
HAL Id: lirmm-01090370
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01090370v1

Submitted on 4 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sound, Complete and Minimal UCQ-Rewriting for
Existential Rules

Mélanie König, Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo

To cite this version:
Mélanie König, Michel Leclère, Marie-Laure Mugnier, Michaël Thomazo. Sound, Complete and Mini-
mal UCQ-Rewriting for Existential Rules. Semantic Web – Interoperability, Usability, Applicability,
2015, 6 (5), pp.451-475. �10.3233/SW-140153�. �lirmm-01090370�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01090370v1
https://hal.archives-ouvertes.fr

Sound, Complete and Minimal UCQ-Rewriting
for Existential Rules

Mélanie König1, Michel Leclère1, Marie-Laure Mugnier 1 and Michaël
Thomazo∗2

1University Montpellier 2, France
2TU Dresden, Germany

Abstract

We address the issue of Ontology-Based Data Access, with ontologies repre-
sented in the framework of existential rules, also known as Datalog±. A well-
known approach involves rewriting the query using ontological knowledge. We
focus here on the basic rewriting technique which consists of rewriting the initial
query into a union of conjunctive queries. First, we study a generic breadth-first
rewriting algorithm, which takes any rewriting operator as a parameter, and de-
fine properties of rewriting operators that ensure the correctness of the algorithm.
Then, we focus on piece-unifiers, which provide a rewriting operator with the de-
sired properties. Finally, we propose an implementation of this framework and
report some experiments.

1 Introduction
We address the issue of Ontology-Based Data Access, which aims at exploiting knowl-
edge expressed in ontologies while querying data. In this paper, ontologies are repre-
sented in the framework of existential rules [BLMS11, KR11], also known as Datalog±
[CGK08, CGL09]. Existential rules allow one to assert the existence of new unknown
individuals, which is a key feature in an open-world perspective, as for instance in in-
complete databases [CLR03]. These rules are of the form body → head, where the
body and the head are conjunctions of atoms (without functions) and variables that oc-
cur only in the head are existentially quantified. They generalize lightweight descrip-
tion logics (DLs), which form the core of the tractable profiles of OWL2 [OWL09].

The general query answering problem can be expressed as follows: given a knowl-
edge base (KB) K composed of a set of facts —or data— and an ontology (a set of
existential rules here), and a query Q, compute the set of answers to Q in K. In this
paper, we consider Boolean conjunctive queries (Boolean CQs or BCQs). Note how-
ever that all our results are easily extended to non-Boolean conjunctive queries as well
as to unions of conjunctive queries. The fundamental problem, called BCQ entailment
hereafter, can be recast as follows: given a KB K, composed of facts and existential
rules, and a Boolean conjunctive query Q, is Q entailed by K?

∗This work was done when M. Thomazo was a PhD student at University Montpellier 2.

1

BCQ entailment is undecidable for general existential rules (e.g., [BV81, CLM81],
on the implication problem for tuple-generating dependencies, which have the same
form as existential rules). There has been an intense research effort aimed at finding
decidable subsets of rules that provide good tradeoffs between expressivity and com-
plexity of query answering (see e.g., [Mug11] for a survey on decidable classes of
rules). These decidable rule fragments overcome some of the limitations of DLs. In
particular, they have unrestricted predicate arity, while DLs consider unary and binary
predicates only, which allows one for a natural coupling with database schemas, in
which relations may have any arity; moreover, adding information, such as data prove-
nance, is made easier by the unrestricted predicate arity, since this information can be
added as a new predicate argument.

There are two main approaches to solve BCQ entailment, which are linked to the
classical paradigms for processing rules, namely forward and backward chaining, as
illustrated by the next example.

Example 1 Let us consider data on movies, with unary relations movie and actor, and
a binary relation play (intuitively, play(x, y) means that “x plays a role in y”). Let Q
be a query asking if a given person, whose identifier is B, plays a role somewhere, i.e.,
Q = ∃y play(B, y). Let R be an existential rule expressing that “every actor plays a
role in some movie”, i.e., ∀x(actor(x) → ∃y(play(x, y) ∧movie(y))). Assume that
the data contain actor(B). If Q is asked on these data, the answer is no. However, the
rule allows to infer that actor B plays in a movie, thus the answer to Q should be yes.
Rule R can be used in a forward manner, i.e., it can be applied to the data: then, the
knowledge ∃y0(play(B, y0)∧movie(y0)) is added, where y0 is a new variable. Query
Q can be mapped to the enriched data, which allows to answer positively. Now, R can
also be used in a backward manner, i.e., to rewrite Q, which yields the new query Q′

= actor(B). This query can be mapped to the (initial) data, which provides the positive
answer.

Both approaches can be seen as ways of reducing the problem to a classical database
query answering problem by eliminating the rules, see Figure 1. The first approach
consists in applying the rules to the data, thus materializing entailed facts into the data.
Then, Q is entailed by K if and only if it can be mapped to this materialized database.
This approach is applicable either when the forward chaining procedure stops “natu-
rally” (see [GHK+13] for a survey on these cases), or when it stops by taking some
parameters into consideration, typically the size of the query [CGK08, LMTV12].
The second approach consists in using the rules to rewrite the query into a first-order
query (typically a union of conjunctive queries [CGL+07, PUHM09, GOP11, VSS14,
RMC12]) or a non-recursive Datalog program [RA10, OP11, GS12]. Then, Q is en-
tailed by K if and only if the rewritten query is entailed by the initial database.

Materialization has the advantage of enabling efficient query answering but may be
not appropriate for data size, data access rights or data maintenance reasons. Query
rewriting has the advantage of avoiding changes in the data, however its drawback is
that the rewritten query may be large, even exponential in the size of initial query,
hence less efficiently processed, at least with current database techniques. Finally,
techniques combining both approaches have been developed, in particular so-called
combined approach [LTW09, KLT+11] for lightweight description logics, as well as a
similar algorithm for a large class of existential rules [TBMR12].

In this paper, we focus on rewriting techniques, and more specifically on rewriting
the initial conjunctive query Q into a union of conjunctive queries, that we will see as

2

Figure 1: Forward / Backward Chaining

a set of conjunctive queries. This set is called a rewriting set of Q and each element
of a rewriting set is called a rewriting. While most previously cited work focuses
on specific rule sublanguages (mostly DL-Lite, linear and sticky existential rules), we
consider general existential rules. This means that our algorithm does not make any
syntactic assumption on the input set of rules, but will terminate only in some cases
(so-called finite unification sets of rules, see hereafter).

The goal is to compute a rewriting set both sound (if one of its elements maps to the
initial database, thenK entailsQ) and complete (ifK entailsQ then there is an element
that maps to the initial database). Minimality may also be a desirable property. In
particular, let us consider the generalization relation (a preorder) induced on Boolean
conjunctive queries by homomorphism: we say that Q1 is more general than Q2 if
there is a homomorphism from Q1 to Q2; it is well-known that the existence of such
a homomorphism is equivalent to the following property: for any set of facts F , if the
answer to Q2 in F is positive, then so is the answer to Q1. We point out that any
sound and complete rewriting set of a query Q remains sound and complete when it
is restricted to its most general elements. Since BCQ entailment is undecidable, there
is no guarantee that such a finite set exists for a given query and general existential
rules. A set of existential rules ensuring that a finite sound and complete set of most
general rewritings exists for any query is called a finite unification set (fus) [BLMS11].
The fus property is not recognizable [BLMS11], but several easily recognizable fus
classes have been exhibited in the literature: atomic-body rules [BLMS09], also known
as linear TGDs [CGL09], multi-linear TGDs [CGL12], sticky(-join) rules [CGP10,
GOP11], weakly-recursive rules [CR12] and sets of rules with an acyclic graph of rule
dependencies [BLMS09]. By definition, the fus property is a specific case of first-
order rewritability, which means that the set of rules allows to rewrite any CQ into a
(sound and complete) first-order query; it is suspected that both properties are actually
equivalent, however, to the best of our knowledge, no proof of this result has been
published.

Paper contributions. We start from a generic algorithm which, given a BCQ and a
set of existential rules, computes a rewriting set. This task can be recast in terms of
exploring a potentially infinite space of queries, composed of the initial conjunctive
query and its (sound) rewritings, structured by the generalization preorder. The algo-
rithm explores this space in a breadth-first way, with the aim of computing a complete
rewriting set. It maintains a rewriting set Q and iteratively performs the following

3

tasks: (1) generate all the one-step rewritings from unexplored queries in Q; (2) add
these rewritings to Q and update Q in order to keep only incomparable most general
elements. A rewriting operator is a function that, given a query and a set of rules,
returns the one-step rewritings of this query. Note that it may be the case that the set of
sound rewritings of the query is infinite while the set of its most general sound rewrit-
ings is finite. It follows that a simple breadth-first exploration of the rewriting space
is not sufficient to ensure finiteness of the process, even for fus rules; one also has to
maintain a set of the most general rewritings. This algorithm is generic in the sense
that it is not restricted to a particular kind of existential rules nor to a specific rewriting
operator (without guarantee of termination though).

This algorithmic scheme established, we then asked ourselves the following ques-
tions:

1. Assuming that the algorithm outputs a finite sound and complete set rewritings,
composed of pairwise incomparable queries, is this set of minimal cardinality,
in the sense that no sound and complete rewriting set produced by any other
algorithm can be strictly smaller?

2. At each step of the algorithm, some queries are discarded, because they are more
specific than other rewritings, even if they have not been explored yet. The ques-
tion is whether this dynamic pruning of the search space keeps the completeness
of the output. More generally, which properties have to be fulfilled by the oper-
ator to ensure the correctness of the algorithm and its termination for fus rules?

3. Finally, design a rewriting operator that fulfills the desired properties and leads
to the effective computation of a sound and complete rewriting set.

With respect to the first question, we show that all sound and complete sets of
rewritings, restricted to their most general elements, have the same cardinality, which
is minimal with respect to the completeness property. Moreover, if we delete redundant
atoms from the obtained CQs (which can be performed by a polynomial number of
homomorphism tests for each query)1, then we obtain a unique minimal sound and
complete set of CQs of minimal size; uniqueness is of course up to a bijective variable
renaming.

To answer the second question, we define several properties that a rewriting op-
erator has to satisfy and show that these properties actually ensure the correctness of
the algorithm and its termination for fus rules. In particular, we point out that the fact
that a query may be removed from the rewriting set before being explored may prevent
the completeness of the output, even if the rewriting operator is theoretically able to
generate a complete output. The prunability of the rewriting operator ensures that this
dynamic pruning can be safely performed. Briefly, this property holds if, for all queries
Q1 and Q2, when Q1 is more general than Q2 then any one-step rewriting of Q2 is less
general than Q1 itself or one of the one-step rewritings of Q1; intuitively, this allows
to discard the rewriting Q2 even when its one-step rewritings have not been generated
yet. Note that this kind of properties ties in with an issue raised in [ISG12] about the
gap between theoretical completeness of some methods and the effective completeness
of their implementation, this gap being mainly due to algorithmic optimizations (here
the dynamic pruning).

1See e.g. [CM09], Section 2.6, on basic conceptual graphs. The algorithm can even by made linear,
noticing that an atom needs to be considered only once.

4

Concerning the third question, we proceed in several steps. First, we rely on a
specific unifier, called a piece-unifier, that was designed for backward chaining with
conceptual graph rules (whose logical translation is exactly existential rules [SM96]).
As in classical backward chaining, the rewriting process is based on a unification oper-
ation between the current query and a rule head. However, existential variables in rule
heads induce a structure that has to be considered to keep soundness. Thus, instead
of unifying a single atom of the query at once, our unifier processes a subset of atoms
from the query. A piece is a minimal subset of atoms from the query that have to be
erased together, hence the name piece-unifier. We present below a very simple example
of piece unification (in particular, the head of the existential rule is restricted to a single
atom).

Example 2 Let R = ∀x (q(x) → ∃y p(x, y)) and the BCQ Q = ∃u∃v∃w(p(u, v) ∧
p(w, v) ∧ r(u,w)). Assume we want to unify the atom p(u, v) from Q with p(x, y),
for instance by a substitution {(u, x), (v, y)}.2 Since v is unified with the existential
variable y, all other atoms from Q containing v must also be considered: indeed,
simply rewriting Q into Q1 = ∃w∃x∃y(q(x) ∧ p(w, y) ∧ r(x,w)) would be unsound:
intuitively, the fact that the atoms p(u, v) and p(w, v) in Q share a variable would be
lost in atoms q(x) and p(w, y); for instance F = q(a)∧p(b, c)∧ r(a, b) would answer
Q1 despite Q being not entailed by F and R. Thus, p(u, v) and p(w, v) have to be
both unified with the head of R, for instance by means of the following substitution:
µ = {(u, x), (v, y), (w, x)}. {p(u, v), p(w, v)} is called a piece. The corresponding
rewriting of Q is ∃x(q(x) ∧ r(x, x)).

