab:isAuthor

myLab:isAuthor

http://papersdb.org/conf/89

myLab:isAuthor

myLab:isAuthor

myLab:isAuthor

Fig. 2. A RDF graph G2

In this paper, we raise the problem of a comparative study of these two different
semantics in a practical view (see Section 4).

3 Semantic comparison of S-keys and F-keys

The two key discovery algorithms assessed in Section 4 are described using set-based
notions and properties corresponding to the interpretations satisfying (i.e. to models of)
S-keys and F-keys. In this section, we define these notions and we briefly present the
relationships between S-keys and F-keys. For simplicity reasons, we consider C as a
unary predicate.



3.1 S-key and F-key Models

Let C be a set, p be a binary relation over C and c, c′ ∈ C, P (c) denotes the set of
elements in C related to c by P , i.e. P (c) = {u | (c, u) ∈ P}.

Definition 3. A FOL interpretation I with domain ∆I of the predicates occurring in a
S-key, or a F-key, is given by:

– CI ⊆ ∆I the interpretation of the class C;
– pIi ⊆ ∆I ×∆I the interpretation of the predicates pi;

Proposition 1. An interpretation I is a model of the S-key (C, (p1, . . . , pn)) iff for any
c and c′ in CI such that for any i = 1, . . . , k, pIi (c) ∩ pIi (c′) 6= ∅, one has (c = c′).

Proposition 2. An interpretation I is a model of the F-key (C, (p1, . . . , pn)) iff for any
c and c′ in CI such that for any i = 1, . . . , k, pIi (c) = pIi (c

′), one has (c = c′).

Relationships between S-keys and F-keys are given by the following proposition.
The first property states that the S-key notion is more restrictive than the F-key notion
when one considers interpretations in which for any pIi there is at most one element
of CI with no value. In relational databases it corresponds to the case where in each
column there is at most one null value. The second property states the opposite when
one considers interpretations in which any pIi is functional. In relational databases it
corresponds to the case where there is no multiple values. Finally, the last property
states that these notions are equivalent when the interpretation of any pi, i.e. pIi , is
a total function. In the relational databases it corresponds to the case where there is
neither column with two null values nor multiple values.

Proposition 3. Let S-K and F -K be respectively the S-key and the F-key associated
with (C, (p1, . . . , pn)).

1. For any interpretation I such as for any i = 1, . . . , n there is at most one element
c ∈ CI with pIi (c) = ∅, one has: if I is a model of S-K then I is a model of F -K
(i.e. if I |= S-K then I |= F -K).

2. For any interpretation I such as for any element c ∈ CI and any property pi one has
card(pIi (c)) ≤ 1, then if I is a model of F -K then I is a model of S-K (i.e. if I |=
F -K then I |= S-K).

3. For any interpretation I such as for any element c ∈ CI and any property pi one has
card(pIi (c)) = 1, then I is a model of S-K iff I is a model of F -K (i.e. I |= F -K iff
I |= S-K).

3.2 Key Discovery

In certain cases the keys are not asserted by domain expert and need to be obtained from
the knowledge base. In this section we give the principle of discovering S-keys and F-
keys on RDF datasets. Theoretically, a key K that is discovered on a dataset ensure
the logical satisfiabilty of this considered RDF dataset enriched by K. To exploit this
theoretical notion, it is needed that all the (not) sameAs of the dataset are expressed.
We consider here the problem of key discovery on RDF datasets without considering
blank nodes (i.e, with Const atoms). Furthermore, we assume that the RDF datasets
have been already saturated using the OWL entailment rules [14].



Definition 4 (Fact). A fact relative to a class C over a vocabulary V is a conjunction
of positive atoms built with V .

Definition 5 (Extended Fact). An extended fact is composed of a fact plus possibly
negated equality atoms.

To check the satisfiability of the fact enriched by a key we consider that all the
equality and non-equality atoms are declared.

Definition 6 (Completion of a fact). An extended fact F relative to a class C is com-
plete if for any pair of terms (t, t′), not necessarily distinct, instances of C, it contains
either t = t′ or t 6= t′. Let F be a fact, we denote FC the complete fact obtained by
adding t 6= t′ atoms for each pair of terms (t, t′) such that t = t′ is not occurring in F .