Piece-unifiers lead to a logically sound and complete rewriting method. As far as
we know, it is the only method accepting any kind of existential rules, while staying in
this fragment, i.e., without Skolemization of rule heads to replace existential variables
with Skolem functions.

We show that the piece-based rewriting operator fulfills the desired properties en-
suring the correctness of the generic algorithm, and its termination in the case of fus
rules.

The next question was how to optimize the rewriting step. Indeed, the problem
of deciding whether there is a piece-unifier between a query and a rule head is NP-
complete and the number of piece-unifiers can be exponential in the size of the query.
To cope with these sources of complexity, we consider so-called single-piece unifiers,
which unify a single-piece of the query at once (like µ in Example 2). When, addition-
ally, the head of a rule R is restricted to an atom, which is a frequent case, each atom
in a query Q belongs to at most one piece with respect to R; then, the number of (most
general) single-piece unifiers of Q with the head of R is bounded by the size of Q.

We show that the single-piece based rewriting operator is able to generate a sound
and complete rewriting set. However, as pointed out in several examples, it is not
prunable. Hence, single-piece unifiers have to be combined to recover prunability. We
thus define the aggregation of single-piece unifiers and show that the corresponding
rewriting operator fulfills all desired properties and generates fewer queries than the
piece-based rewriting operator. Detailed algorithms are given and first experiments are
reported.

Paper organization. Section 2 recalls some basic notions about the existential rule
framework. Section 3 defines sound, complete and minimal sets of rewritings. In

2A substitution is given as a set of pairs, where a pair (x, e) means that x is substituted by e.

5

Section 4, the generic breadth-first algorithm is introduced and general properties of
rewriting operators are studied. Section 5 presents the piece-based rewriting operator.
In Section 6, we focus on exploiting single-piece unifiers and introduce the rewriting
operator based on their aggregation. Finally, Section 7 is devoted to detailed algorithms
and experiments, as well as to further work.

This is an extended version of papers by the same authors published at RR 2012
and RR 2013 (International Conference on Web Reasoning and Rule Systems).

2 Preliminaries
An atom is of the form p(t1, . . . , tk) where p is a predicate with arity k, and the ti
are terms, i.e., variables or constants. Given an atom or a set of atoms A, vars(A),
consts(A) and terms(A) denote its sets of variables, constants and terms, respectively.
In all the examples in this paper, the terms are variables (denoted by x, y, z, etc.).
|= denotes the classical logical consequence. Two formulas f1 and f2 are said to be
equivalent if f1 |= f2 and f2 |= f1.

A fact is an existentially closed conjunction of atoms.3 A conjunctive query (CQ)
is an existentially quantified conjunction of atoms. When it is a closed formula, it is
called a Boolean CQ (BCQ). Hence, facts and BCQs have the same logical form. In the
following, we will see them as sets of atoms. A union of conjunctive queries (UCQ) is
a disjunction of CQs, which will see as a set of CQs.

Given sets of atoms A and B, a homomorphism h from A to B is a substitution of
vars(A) by terms(B) such that h(A) ⊆ B. We say that A is mapped to B by h. If
there is a homomorphism from A to B, we say that A is more general than B, which
is denoted A ≥ B.

Given a fact F and a BCQ Q, the answer to Q in F is positive if F |= Q. It is
well-known that F |= Q if and only if there is a homomorphism from Q to F . If Q is
a non-Boolean CQ, let x1 . . . xq be the free variables in Q. Then, a tuple of constants
(a1 . . . aq) is an answer to Q in F if there is a homomorphism from Q to F that maps
xi to ai for each i. In other words, (a1 . . . aq) is an answer to Q in F if and only if the
answer to the BCQ obtained from Q by substituting each xi with ai is positive.

In this paper, we consider only Boolean queries for simplicity reasons. This is
not a restriction, since our mechanisms can actually process a CQ with free variables
x1 . . . xq by translating it into a BCQ with an added atom ans(x1 . . . xq), where ans
is a special predicate not occurring in the knowledge base. Since ans can never be
erased by a rewriting step, the xi can only be substituted and will not “disappear”. We
can thus compute the rewriting set of a CQ as a Boolean CQ with a special ans atom,
then transform the rewritings into non-Boolean CQs by removing the ans atom and
consider its arguments as free variables. Note that our the generic algorithm can accept
as input a union of conjunctive queries as well, since it works exactly in the same way
if it takes as input a set of CQs instead of a single CQ.

Definition 1 (Existential rule) An existential rule (or simply a rule) is a formula R =
∀~x∀~y(B[~x, ~y] → ∃~zH[~y, ~z]), where ~x, ~y and ~z are tuple of variables, B = body(R)
and H = head(R) are conjunctions of atoms, resp. called the body and the head of
R. The frontier of R, denoted by fr(R), is the set vars(B) ∩ vars(H) = ~y. The set of
existential variables in R is the set vars(H) \ fr(R) = ~z.

3We generalize the classical notion of a fact in order to take existential variables into account.

6

In the following, we omit quantifiers in rules and queries, as there is no ambiguity.
For instance, the rule R = ∀x (q(x) → ∃y p(x, y)) from Example 2 will be written
q(x)→ p(x, y).

A knowledge base (KB) K = (F,R) is composed of a fact F and a finite set of
existential rulesR. The BCQ entailment problem takes as input a KB K = (F,R) and
a BCQ Q, and asks if F,R |= Q holds.

3 Desirable Properties of Rewriting Sets
Given a query Q and a set of existential rulesR, rewriting techniques compute a set of
queriesQ, which we call a rewriting set hereafter. It is generally desired that such a set
satisfies at least three properties: soundness, completeness and minimality.

Definition 2 (Sound and Complete set) Let R be a set of existential rules and Q be
a BCQ. LetQ be a set of BCQs. Q is said to be sound w.r.t. Q andR if for all facts F ,
for all Q′ ∈ Q, if Q′ can be mapped to F then F,R |= Q. Reciprocally, Q is said to
be complete w.r.t. Q and R if for all facts F , if F,R |= Q then there is Q′ ∈ Q such
that Q′ can be mapped to F .

We mentioned in the introduction that only the most general elements of a rewriting
set need to be considered. Indeed, letQ1 andQ2 be two elements of a rewriting set such
that Q1 ≥ Q2. Then, for any fact F , the set of answers to Q2 in F is included in the
set of answers to Q1 in F . Hence, removing Q2 will not undermine completeness (and
it will not undermine soundness either). The output of a rewriting algorithm should
thus be a minimal set of incomparable queries that “covers” the set of all the sound
rewritings of the initial query.

Definition 3 (Covering relation) LetQ1 andQ2 be two sets of BCQs. Q1 coversQ2,
which is denoted Q1 ≥ Q2, if for all Q2 ∈ Q2 there is Q1 ∈ Q1 with Q1 ≥ Q2.

Note that covering can also be defined in terms of classical database query contain-
ment, i.e., Q1 covers Q2 if and only if the UCQ Q2 is included in the UCQ Q1.

Definition 4 (Minimal set of BCQs, Cover) Let Q be a set of BCQs. Q is said to be
minimal if there is no Q ∈ Q such that (Q \ {Q}) ≥ Q. A cover of Q is a minimal
set Qc ⊆ Q such that Qc ≥ Q.

Since a cover is a minimal set, its elements are pairwise incomparable.

Example 3 Let Q = {Q1, . . . , Q6} and consider the following preorder over Q:
Q1 ≥ Q2, Q4, Q5, Q6 ; Q2 ≥ Q1, Q4, Q5, Q6 ; Q3 ≥ Q4 ; Q5 ≥ Q6 (note that Q1

and Q2 are equivalent). There are two covers of Q, namely {Q1, Q3} and {Q2, Q3}.
See Figure 2.

A set of (sound) rewritings may have a finite cover even when it is infinite, as illustrated
by Example 4.

Example 4 Let Q = t(u), R1 = t(x) ∧ p(x, y)→ r(y), R2 = r(x) ∧ p(x, y)→ t(y).
R1 and R2 have a head restricted to a single atom and no existential variable, hence
the classical most general unifier can be used, which unifies the first atom in the query
with the atom of a rule head. The rewriting set of Q with {R1, R2} is infinite. The

7

Figure 2: Cover (Example 3)

first generated queries are the following (note that rule variables are renamed when
needed):
Q0 = t(u)
Q1 = r(x) ∧ p(x, y) // from Q0 and R2 with {(u, y)}
Q2 = t(x0) ∧ p(x0, y0) ∧ p(y0, y) // from Q1 and R1 with {(x, y0)}
Q3 = r(x1) ∧ p(x1, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q2 and R2 with {(x0, y1)}
Q4 = t(x2) ∧ p(x2, y2) ∧ p(y2, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q3 and R1

and so on . . .
However, the set of the most general rewritings is {Q0, Q1} since any other query that
can be obtained is more specific than Q0 or Q1.

It can be easily checked that all covers of a given set have the same cardinality. We
now prove that this property can be extended to the covers of all sound and complete
finite rewriting sets of Q, irrespective of the rewriting technique used to compute these
sets.

Theorem 1 Let R be a set of rules and Q be a BCQ. Any finite cover of a sound and
complete rewriting set of Q with R is of minimal cardinality (among all sound and
complete rewriting sets of Q).

Proof: Let Q1 and Q2 be two arbitrary sound and complete rewriting sets of Q with
R. Let Qc

1 (resp. Qc
2) be one of the finite covers of Q1 (resp. Q2). Qc

1 (resp. Qc
2)

is also sound and complete, as well as smaller than or equal to Q1 (resp. Q2). We
show that they have the same cardinality. Let Q1 ∈ Qc

1. There exists Q2 ∈ Qc
2 such

that Q2 ≥ Q1. If not, Q would be entailed by F = Q1 and R since Qc
1 is a sound

rewriting set of Q (and Q1 maps to itself), but no elements of Qc
2 would map to F :

thus, Qc
2 would not be complete. Similarly, there exists Q′1 ∈ Qc

1 such that Q′1 ≥ Q2.
Then Q′1 ≥ Q1, which implies that Q′1 = Q1 by assumption on Qc

1. For all Q1 ∈ Qc
1,

there exists Q2 ∈ Qc
2 such that Q2 ≥ Q1 and Q1 ≥ Q2. Such a Q2 is unique: indeed,

two such elements would be comparable for ≥, which is not possible by construction
of Qc

2. The function associating Q2 with Q1 is thus a bijection from Qc
1 to Qc

2, which
shows that these two sets have the same cardinality. �

Furthermore, the proof of the preceding theorem shows that, given any two sound
and complete rewriting sets of Q, there is a bijection from any cover of the first set

8

to any cover of the second set such that two elements in relation by the bijection are
equivalent. However, these elements are not necessarily isomorphic (i.e., equal up to
a variable renaming) because they may contain redundancies. Consider the preorder
induced by homomorphism on the set of all BCQs definable on some vocabulary. It
is well-known that this preorder is such that any of its equivalence classes possesses a
unique element of minimal size (up to isomorphism), called its core (notion introduced
for graphs4, but easily transferable to queries).

Every query can be transformed into its equivalent core by removing redundant
atoms. We recall that a set of existential rules ensuring that a finite sound and complete
set of most general rewritings exists for any query is called a finite unification set (fus).5

By the remark above and Theorem 1, we obtain:

Corollary 2 Let R be a fus and Q be a BCQ. There is a unique finite sound and
complete rewriting set of Q with R that has both minimal cardinality and elements of
minimal size.

4 A Generic Rewriting Algorithm
We will now present a generic rewriting algorithm that takes as input a set of existential
rules and a query, and as parameter a rewriting operator. The studied question is the
following: which properties should this operator satisfy in order that the algorithm
outputs a sound, complete, finite and minimal set?

4.1 Rewriting Algorithm
Definition 5 (Rewriting operator) A rewriting operator rew is a function which takes
as input a BCQQ and a set of rulesR and outputs a set of BCQs denoted by rew(Q,R).

Since the elements of rew(Q,R) are BCQs, it is possible to apply further steps of
rewriting to them. This naturally leads to the notions of k-rewriting and k-saturation.

Definition 6 (k-rewriting) Let Q be a conjunctive query,R be a set of rules and rew
be a rewriting operator. A 1-rewriting of Q (w.r.t. rew and R) is an element of
rew(Q,R). A k-rewriting of Q, for k > 1, (w.r.t. rew and R) is a 1-rewriting of
a (k − 1)-rewriting of Q.

The term k-saturation is convenient to name the set of queries that can be obtained
in at most k rewriting steps.

Definition 7 (k-saturation) Let Q be a BCQ,R be a set of rules and rew be a rewrit-
ing operator. We denote the set of k-rewritings of Q by rewk(Q,R). We call k-
saturation, and denote by Wk(Q,R), the set of i-rewritings of Q for all i ≤ k. We
denote W∞(Q,R) =

⋃
k∈NWk(Q,R).

In the following, we extend the notations rew, rewk and Wk to a set of BCQs
Q instead of a single BCQ Q: rew(Q,R) =

⋃
Q∈Q rew(Q,R), rewk(Q,R) =⋃

Q∈Q rewk(Q,R) and Wk(Q,R) =
⋃

i≤k rewi(Q,R).
4See for instance [HN92], where the notion of a core is traced back to the late sixties.
5The notion of a finite unification set was first introduced in [BLMS09] and defined with respect to piece-

unifiers. However, since piece-unifiers provide a sound and complete rewriting operator (see Section 5) and
all the covers of a given set have the same cardinality, the two definitions are equivalent.

9

Algorithm 1 performs a breadth-first exploration of the rewriting space of a given
query.6 At each step, only the most general elements are kept thanks to a covering
function, denoted by cover , that computes a cover of a given set.

Algorithm 1: A GENERIC REWRITING ALGORITHM

Data: A set of rulesR, a BCQ Q
Access: A rewriting operator rew , a covering function cover
Result: A cover of the set of all the rewritings of Q
QF ← {Q}; // resulting set
QE ← {Q}; // queries to be explored
while QE 6= ∅ do
QC ← cover(QF ∪ rew(QE ,R)); // update cover
QE ← QC\QF ; // select unexplored queries
QF ← QC ;

return QF

For termination reasons (see the proof of Property 6), already explored queries are
preferred to non-explored queries in the computation of the cover. More precisely,
if both Qc ∪ {q} and Qc ∪ {q′} are covers of QF ∪ rew(QE ,R), with q and q′

homomorphically equivalent and {q} belongs to QF , then cover does not output
Qc ∪ {q′}. If rew fulfills some good properties (specified below), then, after the ith

iteration of the while loop, the i-saturation ofQ (with respect toR and rew) is covered
by QF , while QE contains the queries that remain to be explored.

In the remainder of this section, we study the conditions that a rewriting operator
must meet in order that: (i) the algorithm halts and outputs a cover of all the rewritings
that can be obtained with this rewriting operator, provided that such a finite cover exists;
(ii) the output cover is sound and complete.

4.2 Correctness and Termination of the Algorithm
We now define a property on the rewriting operator, called prunability. This property
is sufficient to ensure that Algorithm 1 outputs a cover of W∞(Q,R). Intuitively, if an
operator is prunable then, for every Q1 more general than Q2, the one-step rewritings
of Q2 are covered by the one-step rewritings of Q1 or by Q1 itself. It follows that all
the rewritings of Q2 are covered by Q1 and its rewritings. Hence, Q2 can be safely
removed from the current rewriting set.

Definition 8 (Prunable) A rewriting operator rew is said to be prunable if for any set
of rules R and for all BCQs Q1, Q2, Q

′
2 such that Q1 ≥ Q2, Q′2 ∈ rew(Q2,R) and

Q1 6≥ Q′2, there is Q′1 ∈ rew(Q1,R) such that Q′1 ≥ Q′2.

The following lemma states that this can be generalized to k-rewritings for any k.

Lemma 3 Let rew be a prunable rewriting operator, and let Q1 and Q2 be two sets
of BCQs. If Q1 ≥ Q2, then W∞(Q1,R) ≥W∞(Q2,R).

Proof: We prove by induction on i that Wi(Q1,R) ≥ rewi(Q2,R).
For i = 0, W0(Q1,R) = Q1 ≥ Q2 = rew0(Q2,R).
For i > 0, for any Q2 ∈ rewi(Q2,R), there is Q′2 ∈ rewi−1(Q2,R) such that
Q2 ∈ rew(Q′2,R). By induction hypothesis, there is Q′1 ∈ Wi−1(Q1,R) such that

6Note that a depth-first exploration would not ensure termination for fus rules.

10

Q′1 ≥ Q′2. rew is prunable, thus either Q′1 ≥ Q2 or there is Q1 ∈ rew(Q′1,R) such
that Q1 ≥ Q2. Since Wi−1(Q1,R) and rew(Q′1,R) are both included in Wi(Q1,R),
we can conclude. �

This lemma would not be sufficient to prove the correctness of Algorithm 1, as will
be discussed in Section 6.1. We need a stronger version, which checks that a query
whose 1-rewritings are covered needs not to be explored.

Lemma 4 Let rew be a prunable rewriting operator, and letQ1 andQ2 be two sets of
BCQs. If (Q1 ∪Q2) ≥ rew(Q1,R), then (Q1 ∪W∞(Q2,R)) ≥W∞(Q1 ∪Q2,R).

Proof: We prove by induction on i that Q1 ∪Wi(Q2,R) ≥ rewi(Q1 ∪Q2,R).
For i = 0, rew0(Q1 ∪Q2,R) = Q1 ∪Q2 = Q1 ∪W0(Q2,R).
For i > 0, for any Qi ∈ rewi(Q1 ∪ Q2,R), there is Qi−1 ∈ rewi−1(Q1 ∪ Q2,R)
such that Qi ∈ rew(Qi−1,R). By induction hypothesis, there is Q′i−1 ∈ Q1 ∪
Wi−1(Q2,R) such that Q′i−1 ≥ Qi−1. Since rew is prunable, either Q′i−1 ≥ Qi

or there is Q′i ∈ rew(Q′i−1,R) such that Q′i ≥ Qi. Then, there are two possibilities:

• either Q′i−1 ∈ Q1: since Q1 ∪ Q2 ≥ rew(Q1,R), we have Q1 ∪ Q2 ≥ {Q′i}
and so Q1 ∪Wi(Q2,R) ≥ {Q′i}.

• or Q′i−1 ∈Wi−1(Q2,R): then Q′i ∈Wi(Q2,R).

�
Finally, the correctness of Algorithm 1 is based on the following loop invariants.

Property 5 (Invariants of Algorithm 1) Let rew be a rewriting operator. After each
iteration of the while loop of Algorithm 1, the following properties hold:

1. QE ⊆ QF ⊆W∞(Q,R);

2. QF ≥ rew(QF \ QE ,R);

3. if rew is prunable then (QF ∪W∞(QE ,R)) ≥W∞(Q,R);

4. for all distinct Q,Q′ ∈ QF , Q 6≥ Q′ and Q′ 6≥ Q.

Proof: Invariants are proved by induction on the number of iterations of the while loop.
Below Qi

F and Qi
E denote the value of QF and QE after i iterations.

Invariant 1: QE ⊆ QF ⊆W∞(Q,R).

basis: Q0
E = Q0

F = {Q} =W0(Q,R) ⊆W∞(Q,R).
induction step: by construction, Qi

E ⊆ Qi
F and Qi

F ⊆ Q
i−1
F ∪ rew(Qi−1

E ,R).
For any Q′ ∈ Qi

F we have: either Q′ ∈ Qi−1
F and then by induction hy-

pothesis Q′ ∈ W∞(Q,R); or Q′ ∈ rew(Qi−1
E ,R) and then by induction

hypothesis we have Qi−1
E ⊆W∞(Q,R), which implies Q′ ∈W∞(Q,R).

Invariant 2: QF ≥ rew(QF \ QE ,R).

basis: rew(Q0
F \ Q0

E ,R) = rew(∅,R) = ∅ and any set covers it.

induction step: by construction, Qi
F ≥ Q

i−1
F ∪ rew(Qi−1

E ,R); since by induc-
tion hypothesisQi−1

F ≥ rew(Qi−1
F \Qi−1

E ,R), we haveQi
F ≥ rew(Qi−1

F \
Qi−1

E ,R) ∪ rew(Qi−1
E ,R) = rew(Qi−1

F ,R). Furthermore, by construc-
tion,Qi

E = Qi
F \Q

i−1
F ; thusQi

F \Qi
E ⊆ Q

i−1
F and so rew(Qi

F \Qi
E ,R) ⊆

rew(Qi−1
F ,R). Thus Qi

F ≥ rew(Qi
F \ Qi

E ,R).

11

Invariant 3: if rew is prunable then (QF ∪W∞(QE ,R)) ≥W∞(Q,R).

basis: (Q0
F ∪W∞(Q0

E ,R)) = ({Q} ∪W∞({Q},R)) =W∞(Q,R).
induction step: we first show that (i): (Qi

F ∪ W∞(Qi
E ,R)) ≥ W∞(Qi

F ,R),
then we prove by induction that (ii): W∞(Qi

F ,R) ≥W∞(Q,R):
(i) by construction Qi

E ⊆ Qi
F , thus (Qi

F \ Qi
E) ∪ Qi

E = Qi
F , and by

Invariant 2, we have (Qi
F \Qi

E)∪Qi
E ≥ rew(Qi

F \Qi
E ,R). Lemma

4 then entails that ((Qi
F \Qi

E)∪W∞(Qi
E ,R)) ≥W∞((Qi

F \Qi
E)∪

Qi
E ,R) and we can conclude since Qi

F = (Qi
F \ Qi

E) ∪Qi
E .

(ii) by construction, we haveQi
F ≥ Q

i−1
F ∪rew(Qi−1

E ,R); so, by Lemma
3, we have W∞(Qi

F ,R) ≥ W∞(Qi−1
F ∪ rew(Qi−1

E ,R),R) =
W∞(Qi−1

F ,R) ∪ W∞(rew(Qi−1
E ,R),R). Moreover, Qi−1

E ⊆
Qi−1

F ⊆ W∞(Qi−1
F ,R), thus W∞(Qi

F ,R) ≥ Qi−1
F ∪ Qi−1

E ∪
W∞(rew(Qi−1

E ,R),R) = Qi−1
F ∪ W∞(Qi−1

E ,R). Using (i), we
have W∞(Qi

F ,R) ≥ W∞(Qi−1
F ,R) and conclude by induction hy-

pothesis.

Invariant 4: for all distinct Q,Q′ ∈ QF , Q 6≥ Q′ and Q′ 6≥ Q. Trivially satisfied
thanks to the properties of cover .

�
The next property states that if rew is prunable then Algorithm 1 halts for each

case where W∞(Q,R) has a finite cover.

Property 6 Let rew be a rewriting operator, R be a set of rules and Q be a BCQ. If
W∞(Q,R) has a finite cover and rew is prunable then Algorithm 1 halts.

Proof: LetQ be a finite cover ofW∞(Q,R) and letm be the largest k for a k-rewriting
in Q.

We thus have Wm(Q,R) ≥ Q ≥ W∞(Q,R). Since the operator is prunable,
we have Qi

F ≥ Wi(Q,R) for all i ≥ 0 (proved with a straightforward induction on
i). Thus Qm

F ≥ W∞(Q,R). Thus, rew(Qm
E ,R) is covered by Qm

F , and since already
explored queries are taken first for the computation of a cover, we have thatQm+1

E = ∅.
Hence Algorithm 1 halts. �

Theorem 7 Let rew be a rewriting operator, R be a set of rules and Q be a BCQ. If
W∞(Q,R) has a finite cover and rew is prunable then Algorithm 1 outputs this cover
(up to query equivalence).

Proof: By Property 6, Algorithm 1 halts. By Invariant 3 from Property 5, (Qf
F ∪

W∞(Qf
E ,R)) ≥W∞(Q,R) whereQf

F andQf
E denote the final values ofQF andQE

in Algorithm 1. Since Qf
E = ∅ when Algorithm 1 halts, we have Qf

F ≥ W∞(Q,R).
Thanks to Invariants 1 and 4 from Property 5 we conclude that Qf

F is a cover of
W∞(Q,R). �

4.3 Preserving Soundness and Completeness
We consider two further properties of a rewriting operator, namely soundness and com-
pleteness, with the aim of ensuring the soundness and completeness of the obtained
rewriting set within the meaning of Definition 2.

12

Definition 9 (Soundness/completeness of a rewriting operator) Let rew be a rewrit-
ing operator. rew is sound if for any set of rules R, for any BCQ Q, for any Q′ ∈
rew(Q,R), for any fact F , F |= Q′ implies that F,R |= Q. rew is complete if for
any set of rules R, for any BCQ Q, for any fact F such that F,R |= Q, there exists
Q′ ∈W∞(Q,R) such that F |= Q′.