It is straightforward to see that: A fact F is consistent iff there is no terms t, t′ such
that atoms t = t′ and t 6= t′ both occur in F . Note that a complete fact is consistent.

Proposition 4. LetF be a fact relative to a classC and let S be a S-key (C, (p1, ..., pn).
S is a S-key for C in F iff (FC , S) is satisfiable.

Proposition 5. Let F be a fact relative to a class C and let F be a F-key
(C, (p1, ..., pn). F is a F-key for C in F iff (FC , F ) is satisfiable.

In practice, knowledge bases often contain erroneous data and/or unknown dupli-
cates. Thus discovering keys strictly on the basis of key definitions leads to miss some
useful keys. That is why, [2] introduced the notion of pseudo-keys by allowing discov-
ered keys to have some exceptions. Of course, adding these pseudo-keys to the knowl-
edge base leads to its unsatisfiability.

A pseudo-key can be characterized by a discriminability measure which allows to
assess the quality of such discovered keys. We propose here a definition of discrim-
inability that can be used to discover S-keys and F-keys with exceptions.

Definition 7 (Discriminability). The discriminability of a key is the ratio between the
size of the maximal subset of instances on which the discovered key is a key and the
number of instances of the class in F . 2

4 Experimental Results

This section experimentally studies how S-key, F-key and its SF-key variant behave
on data cleansing and data interlinking scenarii. In the first experiment, we discovered
keys on a benchmark about movies to evaluate the potential of each semantic of key for
discovering links between datasets. In a second experiment we discovered keys with
exceptions on a subset of DBPedia dataset in order to evaluate the potential of each
type of key for discovering duplicates in a dataset. We have used KD2R [15] and [2] to
discover the keys.

2 In the case of S- and SF-keys, discriminability is defined only the subset of instances having
at least a value for each property of the key



4.1 Data-interlinking experiments

The first experiment presents the performance of the different semantic of key for a
data interlinking task. The second one studies the growth resistance of these different
notions of a key.

IIMB dataset IIMB (ISLab Instance Matching Benchmark) is a set of interlinking
tasks used by the instance matching track of the Ontology Alignment Evaluation Initia-
tive (OAEI 2011 & 2012)3. An initial dataset that describes movies (films, actors, di-
rectors, etc.) has been extracted from the web (file 0). Various kinds of transformations,
including value transformations, structural and logical transformations, were applied to
this initial dataset to generate a set of 80 different test cases. For each test case, the
reference alignments are given (i.e. sameAs links between individuals of the generated
test case and the ones of the initial dataset).

Qualitative evaluation We evaluate the keys here using the first test case (file 1) in
which the modifications only concern data property values (typographical errors, lex-
ical variations). We have focused this experiment on the class Film. Each of the two
files contains 1228 descriptions of pairwise distinct film instances. These instances are
described using six object properties and two datatype properties. The object properties
are: featuring that describes all the people involved in, starring_in that describes
the main actors, directed_by, estimated_budget, filmed_in (i.e. the languages) and
shot_in (i.e. the places where the movie was filmed). The two datatype properties are
name and article (a textual detailed description of the film). From all these properties,
featuring, starring_in, directed_by, filmed_in and shot_in are properties that can
be multi-valued.

We have discovered S-keys, SF-keys and F-keys on the set of film instances
described in file 0. Since we know that the unique name assumption is fulfilled,
we have built the extended fact by completing the fact corresponding to the file 0
with all the inequality atoms between all the pairs of class instances. The applied
similarity measures are string equality after stop words elimination for data properties
and equality for object properties. For the sake of simplicity, we omit the similarity
measures in the following.
The three discovered S-keys are the following:
{(name, directed_by, filmed_in}, {article}, {estimated_budget}.
The seven F-keys are the following:
{name, directed_by, filmed_in},{shot_in, article, starring_in}, {name, article,
directed_by}, {article, featuring}, {name, featuring}, {name, starring_in},
{article, directed_by, starring_in}.
Finally, we have discovered five SF-keys:
{name, directed_by, filmed_in},{article}, {estimated_budget},
{name, featuring}, {name, starring_in}.