Property 8 If rew is sound, then the output of Algorithm 1 is a sound rewriting set of
Q andR.

Proof: Direct consequence of Invariant 1 from Property 5. �
Perhaps surprisingly, the completeness of the rewriting operator is not sufficient to

ensure the completeness of the output rewriting set. Examples are provided in Sec-
tion 6.1. This is due to the dynamic pruning performed at each step of Algorithm 1.
Therefore the prunability of the operator is also required.

Property 9 If rew is prunable and complete, then the output of Algorithm 1 is a com-
plete rewriting set of Q andR.

Proof: Algorithm 1 returns QF when QE is empty. By Invariant 3 of Property 5, we
know that (QF ∪W∞(∅,R)) ≥ W∞(Q,R). Since W∞(∅,R)) = ∅, we obtain that
QF ≥W∞(Q,R). �

Finally, as stated by the next theorem, when the rewriting operator is sound, com-
plete and prunable, Algorithm 1 is correct and terminates for any finite unification set
of rules. We remind that expressive classes of fus rules are known (see the introduc-
tion). In particular, the main members of DL-Lite family are generalized by the simple
class of linear existential rules. See also Section 7 for examples of such ontologies.

Theorem 10 If rew is a sound, complete and prunable operator, and R is a finite
unification set of rules, then for any BCQ Q, Algorithm 1 outputs a minimal (finite)
sound and complete rewriting set of Q withR.

Proof: If R is a fus and rew is a sound and complete operator then W∞(Q,R) has a
finite cover. The claim then follows from Properties 8 and 9 and Theorem 7. �

5 Piece-Based Rewriting
As mentioned in the introduction (and illustrated in Example 2), existential variables
in rule heads induce a structure that has to be taken into account in the rewriting mech-
anism. Hence the classical notion of a unifier is replaced by that of a piece-unifier
[BLMS11]. A piece-unifier “unifies” a subset Q′ of Q with a subset H ′ of head(R),
in the sense that the associated substitution u is such that u(Q′) = u(H ′). Given a
piece-unifier, Q is partitioned into “pieces”, which are minimal subsets of atoms that
must be processed together. More specifically, the cutpoints are the variables from Q′

that are not unified with existential variables from H ′ (i.e., they are unified with fron-
tier variables or constants); then a piece in Q is a minimal non-empty subset of atoms
“glued” by variables other than cutpoints, i.e., connected by a path of variables that are
not cutpoints. We recall below the definition of pieces given in [BLMS11] (where T
corresponds to the set of cutpoints).

Definition 10 (Piece) [BLMS11] Let A be a set of atoms and T ⊆ vars(A). A piece of
A according to T is a minimal non-empty subset P of A such that, for all a and a′ in
A, if a ∈ P and (vars(a) ∩ vars(a′)) 6⊆ T , then a′ ∈ P .

13

In this paper, we give a definition of a piece-unifier based on partitions rather than
substitutions, which simplifies subsequent proofs. For any substitution u from a set of
variablesE1 to a set of termsE2 associated with a piece-unifier, it holds thatE1∩E2 =
∅. Thus, u can be associated with a partition Pu of E1 ∪ E2 such that two terms are
in the same class of Pu if and only if they are merged by u; more specifically, we
consider the equivalence classes of the symmetric, reflexive and transitive closure of
the following relation ∼: t ∼ t′ if u(t) = t′. Conversely, given a partition on a set
of terms E, such that no class contains two constants, we can consider a substitution
u obtained by selecting an element of each class with priority given to constants: if
{e1 . . . ek} is a class in the partition and ei is a selected element, then for all ej with
1 ≤ j 6= i ≤ k, we set u(ej) = ei. If we consider a total order on terms, such that
constants are smaller than variables, then a unique substitution is obtained by taking
the smallest element in each class. We call admissible partition a partition such that no
class contains two constants.

The set of all partitions over a given set is structured in a lattice by the “finer
than” relation (given two partitions P1 and P2, P1 is finer than P2, denoted by P1 ≥
P2, if every class of P1 is included in a class of P2).7 The join of several partitions
is the partition obtained by making the union of their non-disjoint classes. The join
of two admissible partitions may be a non-admissible partition. We say that several
admissible partitions are compatible if their join is an admissible partition. Note that if
the concerned partitions are relative to the same set E, then their join is their greatest
lower bound in the partition lattice of E.

The following property makes a link between comparable partitions and compara-
ble substitutions.

Property 11 Let P1 and P2 be two admissible partitions over the same set such that
P1 ≥ P2, with associated substitutions u1 and u2 respectively. Then there is a substi-
tution s such that u2 = s ◦ u1 (i.e., u1 is “more general” than u2).

Proof: The substitution s is built as follows: for any class Ci ∈ P1, let Cj ∈ P2 be
the class such that Ci ⊆ Cj . Let ei (resp. ej) be the selected element in Ci (resp.
Cj); if ei 6= ej (in this case, ei is necessarily a variable), then s(ei) = ej . It can be
immediately checked that u2 = s ◦ u1. �

In the following definition of a piece-unifier, we assume that Q and R have disjoint
sets of variables. Given Q′ ⊆ Q, we call separating variables from Q′, and denote
by sep(Q′), the variables occurring in both Q′ and (Q \ Q′): sep(Q′) = vars(Q′) ∩
vars(Q \Q′).

Definition 11 (Piece-Unifier, Cutpoint) A piece-unifier of Q with R is a triple µ =
(Q′, H ′, Pu), where Q′ 6= ∅, Q′ ⊆ Q, H ′ ⊆ head(R) and Pu is a partition on
terms(Q′) ∪ terms(H ′) satisfying the following three conditions:

1. Pu is admissible;

2. if a class in Pu contains an existential variable (from H ′) then the other terms in
the class are non-separating variables from Q′;

3. u(H ′) = u(Q′), where u is a substitution associated with Pu.

7Usually, the notation ≤ is used to denote the relation “finer than”. We adopt the converse convention,
which is more in line with substitutions and the ≥ preorder on CQs.

14

Figure 3: Piece-unifier

The cutpoints of µ, denoted by cutp(µ), are the variables from Q′ that are not uni-
fied with existential variables from H ′ (i.e., they are unified with frontier variables or
constants): cutp(µ) = {x ∈ vars(Q′) | u(x) ∈ fr(R) ∪ consts(Q′) ∪ consts(H ′)}.

Condition 2 in the piece-unifier definition ensures that a separating variable inQ′ is
necessarily a cutpoint. It follows that Q′ is composed of pieces: indeed, an existential
variable from H ′ is necessarily unified with a non-separating variable from Q′, say x,
which ensures that all atoms from Q′ in which x occurs are also part of Q′. Figure 5
illustrates these notions.

We provide below some examples of piece-unifiers.

Example 5 Let R = q(x) → p(x, y) and Q = p(u, v) ∧ p(w, v) ∧ p(w, t) ∧ r(u,w).
Let H ′ = {p(x, y)}. They are three piece-unifiers of Q with R:
µ1 = (Q′1, H

′, P 1
u) with Q′1 = {p(u, v), p(w, v)} and P 1

u = {{x, u, w}, {y, v}}
µ2 = (Q′2, H

′, P 2
u) with Q′2 = {p(w, t)} and P 2

u = {{x,w}, {y, t}}
µ3 = (Q′3, H

′, P 3
u) with Q′3 = {p(u, v), p(w, v), p(w, t)} and P 3

u =
{{x, u, w}, {y, v, t}}
Note that Q′1 and Q′2 are each composed of a single piece; Q′3 = Q′1 ∪ Q′2 and P 3

u is
the join of P 1

u and P 2
u .

In the previous example, R has an atomic head, thus a piece-unifier of Q′ with R
actually unifies the atoms from Q′ and the head of R into a single atom. In the general
case, a piece-unifier unifies Q′ and a subset H ′ of head(R) into a set of atoms, as
illustrated by the next example.

Example 6 Let R = q(x) → p(x, y) ∧ p(y, z) ∧ p(z, t) ∧ r(y) and Q = p(u, v) ∧
p(v, w) ∧ r(u). A piece-unifier of Q with R is µ1 = (Q′1, H

′
1, P

1
u) with Q′1 =

{p(u, v), p(v, w)}, H ′1 = {p(x, y), p(y, z)} and P 1
u = {{x, u}, {v, y}, {w, z}}. An-

other piece-unifier is µ2 = (Q′2, H
′
2, P

2
u) with Q′2 = Q, H ′2 = {p(y, z), p(z, t), r(y)}

and P 2
u = {{u, y}, {v, z}, {w, t}}.

Note that µ3 = (Q′3, H
′
3, P

3
u) with Q′3 = {p(u, v)}, H ′3 = {p(x, y)} and P 3

u =
{{x, u}, {v, y}} is not a piece-unifier because the second condition in the definition
of piece-unifier is not fulfilled: v is a separating variable and is matched with the
existential variable y.

Then, the notions of a one-step rewriting according to a piece-unifier, and of a
rewriting obtained by a sequence of one-step rewritings, are defined in the natural way.

15

Definition 12 (One-step Piece-Rewriting) Given a piece-unifier µ = (Q′, H ′, Pu) of
Q with R, the one-step piece-rewriting of Q according to µ, denoted by β(Q,R, µ), is
the BCQ u(body(R)) ∪ u(Q \Q′), where u is a substitution associated with Pu.

We thus define inductively a k-step piece-rewriting as a (k−1)-step piece rewriting
of a one-step piece-rewriting. For any k, a k-step piece-rewriting of Q is a piece-
rewriting of Q.

The next theorem states that piece-based rewriting is logically sound and complete.

Theorem 12 ([SM96, BLMS11]) Let K = (F,R) be a KB and Q be a BCQ. Then
F,R |= Q iff there is a piece-rewriting Q′ of Q such that Q′ ≥ F .

It follows from Theorem 12 that a sound and complete rewriting operator can be
based on piece-unifiers: we call piece-based rewriting operator, the rewriting operator
that, given Q and R, outputs all the one-step piece-rewritings of Q according to a
piece-unifier of Q with R ∈ R. We denote it by β(Q,R).

Actually, as detailed hereafter, only most general piece-unifiers are to be consid-
ered, since the other piece-unifiers produce more specific queries.

Definition 13 (Most General Piece-Unifier) Given two piece-unifiers defined on the
same subsets of a query and a rule head, µ1 = (Q′, H ′, P 1

u) and µ2 = (Q′, H ′, P 2
u),

we say that µ1 is more general than µ2 (notation µ1 ≥ µ2) if P 1
u is finer than P 2

u (i.e.,
P 1
u ≥ P 2

u). A piece-unifier µ = (Q′, H ′, Pu) is called a most general piece-unifier if it
is more general than all the piece-unifiers on Q′ and H ′.

Property 13 Let µ1 and µ2 be two piece-unifiers with µ1 ≥ µ2. Then µ1 and µ2 have
the same pieces.

Proof: µ1 and µ2 have the same pieces iff they have the same cutpoints. It holds that
cutp(µ1) ⊆ cutp(µ2) since every class from P 1

u is included in a class from P 2
u : hence

a variable from Q′ that is in the same class as a frontier variable or a constant in P 1
u

also is in P 2
u . It remains to prove that cutp(µ2) ⊆ cutp(µ1). Let x be a cutpoint of µ2

and P 2
u(x) be the class of x in P 2

u . Since x is a cutpoint of µ2, there is a term t in P 2
u(x)

that is a constant or a frontier variable. Since P 1
u ≥ P 2

u , we know that P 1
u(x) ⊆ P 2

u(x).
Let t′ be a term of H ′ from P 1

u(x) (there is at least one term of H ′ and one term of Q′

in each class since the partition is part of a unifier of H ′ and Q′). We are sure that t′ is
not an existential variable because t′ ∈ P 2

u(x) and an existential variable cannot be in
the same class as t (Condition 2 in the definition of a piece-unifier), so t′ is a frontier
variable or a constant, hence x is a cutpoint of µ1. �

Property 14 Let µ1 = (Q′, H ′, P 1
u) and µ2 = (Q′, H ′, P 2

u) be two piece-unifiers such
that µ1 ≥ µ2. Then β(Q,R, µ1) ≥ β(Q,R, µ2).

Proof: Let u1 (resp. u2) be a substitution associated with P 1
u (resp. P 2

u). Since P 1
u ≥

P 2
u , there is a substitution s such that u2 = s◦u1 . Then β(Q,R, µ2) = u2(body(R))∪
u2(Q \ Q′) = (s ◦ u1)(body(R)) ∪ (s ◦ u1)(Q \ Q′) = (s ◦ u1)(body(R) ∪ (Q \
Q′)) = s(u1(body(R) ∪ (Q \ Q′))) = s(β(Q,R, µ1)). s is thus a homomorphism
from β(Q,R, µ1) to β(Q,R, µ2), hence β(Q,R, µ1) ≥ β(Q,R, µ2). �

The following lemma expresses that piece-based rewriting operator is prunable.

Lemma 15 If Q1 ≥ Q2 then for any piece-unifier µ2 of Q2 with R: either (i) Q1 ≥
β(Q2, R, µ2) or (ii) there is a piece-unifier µ1 of Q1 with R such that β(Q1, R, µ1) ≥
β(Q2, R, µ2).

16

Proof: Let h be a homomorphism from Q1 to Q2. Let µ2 = (Q′2, H
′
2, P

2
u) be a piece-

unifier of Q2 with R, and let u2 be a substitution associated with P 2
u . We consider two

cases:

(i) If h(Q1) ⊆ (Q2\Q′2), then u2◦h is a homomorphism fromQ1 to u2(Q2\Q′2) ⊆
β(Q2, R, µ2). Thus Q1 ≥ β(Q2, R, µ2).

(ii) Otherwise, let Q′1 be the non-empty subset of Q1 mapped by h to Q′2, i.e.,
h(Q′1) ⊆ Q′2, and H ′1 be the subset of H ′2 matched by u2 with u2(h(Q

′
1)),

i.e., u2(H ′1) = u2(h(Q
′1)). Let P 1

u be the partition on terms(H ′1) ∪ terms(Q′1)
such that two terms are in the same class of P 1

u if these terms or their images
by h are in the same class of P 2

u (i.e., for a term t, we consider t if t is in Q′1,
and h(t) otherwise). By construction, (Q′1, H

′
1, P

1
u) is a piece-unifier of Q1 with

R. Indeed, P 1
u fulfills all the conditions of the piece-unifier definition since P 2

u

fulfills these conditions.

Let u1 be a substitution associated with P 1
u . For each class P of P 1

u (resp. P 2
u),

we call selected element the unique element t of P such that u1(t) = t (resp.
u2(t) = t). We build a substitution s, from the selected elements of the classes in
P 1
u which are variables, to the selected elements of the classes in P 2

u , as follows:
for any class P of P 1

u , let t be the selected element of P : if t is a variable of H ′1
then s(t) = u2(t), otherwise s(t) = u2(h(t)) (t occurs in Q′1). Note that, for
any term t in P 1

u , we have s(u1(t)) = u2(h(t)).

We build now a substitution h′ from vars(β(Q1, R, µ1)) to terms(β(Q2, R, µ2)),
by considering three cases according to the part of β(Q1, R, µ1) in which the
variable occurs, i.e., in Q1 but not in Q′1, in body(R) but not in H ′1, or in the
remaining part corresponding to the images of sep(Q′1) by u1:

1. if x ∈ vars(Q1) \ vars(Q′1), h
′(x) = h(x);

2. if x ∈ vars(body(R)) \ vars(H ′1), h
′(x) = u2(x);

3. if x ∈ u1(sep(Q′1))(or alternatively x ∈ u1(fr(R) ∩ vars(H ′1))), h
′(x) =

s(x) ;

We conclude by showing that h′ is a homomorphism from β(Q1, R, µ1) =
u1(body(R)) ∪ u1(Q1 \ Q′1) to β(Q2, R, µ2) = u2(body(R)) ∪ u2(Q2 \ Q′2)
with two points:

1. h′(u1(body(R))) = u2(body(R)). Indeed, for any variable x of body(R):

– either x ∈ vars(body(R)) \ vars(H ′1), hence h′(u1(x)) = h′(x) =
u2(x) (u1 is a substitution from variables of Q′1 ∪H ′1),

– or x ∈ fr(R)∩ vars(H ′1), hence h′(u1(x)) = s(u1(x)) = u2(h(x)) =
u2(x) (h is a substitution from variables of Q1).

2. h′(u1(Q1 \ Q′1)) ⊆ u2(Q2 \ Q′2). We show that h′(u1(Q1 \ Q′1)) =
u2(h(Q1 \Q′1))), and since h(Q1 \Q′1) ⊆ Q2 \Q′2, we have h′(u1(Q1 \
Q′1)) ⊆ u2(Q2 \Q′2). To show that h′(u1(Q1 \Q′1)) = u2(h(Q1 \Q′1))),
we point out that, for any variable x from Q1 \Q′1:

– either x ∈ vars(Q′1), then h′(u1(x)) = s(u1(x)) = u2(h(x))

– or x ∈ vars(Q1) \ vars(Q′1), then h′(u1(x)) = h′(x) = h(x) =
u2(h(x)) (u1 is a substitution from variables of Q′1 ∪ H ′1 and u2 is a
substitution from variables of Q′2 ∪H ′2 and h(x) 6∈ vars(Q′2 ∪H ′2)).

17

�
Given a query Q and a set of rulesR, the piece-based rewriting operator computes

the set of one-step piece-rewritings of Q according to all piece-unifiers of Q with a
rule R ∈ R. We are now able to show that this operator fulfills the desired properties
introduced in Section 4.

Theorem 16 Piece-based rewriting operator is sound, complete and prunable; this
property is still true if only most general piece-unifiers are considered.

Proof: Soundness and completeness follow from Theorem 12. Prunability follows
from Lemma 15. Thanks to Property 14, the proof remains true if most general piece-
unifiers are considered. �

6 Exploiting Single-Piece Unifiers
We are now interested in the efficient computation of piece-based rewritings. We iden-
tify several sources of combinatorial explosion in the computation of the piece-unifiers
between a query and a rule:

1. The problem of deciding whether there is a piece-unifier of a given query Q
with a given rule R is NP-complete in the general case. NP-hardness is easily
obtained by considering the case of a rule with an empty frontier: then, there is
a piece-unifier between Q and R if and only if there is a homomorphism from Q
to H = head(R), which is an NP-complete problem, Q and H being any sets of
atoms.

2. The number of most general piece-unifiers can be exponential in |Q|, even if the
rule headH is restricted to a single atom. For instance, assume that each atom of
Q unifies with H and forms its own piece; then there may be 2|Q| piece-unifiers
obtained by considering all subsets of Q.

3. The same atom in Q may belong to distinct pieces according to distinct unifiers,
as illustrated by the next example.

Example 7 Let Q = r(u, v) ∧ q(v) and R = p(x) → r(x, y) ∧ r(y, x) ∧ q(y).
Atom r(u, v) belongs to two single-piece unifiers: ({r(u, v), q(v)}, {r(x, y), q(y)},
{{u, x}, {v, y}}) and ({r(u, v)}, {r(y, x)}, {{u, y}, {v, x}}). For an additional ex-
ample, see Example 6, where p(u, v) and p(v, w) both belong to µ1 and µ2.

To cope with this complexity, an idea is to rely on single-piece unifiers, i.e., piece-
unifiers of the form (Q′,−,−) where Q′ is a single piece of Q. This section is de-
voted to the properties of rewriting operators exploiting this notion. We show that
the rewriting operator based on single-piece (most general) unifiers is sound and com-
plete. However, perhaps surprisingly, it is not prunable, which prevents to use it in
the generic algorithm. To recover prunability, we will define the aggregation of single-
piece unifiers, which provides us with a new rewriting operator, which has all the de-
sired properties and generates rewriting sets with fewer components than the standard
piece-unifier. Note, however, that this will not completely remove the second complex-
ity source (i.e., the exponential number of unifiers to consider) since the number of
aggregations of single-piece unifiers can still be exponential in the size of Q, even with
atomic-head rules.

18

6.1 Single-Piece Based Operator
As expressed by the following theorem, (most general) single-piece unifiers provide a
sound and complete operator.

Theorem 17 Given a BCQ Q and a set of rulesR, the set of rewritings of Q obtained
by considering exclusively most general single-piece unifiers is sound and complete.

Proof: See Appendix. �
The proof of this theorem is given in Appendix since it is not reused hereafter.

Indeed, the restriction to single-piece unifiers is not compatible with selecting most
general rewritings at each step, as performed in Algorithm 1. We present below some
examples that illustrate this incompatibility.

Example 8 (Basic example) Let Q = p(y, z) ∧ p(z, y) and R = r(x, x) → p(x, x).
There are two single-piece unifiers ofQwithR, µ1 = ({p(y, z)}, {p(x, x)}, {{x, y, z}})
and µ2 = ({p(z, y)}, {p(x, x)}, {{x, y, z}}), which yield the same rewriting, e.g.
Q1 = r(x, x)∧p(x, x). There is also a two-piece unifier µ = (Q, {p(x, x)}, {{x, y, z}}),
which yields e.g. Q′ = r(x, x). A query equivalent to Q′ can be obtained from Q1 by
a further single-piece unification. Now, assume that we restrict unifiers to single-piece
unifiers and keep most general rewritings at each step. Since Q ≥ Q1, Q1 is not kept,
hence Q′ will never be generated, whereas it is incomparable with Q.

Concerning the preceding example, given u1 and u2 the substitutions respectively
associated with µ1 and µ2, one may argue that u1(Q) is redundant and the same holds
for u2(Q); hence, the problem would be solved by computing u1(Q)\u1(Q′) instead of
u1(Q \Q′) and making u1(Q) non-redundant (i.e., equal to p(x, x)) before computing
u1(Q) \ u1(Q′), which would then be empty. However, the problem goes deeper, as
illustrated by the next two examples.

Example 9 (Ternary predicates) LetQ = r(u, v, w)∧r(w, t, u) andR = p(x, y)→
r(x, y, x). Again, there are two single-piece unifiers of Q with R: µ1 = ({r(u, v, w)},
{r(x, y, x)}, {{u,w, x}, {v, y}}) and µ2 = ({r(w, t, u)}, {r(x, y, x)}, {{u,w, x},
{t, y}}). One obtains two rewritings more specific than Q, e.g., Q1 = p(x, y) ∧
r(x, v, x), and Q2 = p(x, y) ∧ r(x, t, x), which are isomorphic. There is also a
two-piece unifier (Q, {r(x, y, x)}, {{u,w, x}, {v, t, y}}), which yields p(x, y). If we
remove Q1 and Q2, no query equivalent to p(x, y) can be generated.

Figure 4: The queries in Example 10

19

Example 10 (Very simple rule) This example has two interesting characteristics: (1)
it uses unary/binary predicates only (2) it uses a very simple rule expressible with any
lightweight description logic, i.e., a linear existential rule where no variable appears
twice in the head or the body. Let Q = r(u, v)∧ r(v, w)∧ p(u, z)∧ p(v, z)∧ p(v, t)∧
p(w, t) ∧ p1(u) ∧ p2(w) (see Figure 4) and R = b(x) → p(x, y). Note that Q is
not redundant. There are two single-piece unifiers of Q with R, say µ1 and µ2, with
pieces Q′1 = {p(u, z), p(v, z)} and Q′2 = {p(v, t), p(w, t)} respectively. The obtained
queries are pictured in Figure 4. These queries are both more specific than Q. The
removal would prevent the generation of a query equivalent to r(x, x)∧p1(x)∧p2(x)∧
b(x), which could be generated from Q with a two-piece unifier.

Property 18 The single-piece-based operator is not prunable.

Proof: Follows from the above examples. �
By Theorem 5 and Property 24, one can show that the conclusion of Lemma 3

(Section 4.2) is valid for single-piece unifiers, even though they are not prunable. This
justifies that Lemma 3 is not enough to prove the correctness of Algorithm 1.

Nevertheless, single-piece unifiers can still be used as an algorithmic brick to com-
pute more complex piece-unifiers, as shown in the next subsection.

6.2 Aggregated-Piece Based Operator
We first explain the ideas that underline aggregated single-piece unifiers. Let us con-
sider the set of single-piece unifiers naturally associated with a piece-unifier µ. If we
successively apply each of these underlying single-piece unifiers, we may obtain a CQ
strictly more general than β(Q,R, µ), as illustrated by the next example.