3 http://oaei.ontologymatching.org/2011/



For this dataset, every S-key is also an SF-key. Because of the absence of some
property values and because of the multi-valuation (see Proposition 3), the set of F-keys
is not comparable to the sets of S-keys. Furthermore, some SF-keys are not F-keys. For
example, the property estimated_budget is not a F-key , because there are at least two
film instances for which the value of this property is not given.

To evaluate the quality of the discovered keys, they have been applied to infer map-
pings between film instances of the file 0 and of the file 1. More precisely, we have
measured the quality of each set of keys independently from the quality of the possible
links that can be found for other class instances. With this goal, we have exploited the
correct links appearing in the reference alignments to compare object property values
(i.e. complete set of simC for all C different from Film). In table 1, we present recall,
precision and F-measure for each type of keys.

keys Recall Precision F-Measure
S-keys 27.86% 100% 43.57%
F-keys 22.15% 100% 36.27%

SF-keys 27.86% 100% 43.57%

Table 1. Recall, Precision and F-measure for the class film

We notice that the results of S-keys and SF-keys are the same. Indeed, all the map-
pings that are found by the two additional SF-keys are included in the set of map-
pings obtained using the three shared keys. Furthermore, the shared keys generate the
same links either because the involved properties are monovalued (estimated_budget,
article), or because the involved multi-valued object properties have the same values in
both files for the same film. The recall of F-keys is slightly lower in particular because
of the absence of the key {estimated_budget}.

Some SF-keys cannot be S-keys and may have a high recall. For example, it is not
sufficient to know that two films share one main actor to link them. On the other hand,
when the whole sets of actors are the same, they can be linked with a good precision.
Moreover, if we consider only instances having at least two values for the property
starring_in (98% of the instances), this property is discovered as an SF-key and allows
to find links with a precision of 96.3% and a recall of 97.7%.

Growth resistance evaluation We have evaluated how the quality of each type of keys
evolve when they are discovered in smaller parts of the dataset. Thus, we have randomly
split the file 0 in four parts. Each part contains the complete description of a subset of
the Film instances. We have then discovered the keys in a file that contains only 25%
of the data, 50% of the data,and finally 75% of the data. Then we have computed the
recall, precision and f-measure that are obtained for each type of keys. The larger the
dataset, the more specific are the keys. Also, for all types of keys, precision increases
and recall decreases with dataset’ size. To obtain a good precision, S-keys need to be
discovered in at least 50% of this dataset, while F-keys and SF-keys obtain a rather



good precision when the keys are learnt using only 25% of the dataset. Furthermore,
some F-keys and some SF-keys have also a very high recall when they are learnt on a
subpart of the dataset even if the precision is not 100%. Indeed, new RDF descriptions
are introduced that prevent the system from discovering keys that can be very relevant.
So, it seems particularly suitable to allow to have exceptions when these two kinds of
keys are discovered.

S-keys Recall Precision F-Measure
25% 27.85% 77.55% 40.98%
50% 27.85% 99.42% 43.51%
75% 27.85% 99.42% 43.51%
100% 27.85% 100% 43.56%

SF-keys Recall Precision F-Measure
25% 100% 94.1% 96.96%
50% 100% 99.03% 99.51%
75% 27.85% 99.42% 43.51%
100% 27.85% 100% 43.56%

Table 2. Recall, Precision and F-measure for the S-keys and SF-keys

F-keys Recall Precision F-Measure
25% 100% 94.1% 96.96%
50% 100% 99.03% 99.51%
75% 22.14% 99.27% 36.21%
100% 22.14% 100% 36.27%

Table 3. Recall, Precision and F-measure for the F-keys

4.2 Dataset cleansing experiment

This experiment aims at studying the differences between S-keys, SF-keys and F-keys
on the application consisting in identifying duplicate pairs inside a dataset. The protocol
is to learn pseudo keys using a given discriminability threshold less than 1. All pseudo
keys will be viewed as key and their exception pairs as deduced similarities. Deduced
similarities will be evaluated allowing us to compute precision and recall.