Example 11 Let R = p(x, y) → q(x, y) and Q = q(u, v) ∧ r(v, w) ∧ q(t, w). Let
µ = (Q′, H ′, Pu) be a piece-unifier of Q with R with Q′ = {q(u, v), q(t, w)}, H ′ =
{q(x, y)} and Pu = {{u, t, x}, {v, w, y}}. β(Q,R, µ) = p(x, y) ∧ r(y, y). Q′ has
two pieces w.r.t. µ: P1 = {q(u, v)} and P2 = {q(t, w)}. If we successively compute
the rewritings with the underlying single-piece unifiers µP1

and µP2
, we obtain Qs =

β(β(Q,R, µP1
), R, µP2

) = β(p(x, y)∧r(y, w)∧q(t, w), R, µP2
) = p(x, y)∧r(y, y′)∧

p(x′, y′), which is strictly more general than β(Q,R, µ).

Given a set U of “compatible” single-piece unifiers of a query Q with a rule (the
notion of “compatible” will be formally defined below), we can thus distinguish be-
tween the usual piece-unifier performed on the union of the pieces from the unifiers in
U and an “aggregated unifier” that would correspond to a sequence of applications of
the unifiers in U . This latter unifier is more interesting than the piece-unifier because, as
illustrated by Example 11, it avoids generating some rewritings which are too specific.
We will thus rely on the aggregation of single-piece unifiers to recover prunability.

Note that, in this paper, we combine single-piece unifiers of the same rule whereas
in [KLMT13] we consider the possibility of combining unifiers of distinct rules (and
thus compute rewritings from distinct rules in a single step). We keep below the defini-
tions introduced in [KLMT13], while pointing out that, in the context of this paper, the
rules R1 . . . Rk in the definitions are necessarily copies of the same rule R. Intuitively,
an aggregated unifier of R is a piece-unifier of a new rule built by aggregating copies
of R (as formally expressed by next Property 19).

20

Definition 14 (Aggregation of a set of rules) Let R = {R1 . . . Rk} be a set of rules,
with pairwise disjoint sets of variables. The aggregation ofR, denoted byR1� . . .�Rk,
is the rule body(R1) ∧ . . . ∧ body(Rk)→ head(R1) ∧ . . . ∧ head(Rk).

Definition 15 (Compatible set of piece-unifiers, Aggregated unifier)
Let U = {µ1 = (Q′1, H

′
1, P1) . . . µk = (Q′k, H

′
k, Pk)} be a set of piece-unifiers of Q

with rules R1 . . . Rk respectively, where the rules have pairwise disjoint sets of vari-
ables (in particular, for all 1 ≤ i, j ≤ k, i 6= j, it holds that vars(H ′i)∩ vars(H ′j) = ∅).

• Set U is said to be compatible if (1) all Q′i and Q′j are pairwise disjoint; (2) the
join of P1 . . . Pk is admissible.

• Given such a compatible set U , an aggregated unifier of Q with R1 . . . Rk w.r.t.
U is µ = (Q′, H ′, P) where: (1) Q′ = Q′1 ∪ . . .∪Q′k; (2) H ′ = H ′1 ∪ . . .∪H ′k;
(3) P is the join of P1 . . . Pk. It is said to be single-piece if all the piece-unifiers
in U are single-piece. It is said to be most general if all the piece-unifiers in U
are most general.

Property 19 Let Q be a BCQ and U = {µ1 = (Q′1, H
′
1, P1) . . . µk = (Q′k, H

′
k, Pk)}

be a compatible set of piece-unifiers of Q with R1 . . . Rk. Then, the aggregated unifier
of U is a piece-unifier of Q with the aggregation of {R1 . . . Rk}.

Proof: We show that the aggregated unifier µ = (Q′, H ′, Pu) of U satisfies the condi-
tions of the definition of a piece-unifier (Definition 11). Condition 1 is fulfilled since,
by definition of compatibility, the join of P1 . . . Pk is admissible. Condition 2 is sat-
isfied as well, because, since P1 . . . Pk satisfy it, so does their join. Indeed, if a class
contains an existential variable, it cannot be merged with another by aggregation be-
cause its other terms are non-separating variables, hence do not appear in other classes.
Concerning the last condition, for all 1 ≤ i ≤ k, we have ui(H ′i) = ui(Q

′
i), where ui

is a substitution associated with Pi. Since Q′ =
⋃k

i=1Q
′
i and H ′ =

⋃k
i=1H

′
i we know

that, for any substitution u associated with Pu, we have u(H ′) = u(Q′). �

According to this property, the rewriting associated with an aggregated unifier µ
can be defined as β(Q,R1 � . . . � Rk, µ). It corresponds to the rewriting obtained by
applying the piece-unifiers associated with the Ri one after the other, as illustrated by
the next example.

Example 12 Consider again Example 11. Let R′ = p(x′, y′) → q(x′, y′) be a copy
of R. The aggregation R � R′ is the rule p(x, y) ∧ p(x′, y′) → q(x, y) ∧ q(x′, y′).
Let U = {µP1 , µP2} where µP1 = ({q(u, v)}, {q(x, y)}, {{u, x}, {v, y}}) and µP2 =
({q(t, w)}, {q(x′, y′)}, {{t, x′}, {w, y′}}) . The aggregated unifier of Q with R,R′

w.r.t. U is ({q(u, v), q(t, w)}, {q(x, y), q(x′, y′)}, {{u, x}, {v, y}, {t, x′}, {w, y′}}).
The associated rewriting of Q is p(x, y) ∧ r(y, y′) ∧ p(x′, y′), which is equal to the
rewriting Qs in Example 11.

The difference between a piece-unifier and an aggregated unifier of Q with R can
also be explained as follows: to build a piece-unifier of Q with R, we consider parti-
tions of terms(Q) ∪ terms(head(R)), while in the aggregation operation we consider
partitions of terms(Q) ∪

⋃k
i=1 terms(head(Ri)), where k is the number of considered

single-piece unifiers, and each Ri is safely renamed from R. In other words, if, in the
definition of an aggregated unifier, we assumed that the R1 . . . Rk had been exactly R,
instead of safely renamed copies of R, then the aggregation of R1 . . . Rk would have

21

been exactlyR after removal of duplicate atoms, and the aggregated unifier would have
been the usual piece-unifier.

The next property shows that, from any piece-unifier µ, one can build a most gen-
eral single-piece aggregated unifier, which produces a rewriting more general than the
one produced by µ.

Property 20 For any piece-unifier µ of Q with R, there is a most general single-
piece aggregated unifier µ� of Q with R1 . . . Rk copies of R such that β(Q,R1 � . . . �
Rk, µ�) ≥ β(Q,R, µ).

Proof: Let Q′1, . . . , Q
′
k be the pieces of Q′ according to µ = (Q′, H ′, Pu) and let

u be a substitution associated with Pu. Let R1 . . . Rk be safely renamed copies of
R. Let hi denote the variable renaming used to produce Ri from R. Let U = {µ1 =
(Q′1, H

′
1, P

1
u), . . . , µk = (Q′k, H

′
k, P

k
u)} be a set of piece-unifiers ofQwithR1, . . . , Rk

built as follows for all i:

• H ′i is the image by hi of the subset of H ′ unified by u with Q′i

• let hi(Pu) be the partition built from Pu by replacing each x ∈ vars(H ′) by
hi(x); then, P i

u is obtained from hi(Pu) by (1) restricting it to the terms of Q′i
and H ′i , and (2) refining it as much as possible while keeping the property that
ui(H

′
i) = ui(Q

′
i), where ui is a substitution associated with the partition.

For any µi = (Q′i, H
′
i, P

i
u) we immediately check that:

1. µi is a most general piece-unifier.

2. µi is a single-piece unifier.

3. for all µj ∈ U , with µi 6= µj , µj and µi are compatible.

Let µ� = (Q′�, H
′
�, P

�
u) be the aggregated unifier of Q with R1, . . . , Rk w.r.t. U .

Note that Q′� = Q′. The above properties fulfilled by any µi from U ensure that µ� is
a most general single-piece aggregated unifier.

We note R� = R1 � . . . �Rk. It remains to prove that β(Q,R�, µ�) ≥ β(Q,R, µ).
Let u� be a substitution associated with P �u . For each class P of Pu (resp. P �u), we call
selected element the unique element t of P such that u(t) = t (resp. u�(t) = t).

We build a substitution s, from the selected elements in P �u which are variables, to
the selected elements in Pu, as follows: for any class P of P �u , let t be the selected
element of P : if t is a variable of Q′, then s(t) = u(t); else t is a variable of a H ′i:
then s(t) = u(h−1i (t)). Note that for any term t in P �u , there is a variable renaming hi
such that s(u�(t)) = u(h−1i (t)) (if t is a constant or a variable from vars(Q) then any
hi can be chosen).

We build now a substitution h from vars(β(Q,R�, µ�)) to terms(β(Q,R, µ)), by
considering three cases according to the part of β(Q,R�, µ�) in which the variable
occurs, i.e., in Q but not in Q′, in body(Ri) but not in H ′i , or in the remaining part
corresponding to the images of sep(Q′) by u�:

1. if x ∈ vars(Q) \ vars(Q′), h(x) = x;

2. if x ∈ vars(body(Ri)) \ vars(H ′i), h(x) = h−1i (x);

3. if x ∈ u�(sep(Q′))(or alternatively x ∈ u�(fr(R�) ∩ vars(H ′�))), h(x) = s(x) ;

22

We conclude by showing that h is a homomorphism from β(Q,R�, µ�) = u�(body(R1)∪
. . . ∪ body(Rk)) ∪ u�(Q \ Q′) to β(Q,R, µ) = u(body(R)) ∪ u(Q \ Q′), with two
points:

1. for all i, h(u�(body(Ri))) = u(body(R)). Indeed, for any variable x ∈ vars(body(Ri)):

• either x ∈ vars(body(Ri))\vars(H ′i), hence h(u�(x)) = h(x) = h−1i (x) =
u(h−1i (x)) (u does not substitute the variables from vars(body(R))\vars(H ′)),

• or x ∈ fr(Ri) ∩ vars(H ′i), hence h(u�(x)) = s(u�(x)) = u(h−1i (x));

2. h(u�(Q \Q′)) = u(Q \Q′). Indeed, for any variable x ∈ vars(Q \Q′):

• either x ∈ vars(Q′), then h(u�(x)) = s(u�(x)) = u(h−1i (x)) = u(x)
(h−1i does not substitute the variables from Q),

• or x ∈ vars(Q) \ vars(Q′), then h(u�(x)) = h(x) = x = u(x) (u� and u
do not substitute the variables from vars(Q) \ vars(Q′)).

�
We call single-piece aggregator the rewriting operator that computes the set of one-

step rewritings of a queryQ by considering all the most general single-piece aggregated
unifiers of Q.

Theorem 21 The single-piece aggregator is sound, complete and prunable.

Proof: Soundness comes from Property 19 and from the fact that, for any set of rules
R, let R be the aggregation of R, one has R |= R. Completeness and prunability rely
on the fact that the piece-based rewriting operator fulfills these properties, and the fact
that for any queries Q and Q′ and any rule R, if Q′ = β(Q,R, µ), where µ is a piece-
unifier, then the query Q′′ obtained with the single-piece aggregator corresponding to
µ is more general than Q′, as expressed by Property 20. �

7 Detailed Algorithms and Experiments
In this section, we first detail on the computation of all the most general single-piece
unifiers of a query Q with a rule R, and explain how we use them to compute all
the single-piece aggregators. Then, we focus on the specific case of unification with
atomic-head rules, for which the computation is simpler. Last, we report first experi-
ments.

7.1 Computing single-piece unifiers and their aggregation
We first introduce the notion of a pre-unifier, which is weaker than a piece-unifier.
To become a piece-unifier, a pre-unifier has to satisfy an additional constraint on the
separating variables of the unified subset of Q.

Definition 16 (Valid Partition) LetQ be a BCQ,R be a rule,Q′ ⊆ Q,H ′ ⊆ head(R),
and Pu be a partition on terms(Q′) ∪ terms(H ′). Pu is valid if no class of Pu con-
tains two constants, or two existential variables of R, or a constant and an existential
variable of R, or an existential variable of R and a frontier variable of R.

23

Definition 17 (Pre-unifier) Let Q be a BCQ, R be a rule, Q′ ⊆ Q, H ′ ⊆ head(R),
and Pu be a partition on terms(Q′) ∪ terms(H ′). Then µ = (Q′, H ′, Pu) is a pre-
unifier of Q with R if (1) Pu is valid, and (2) given a substitution u associated with
Pu, it holds that u(H ′) = u(Q′).

The next definition introduces the notion of sticky variables, which are the variables
of Q′ that prevent Q′ to be a piece.

Definition 18 (Sticky Variables) Let Q be a BCQ, R be a rule, Q′ ⊆ Q, H ′ ⊆
head(R) and Pu be a partition on terms(Q′) ∪ terms(H ′). The sticky variables of
Q′ in Pu w.r.t. Q and R, denoted by sticky(Q′, Pu), are the separating variables of
Q′ that occur in a class of Pu containing an existential variable of R.

The next property ensures that a pre-unifier without sticky variables is a piece-
unifier, and reciprocally. Its proof follows from the definitions.

Property 22 Let Q be a BCQ, R be a rule, Q′ ⊆ Q, H ′ ⊆ head(R), and Pu be a
partition on terms(Q′) ∪ terms(H ′). Then µ = (Q′, H ′, Pu) is a piece-unifier of Q
with R iff µ is a pre-unifier and sticky(Q′, Pu) = ∅.

The fact that we can first build pre-unifiers, then check the absence of sticky vari-
ables, suggests an incremental method to compute all the most general single piece-
unifiers of Q with R.

The first step consists in computing all the most general pre-unifiers of an atom
a ∈ Q with an atom b ∈ head(R) with the same predicate. The partition on the terms
of these atoms associated with their unification has to be valid. The next definition
defines formally this notion of partition.

Definition 19 (Partition by Position) Let A be a set of atoms with the same predicate
p. The partition by position associated with A, denoted by Pp(A), is the partition on
terms(A) such that two terms ofA occurring in the same position i (1 ≤ i ≤ arity(p))
are in the same class of Pp(A).

Hence, the partition by position associated with {a, b} has to be valid. We de-
note by APU the set of all the most general atomic pre-unifiers, i.e., APU = {µ =
({a}, {b}, P) | a ∈ Q, b ∈ head(R), and µ is a pre-unifier of Q with R }. Algorithm
2 details the computation of APU .

We then use APU to compute the set of all the most general single-piece uni-
fiers of Q with R, denoted by SPU . Each atomic pre-unifier of APU is incremen-
tally extended in all possible ways with other atomic pre-unifiers of APU , which
contain “missing” atoms of Q with respect to sticky variables. Extending pre-unifier
(Q1, H1, P1) with pre-unifier (Q2, H2, P2) consists in merging both pre-unifiers to
obtain a new pre-unifier (Q1 ∪Q2, H1 ∪H2, join(P1, P2)); this extension can be per-
formed if and only if the join of P1 and P2 is a valid partition; if the obtained pre-unifier
has no sticky variable, it is a single piece-unifier.

Next algorithms 3, 4 and 5 detail the computation of SPU . Algorithm 3 is the main
algorithm. It first uses Algorithm 2 to compute APU , then, for each atomic pre-unifier
µ ∈ APU , it calls Algorithm 4, which computes the single-piece unifiers extending µ.
Algorithm 4 first checks if µ contains sticky variables: if it it is the case, this single-
piece unifier is returned, otherwise the algorithm is recursively called, after a call to
Algorithm 5 to obtain a set of candidate extensions of µ.

24

Algorithm 2: COMPUTATION OF APU , THE SET OF THE MOST GENERAL
ATOMIC PRE-UNIFIERS

Data: A BCQ Q and a rule R
Result: The set of the most general pre-unifiers of an atom of Q with an atom of

head(R)
begin

APU ← ∅;
foreach a ∈ Q do

foreach b ∈ head(R) do
if predicate(a) = predicate(b) and Pp({a, b}) is valid then

APU ← APU ∪ {({a}, {b}, Pp({a, b})}

return APU

Algorithm 3: COMPUTATION OF SPU , THE SET OF THE MOST GENERAL
SINGLE-PIECE UNIFIERS

Data: A BCQ Q and a rule R
Result: The set of most general single-piece unifiers of Q with R
begin

SPU ← ∅;
APU ← computeAPU(Q, R) ; // see Algorithm 2
while APU 6= ∅ do

choose and remove ({a}, {b}, P) from APU ;
SPU ← SPU ∪ SPUext({a}, {b}, P); // see Algorithm 4

return SPU ;

Finally, the set of all the single-piece aggregators ofQ withR is obtained by aggre-
gating the unifiers from all non-empty compatible subsets of SPU . For optimisation
reasons, this set is incrementally computed as follows:

1. Let U1 = SPU = {µ1, . . . , µk}; the µi are called 1-unifiers.

2. For i = 2 to the greatest possible rank (i.e., as long as Ui is not empty): let Ui

be the set of all i-unifiers obtained by aggregating an (i − 1)-unifier from Ui−1
and a single-piece unifier from U1.

3. Return the union of all the Ui obtained.

7.2 The Specific Case of Atomic-Head Rules
Rules with an atomic head are often considered in the literature, specifically in logic
programming or in deductive databases. One may ask if piece-unification become
simpler in this specific case. In fact, considering atomic-head rules does not simplify
the definition of a piece-unifier in itself, but its computation. Indeed, there is now a
unique way of associating any atom from Q with the head of a rule. It follows that
deciding whether there is a piece-unifier of Q with a rule can be done in linear time
with respect to the size of Q (whereas it is NP-complete in the general case) and each

25

Algorithm 4: COMPUTATION OF THE MOST GENERAL SINGLE-PIECE UNI-
FIERS EXTENDING A GIVEN PRE-UNIFIER

Access: Q, R and APU declared in the calling algorithm 3
Data: (Q′, H ′, P ′) a pre-unifier of Q with R
Result: The set of the most general single-piece unifiers extending (Q′, H ′, P ′)
begin

if sticky(Q′, P ′) = ∅ then
return {(Q′, H ′, P ′)} // it is a single-piece unifier

else
Qadd ← {a ∈ Q \Q′ | vars(a) ∩ sticky(Q′, P ′) 6= ∅};
Ext← Extend((Q′, H ′, P ′), Qadd, APU) ; // see Algorithm 5
EPU ← ∅;
foreach (Qext, Hext, Pext) ∈ Ext do

EPU ← EPU ∪ SPUext(Qext, Hext, Pext);
// recursive call to Algorithm 4

return EPU ;

atom belongs to a single piece, thus the set of all single-piece unifiers of Q with a rule
can be computed in polynomial time.

More precisely, if a rule R has an atomic head, then every atom in Q participates
in at most one most general single-piece unifier of Q with R (up to bijective variable
renaming). This is is a corollary of the next property.

Property 23 Let R be an atomic-head rule and Q be a BCQ. For any atom a ∈ Q,
there is at most one Q′ ⊆ Q such that a ∈ Q′ and Q′ is a piece for a piece-unifier of
Q with R.

Proof: We prove by contradiction that two single-piece unifiers cannot share an atom
of Q. Assume there are Q′1 ⊆ Q and Q′2 ⊆ Q such that Q′1 6= Q′2 and Q′1 ∩ Q′2 6= ∅,
and µ1 = (Q′1, H, P

1
u) and µ2 = (Q′2, H, P

2
u) two single-piece-unifiers of Q with R,

with H = head(R). Since Q′1 6= Q′2, one has Q′1 \Q′2 6= ∅ or Q′2 \Q′1 6= ∅. Assume
Q′1 \ Q′2 6= ∅. Let A = Q′1 ∩ Q′2 and B = Q′1 \ A. There is at least one variable
x ∈ vars(A) ∩ vars(B) such that there is an existential variable e of head(R) in the
class of P 1

u containing x (otherwise µ1 has more than one piece). Since H is atomic,
there is a unique way of associating any atom with H , thus the class of P 2

u containing
x contains e as well. It follows that Q′2 is not a piece since an atom of A and an atom
of B share the variable x unified with an existential variable in µ2, while A is included
in Q′2 and B is not. �

The fact that an atom from Q participates in at most one most general single-piece
unifier allows some algorithmic improvements. Indeed, when a piece-unifier ofQ′ with
head(R) is successfully built, all the atoms of Q′ can be removed from the set of atoms
to be considered in the computation of the next piece-unifiers. Furthermore, there is
a unique way of associating any atom from Q with head(R), hence there is only one
pre-unifier of Q′ with head(R). Algorithm 6 exploits these specific aspects to compute
all the single-piece unifiers of a query with an atomic-head rule.

Example 13 Let R = q(x) → p(x, y) and Q = p(u, v) ∧ p(v, t). Let us start
from p(u, v): this atom is unifiable with head(R) and p(v, t) necessarily belongs to

26

Algorithm 5: COMPUTATION OF THE PRE-UNIFIERS EXTENDING A GIVEN
PRE-UNIFIER W.R.T. TO A GIVEN SET OF ATOMS

Data: (Q′, H ′, P ′) a pre-unifier of Q with R,Qadd a subset of Q (disjoint from
Q′), APU a set of atomic pre-unifiers

Result: The set of pre-unifiers extending (Q′, H ′, P ′) w.r.t. Qadd and APU
begin

if Qadd = ∅ then
return {(Q′, H ′, P ′)}

else
Ext← ∅;
choose an atom a ∈ Qadd;
foreach (a, b, Pa) ∈ APU do

if join(P ′, Pa) is valid then
Ext← Ext ∪ Extend((Q′ ∪ {a}, H ′ ∪ {b}, join(P, Pa)),

Qadd \ {a}, APU) ; // recursive call to
Algorithm 5

return Ext;

the same piece-unifier (if any) because v ∈ sticky({p(u, v)}, {{u, x}, {v, y}}); in-
deed, v is in the same class as the existential variable y; however, {p(u, v), p(v, t)}
is not unifiable with head(R) because, since v occurs at the first and at the second
position of a p atom, x and y should be unified, which is not possible, since y is an
existential variable; thus, p(u, v) does not belong to any piece-unifier with R. How-
ever, p(v, t) still has to be considered. Let us start from it: p(v, t) is unifiable with
head(R) and forms its own piece because sticky({p(v, t)}{{v, x}, {t, y}}) is empty;
indeed, t is in the same class as the existential variable y, but does not occur in any
other atom. Hence, there is a single (most general) piece-unifier of Q with R, namely
({p(v, t)}, {p(x, y)}, {{v, x}, {t, y}}).

It should be noted that any existential rule can be decomposed into an equivalent set
of rules with atomic head by introducing a new predicate, which gathers the variables
of the original head (e.g. [CGK08, BLMS09]). Hence, the restriction to atomic-head
rules can be made without loss of expressivity. Now, the question is whether it is
more efficient to directly process rules with complex heads, or to decompose them
into atomic-head rules and benefit from a simpler computation of piece-unifiers. The
experiments reported below clearly show that the former choice is better.

7.3 Experiments and Perspectives
The query rewriting algorithm, instantiated with the rewriting operator described in
the preceding section, has been implemented in Java. Since benchmarks dedicated to
existential rules are not available yet, first experiments were carried out with sets of
existential rules obtained by translation from ontologies expressed in the description
logic DL-LiteR, namely ADOLENA (A), STOCKEXCHANGE (S), UNIVERSITY
(U) and VICODI (V). This benchmark was introduced in [PUHM09] and then used in
several papers, e.g., [GOP11, CTS11, ISG12, KLMT12]. Ontologies A and U contain
some rules with multiple heads; the ontologies obtained by decomposing rules into

27

Algorithm 6: COMPUTATION OF ALL THE MOST GENERAL SINGLE-PIECE
UNIFIERS IN THE CASE OF ATOMIC-HEAD RULES

Data: A BCQ Q and an atomic-head rule R
Result: The set of most general single-piece unifiers of Q with R
begin

U ← ∅; // resulting set
A← {a ∈ Q | predicate(a) = predicate(head(R))};
while A 6= ∅ do

chooseanatoma ∈ A ;
Q′ ← {a} ;
while Q′ ⊆ A and there is a pre-unifier (Q′, head(R), P) and
sticky(Q′, P) 6= ∅ do

Q′ ← Q′ ∪ {a′ ∈ Q | a′ contains a variable from sticky(Q′, P)} ;

if Q′ ⊆ A and there is a pre-unifier (Q′, head(R), P) then
U ← U ∪ {(Q′, head(R), P)} ;
A← A \Q′

else
A← A \ {a}

return U

atomic-head rules are respectively known as AX and UX. Additionally, we considered
the translation of a larger ontology, the DL-Lite version of OpenGalen28 (G), which
contains more than 50k rules. Each ontology is provided with five handcrafted queries.

In [KLMT12], we compared with other systems concerning the size of the output
and pointed out that none of the existing systems output a complete set of rewritings.
However, beside the fact that these systems have evolved since then, one can argue that
the size of the rewriting set should not be a decisive criterion (indeed, assuming that the
systems are sound and complete, a minimal rewriting set can be obtained by selecting
most general elements, see Theorem 1). Therefore, other criteria have to be taken into
account, such as the runtime or the total number of CQs generated during the rewriting
process.