DBPedia Persons dataset DBPedia Persons4 is a subset of DBPedia describing per-
sons (date and place of birth etc.) extracted from the English and German Wikipedia
and described using the FOAF vocabulary. This dataset contains 966,460 instances and
makes use of 8 properties: foaf:name, foaf:surname, foaf:givenName, dc:description, dbpe-
dia:birthPlace, dbpedia:deathPlace, dbpedia:birthDate, dbpedia:deathDate.

4 for these experiments, we use the version 3.8 of DBPedia



Experimental protocol The goal of this experiment is to evaluate and compare the
similarities that can be deduced for each kind of keys: S-keys, F-keys and SF-keys. To
that extent, we propose two evaluations. The first one aims at assessing the quality of
the similarity deduced by discovered keys. The second evaluation consists in comparing
the resistance of discovered keys to dataset alterations.

The first evaluation consists in computing, for each kind of key, the set of pseudo
keys on a datasetD for a given discriminability threshold σd, then deducing similarities
using the discovered keys and finally evaluating the set of deduced similarities. Usually
such an evaluation is performed by computing precision and recall. Recall requires a
reference set of similarity to be provided. The size of DBPedia prohibits us to manually
build such a reference. Then we can only provide a relative recall evaluation. For each
kind of key x ∈ {S−key,F−key, SF−key}, a set of similarities Ex is computed. All
discovered similarities will be evaluated manually allowing to identify true positives
TPx and false positives FPx. The precision of keys x is P (x) = |TPx|/|Ex| and its
relative recall is R(x) = |TPx|/|TPS−key ∪ TPF−key ∪ TPSF−key|.

For the second evaluation, we randomly remove x% triples from the dataset and
we compute keys on it. We repeated this procedure for x varying from 0 to 90 with
a step of 10%. The ideal evaluation would be to measure precision and recall foreach
case. However, it is not straightforward to manually check all exceptions on each case.
Thus, we restrict ourselves to compare extracted keys: What is the proportion of keys
extracted from the original dataset which are equals to and more general than those
extracted from an altered dataset.

Qualitative evaluation Quality evaluation has been performed on DBPedia Persons
dataset. For the key discovery, we choose a discriminability threshold equal to 99, 90%
as it generates an reasonable amount of similarities to be checked. For threshold of 99%,
there were several thousand generated similarities.

There is no result for F-keys because on the DBPedia dataset properties are not
instantiated for each instance. In average properties are defined for 60% of 1 million of
instances then it implies a lot of exceptions to the key. For that kind of dataset, F-keys
are clearly not suitable.

Precision Relative Recall F-measure
ES−key 63% 86% 73%
ESF−key 65% 96% 78%

ES−key ∪ ESF−key 59% 100% 74%
ES−key ∩ ESF−key 73% 82% 77%
ESF−key − ES−key 40% 14% 21%
ES−key − ESF−key 15% 4% 6%

Table 4. Precision, Relative recall and F-measure on DBPedia Person



Table 4 shows results obtained for S-keys and SF-keys. For this dataset, SF-keys get
slightly better results since they get a better relative recall. Comparatively, the differ-
ence between similarities deduced by S-keys and SF-keys is marginal since they share
respectively 83% and 76% of deduced similarities. The precision of similarities shared
by the two approaches is much higher than those discovered by only one approach.

In conclusion, these first results do not show any major difference between the sim-
ilarities discovered by S-keys and SF-keys. Marginally, both approaches generate their
own good similarities but the precision values of these exclusive parts are very low.

Since the precision of both approaches is not perfect, we propose two analysis at the
key level. The goal of this analysis is to see if one approach is more suitable than the
other for filtering similarities in function of the keys generating them. The first one aims
at studying if false-positives are specific to some keys. To that extent, Figure 3 provides
the distributions of discovered keys in function of precision and recall for both SF-keys
and S-keys. This chart shows that the keys having the highest recall tend to have good
precision, but it does not validate the hypothesis that false-positive are mainly deduced
from particular keys. This trend is observed both for SF-keys and S-keys. The second
analysis aims at showing similarities reaching a certain level of consensus among both
types of keys positively influence precision and recall. Figure 5 shows that, for both
approaches, precision increases significantly and quickly when the minimal consensus
increase. Then it becomes stable from 5 keys on. Recall and F-Measure follow almost
the inverse trend. It clearly demonstrates that consensus is not sufficient for selecting
both only and all good similarities.
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To conclude, this qualitative comparison of SF-key and S-key shows that both ap-
proaches are able to discover good similarities among a real dataset. When we try to
filter only and the most of true positives the two approaches have the same behavior.
The most suitable criteria is to only consider similarities which are common to both
approaches.
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Growth-resistance evaluation Figure 4 shows the loss of generality of the initial set
of keys in regard to the keys discovered when triples are randomly removed. S-keys
curve decreases faster than those of ADS, but the difference between the two approches
remains low.

5 Existing Work

The problem of key discovery from RDF datasets is similar to the key discovery prob-
lem in relational databases. In both cases, the key discovery problem is a sub-problem
of Functional Dependencies (FDs) discovery. A FD states that the value of one attribute
is uniquely determined by the values of some other attributes. In relational data keys or
FDs can be used in tasks related to data integration, anomaly detection, query formu-
lation, query optimization, or indexing. Discovering FDs in RDF data differs from the
relational case as null values and multi-valued properties are to be considered.

In the semantic web, data linking approaches exploit S-key semantics that can be
declared using OWL2 when they are restricted to named entities. Indeed, these keys
can be used for different purposes. Blocking methods aim at using approximate S-keys
to reduce the number of instance pairs that have to be compared by a data linking tool
([10],[20]). In [20], discriminating data type properties (i.e approximate keys) are dis-
covered from a data set. Then, only the instance pairs that have similar literal values for
such discriminating properties are selected. These properties are chosen using unsuper-
vised learning techniques.

Other approaches use approximate S-keys to infer possible identity links. In [21],
the authors discover (inverse) functional properties from data sources where the unique
name assumption (UNA) hypothesis is fulfilled (i.e. non composite S-keys). The func-
tionality degree of a property is computed to generate probable identity links. More
precisely, for one instance, the local functionality degree of a property is the number
of distinct values (or instances) that are the object of the property when the considered
instance is the subject. The functionality degree of one property is the harmonic mean



of the local functionality degrees across all the instances; the inverse functionality de-
gree is defined analogously. In the context of Open Linked Data, [13] have proposed a
supervised approach to learn (inverse) functional properties on a set of linked data (i.e.
non composite S-keys). Other approaches aim to enrich the ontology and/or use these
S- keys to generate identity links between pairs of instances that can be propagated to
other pairs of instances ([19, 1]). Such approaches, are called collective or global ap-
proaches of data linking. For example, if the approach can find that two paintings are
the same, then their museums can be linked and this link will lead to generate identity
links between the cities where the museums are located in. KD2R [15] aims to discover
S-keys that are correct with regard to a set of data sources. The approach does not need
training data and exploits data sources where the unique name assumption hypothesis
is fulfilled. One important feature of KD2R is that it can discover composite keys.

In [2], the authors have developed an approach based on TANE [7] algorithm to
discover pseudo-keys for which a few instances may have the same values for the prop-
erties of a key. In this work, the discovered keys are particular F-keys for which only
class instances for which all the key properties are instantiated are considered (i.e SF-
keys).

The notion of keys employed by the above papers varies depending on the approach
taken. Nevertheless, even if some of them exploit approximated or non composite keys,
they are all based on the semantics of F-keys, SF-keys or S-keys.

6 Conclusion

Keys are useful in the web of data for interlinking and cleansing tasks. We have shown
that different notions of a key coexist in the semantic web. This paper provides experi-
mental evaluations of the different semantics of key for both interlinking and cleansing
scenarios. Results show that learning F -keys from data is not suitable when properties
are not almost fully instanciated. The SF -key variant allows to fix this problem by re-
laxing the equality constraint when instances have no value for a property. In term of
data interlinking or data cleansing , S-keys and SF -keys have almost the same rele-
vance in term of precision and recall. SF -keys and F keys seems to be more robust
than S-keys to instance removal.

Each semantics of key has its own advantages and we think that it could be inter-
esting to define and discover hybrid keys (i.e. keys composed of F properties and S
properties) when data knowledge and/or ontology axioms can be used to decide how
properties can be handled.
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