Time (ms) # Output # Generated
A AX A AX A AX

Q1 170 330 27 41 459 720
Q2 90 4900 50 1431 171 4567
Q3 240 47290 104 4466 316 13838
Q4 440 28620 224 3159 826 14526
Q5 2100 1h36 624 32921 2416 215523

U UX U UX U UX
Q1 0 10 2 5 1 4
Q2 0 0 1 1 105 120
Q3 10 20 4 12 42 155
Q4 1370 4190 2 5 2142 4720
Q5 20 20 10 25 153 351

Table 1: Impact of rule decomposition

8http://www.opengalen.org/

28

All tests reported here were performed on a DELL machine with a processor at
3.60 GHz and 16 GB of RAM, with 4 GB allocated to the Java Virtual Machine.

Table 1 reports the behavior of the rewriting algorithm on A vs AX and U vs UX
with respect to three parameters: the runtime, the size of the output (number of CQs)
and the number of generated CQs. The size of the output for AX and UX is before
elimination of queries containing auxiliary predicates. The generated CQs are all the
rewritings built during the rewriting process (excluding the initial query and possibly
including some multi-occurrences of the same rewritings). We can see that avoiding
rule decomposition makes a substantial difference. The gain is particularly striking
with Q5 on A / AX with respect to all three parameters (the runtime is 21 seconds for
A and 1 hour and 36 minutes for AX, the size of the output is more than 52 times larger
for AX before elimination of useless queries, and the number of generated queries is
89 times larger for AX). Moreover, we point out that only 29 / 102 rules in A and 5 /
77 rules in U have multiple heads, with only 2 atoms; we can reasonably expect that
the gain increases with the proportion of multiple-head rules and the size of rule heads.

Rules Query # Output # Generated # Explored Time (ms)
A Q1 27 459 74 170

Q2 50 171 70 90
Q3 104 316 104 240
Q4 224 826 256 440
Q5 624 2416 624 2100

S Q1 6 9 6 0
Q2 2 137 23 10
Q3 4 275 20 40
Q4 4 450 58 90
Q5 8 688 44 110

U Q1 2 1 2 0
Q2 1 105 32 0
Q3 4 42 10 10
Q4 2 2142 556 1370
Q5 10 153 14 20

V Q1 15 14 15 0
Q2 10 9 10 0
Q3 72 117 72 30
Q4 185 328 185 110
Q5 30 59 30 10

G Q1 2 2 2 10
Q2 1152 1275 1152 1090
Q3 488 1514 488 1050
Q4 147 154 147 30
Q5 324 908 324 1000

Table 2: Generated queries with the single-piece aggregator

Table 2 presents the size of the output, the number of generated CQs and the number
of explored CQs for each ontology (as well as the runtime for information, see also
Table 4). Note that, since subsumed rewritings are removed at each step of the breadth-
first algorithm, only some of the rewritings generated at a given step are explored at the
next step. We can see that the number of generated queries can be large with respect to
the cardinality of the output, which is less marked for explored queries.

29

Ontology # Rules # Hierarchical rules
A 102 72
S 52 16
U 77 36
V 222 202
G 50764 26980

Table 3: Types of rules in the ontologies

Our query rewriting tool is able to process any kind of existential rules. There is of
course a price to pay for this expressivity, in terms of complexity of the involved mech-
anisms and time efficiency. We consider the algorithms presented in this paper as basic
versions, which can be further improved in various ways, for instance by processing
some specific kinds of rules in a specific way. Let us illustrate this with the example
of rules expressing taxonomies. Indeed, a large part of currently available ontologies
is actually composed of concept and role hierarchies. See Table 3: 71%, 31%, 47%,
91% and 53 % of the rules in ontologies A, S, U, V and G, respectively, express atomic
concept or role inclusions.

We can compile these sets of rules as preorders on predicates. The detailed presen-
tation of how to compute and process these preorders is out of the scope of this paper.
Briefly said, the preorders are integrated into the rewriting process, which allows to
generate a smaller rewriting set, this set being unfolded at the end to produce the ex-
pected UCQ. Our purpose here is just to illustrate the fact that some improvements
of the basic version can dramatically decrease the runtime, while still relying on the
same fundamental mechanisms. Table 4 allows to compare these two versions: PURE9

denotes the basic version of our tool and PUREH is the version with compiled hierar-
chical rules (note that compilation is performed offline, hence the algorithm takes as
input the preorder and the non-hierarchical rules).

We also compared to two other query rewriting tools, Nyaya and Rapid. Nyaya
is a tool dedicated to UCQ rewriting with linear and sticky existential rules, which
implements the techniques presented in [GOP11], in particular an optimization for
linear rules (which include DL-Lite ontologies). Table 4 shows that our tool is generally
faster on the considered benchmark, even in its basic version, specially on Ontology A.
This difference could be due to the fact that Nyaya does not directly process multiple-
head rules, hence has to decompose them into atomic-head rules. For the large ontology
G, Nyaya seemed to be still in a preprocessing step after several hours. Note that the
very latest version of Nyaya includes parallel rewriting, which we did not consider
here, since our tool does include this kind of optimization.

As far as we know, Nyaya is the only other tool able to process existential rules
beyond lightweight DLs. We think that comparing to DL rewriting tools is not very
relevant, since these systems make use of specific features, like predicate arity bounded
by two, or the tree-model property. Tools tailored for DL-Lite exploit even further
the very specific form of DL-Lite axioms. However, we compared to one of these
tools, namely Rapid, to obtain an order of magnitude. Rapid is one of the fastest tools
dedicated to DL-Lite ontologies [CTS11]. In Table 4, we can see that Rapid is indeed
generally faster than our tool, the difference being less pronounced on the version with
rule compilation.

Current work includes processing specific kinds of rules in a specific way, while

9Piece Unification based REwriting

30

Rules Query PURE PUREH Nyaya Rapid
A Q1 170 120 1122 18

Q2 90 40 862 23
Q3 240 30 2363 34
Q4 440 200 5557 48
Q5 2100 440 33206 93

S Q1 0 0 4 7
Q2 10 10 4 9
Q3 40 40 46 13
Q4 90 20 7 12
Q5 110 80 8 15

U Q1 0 0 8 6
Q2 0 10 4 9
Q3 10 0 12 7
Q4 1370 120 6 13
Q5 20 10 10 15

V Q1 0 0 13 9
Q2 0 0 51 5
Q3 30 0 21 25
Q4 110 30 28 32
Q5 10 0 22 26

G Q1 10 0 5
Q2 1090 620 74
Q3 1050 290 59
Q4 30 10 10
Q5 1000 110 40

Table 4: Runtime (ms) with several query rewriting tools

keeping a system able to process any set of existential rules. Other optimizations could
be implemented, such as exploiting dependencies between rules to select the rules to
be considered at each step. Moreover, the form of the considered output itself, i.e.,
a union of conjunctive queries, leads to combinatorial explosion. Considering semi-
conjunctive queries instead of conjunctive queries as in [Tho13] can save much with
respect to both the running time and the size of the output, without compromising the
efficiency of query evaluation; in [Tho13] the piece-based rewriting operator is com-
bined with query factorization techniques. We did not consider generating Datalog
queries yet. Finally, further experiments should be performed on more complex on-
tologies. However, even if slightly more complex ontologies could be obtained by
translation from description logics, real-world ontologies that would take advantage
of the expressiveness of existential rules, as well as associated queries, are currently
lacking.

Acknowledgments. We thank Giorgio Orsi for providing us with rule versions of
ontologies A, S, U and V, as well as the version of Nyaya used for the experiments
(October 2013 version). This work was partially funded by the ANR project PAGODA
(ANR-12-JS02-007-01).

31

References
[BLMS09] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending Decid-

able Cases for Rules with Existential Variables. In IJCAI’09, pages 677–
682, 2009.

[BLMS11] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On Rules with
Existential Variables: Walking the Decidability Line. Artificial Intelligence,
175(9-10):1620–1654, 2011.

[BV81] C. Beeri and M. Vardi. The implication problem for data dependencies. In
ICALP’81, volume 115 of LNCS, pages 73–85, 1981.

[CGK08] A. Calı̀, G. Gottlob, and M. Kifer. Taming the Infinite Chase: Query An-
swering under Expressive Relational Constraints. In KR’08, pages 70–80,
2008.

[CGL+07] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati.
Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

[CGL09] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based frame-
work for tractable query answering over ontologies. In PODS’09, pages
77–86, 2009.

[CGL12] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general Datalog-based frame-
work for tractable query answering over ontologies. J. Web Sem., 14, 2012.

[CGP10] A. Calı̀, G. Gottlob, and A. Pieris. Query Answering under Non-guarded
Rules in Datalog+/-. In RR’10, pages 1–17, 2010.

[CLM81] A. K. Chandra, H. R. Lewis, and J. A. Makowsky. Embedded implicational
dependencies and their inference problem. In STOC’81, pages 342–354.
ACM, 1981.

[CLR03] A. Calı̀, D. Lembo, and R. Rosati. On the Decidability and Complex-
ity of Query Answering over Inconsistent and Incomplete Databases. In
PODS’03, pages 260–271, 2003.

[CM09] M. Chein and M.-L. Mugnier. Graph-based Knowledge Representation and
Reasoning—Computational Foundations of Conceptual Graphs. Advanced
Information and Knowledge Processing. Springer, 2009.

[CR12] C. Civili and R. Rosati. A Broad Class of First-Order Rewritable Tuple-
Generating Dependencies. In Datalog 2.0, pages 68–80, 2012.

[CTS11] A. Chortaras, D. Trivela, and G. B. Stamou. Optimized Query Rewriting
for OWL 2 QL. In CADE’11, pages 192–206, 2011.

[GHK+13] B. Cuenca Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik,
and Z. Wang. Acyclicity notions for existential rules and their application
to query answering in ontologies. J. Artif. Intell. Res., 47:741–808, 2013.

[GOP11] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and
optimization. In ICDE’11, pages 2–13, 2011.

32

[GS12] G. Gottlob and T. Schwentick. Rewriting Ontological Queries into Small
Nonrecursive Datalog Programs. In KR’12, 2012.

[HN92] P. Hell and J. Nesetril. The core of a graph. Discrete Mathematics, 109(1-
3):117–126, 1992.

[ISG12] M. Imprialou, G. Stoilos, and B. Cuenca Grau. Benchmarking Ontology-
Based Query Rewriting Systems. In AAAI’12, 2012.

[KLMT12] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. A Sound and
Complete Backward Chaining Algorithm for Existential Rules. In RR’12,
volume 7497, pages 122–138, 2012.

[KLMT13] M. König, M. Leclère, M.-L. Mugnier, and M. Thomazo. On the Explo-
ration of the Query Rewriting Space with Existential Rules. In RR’13, pages
123–137, 2013.

[KLT+11] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The
Combined Approach to Ontology-Based Data Access. In IJCAI’11, pages
2656–2661, 2011.

[KR11] M. Krötzsch and S. Rudolph. Extending Decidable Existential Rules by
Joining Acyclicity and Guardedness. In IJCAI’11, pages 963–968, 2011.

[LMTV12] N. Leone, M. Manna, G. Terracina, and P. Veltri. Efficiently computable
datalog programs. In KR’12, 2012.

[LTW09] C. Lutz, D. Toman, and F. Wolter. Conjunctive Query Answering in the
Description Logic EL Using a Relational Database System. In IJCAI’09,
pages 2070–2075, 2009.

[Mug11] M.-L. Mugnier. Ontological Query Answering with Existential Rules. In
RR’11, pages 2–23, 2011.

[OP11] G. Orsi and A. Pieris. Optimizing query answering under ontological con-
straints. PVLDB, 4(11):1004–1015, 2011.

[OWL09] W3C OWL Working Group. OWL 2 Web Ontology Language: Document
Overview. W3C Recommendation, 2009.

[PUHM09] H. Pérez-Urbina, I. Horrocks, and B. Motik. Efficient Query Answering
for OWL 2. In ISWC’09, pages 489–504, 2009.

[RA10] R. Rosati and A. Almatelli. Improving query answering over DL-Lite on-
tologies. In KR’10, 2010.

[RMC12] M. Rodriguez-Muro and D. Calvanese. High Performance Query Answer-
ing over DL-Lite Ontologies. In KR’12, 2012.

[SM96] E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward
Chainings of Graph Rules. In ICCS’96, pages 248–262, 1996.

[TBMR12] M. Thomazo, J.-F. Baget, M.-L. Mugnier, and S. Rudolph. A generic
querying algorithm for greedy sets of existential rules. In KR’12, 2012.

[Tho13] M. Thomazo. Compact Rewriting for Existential Rules. In IJCAI’13, 2013.

33

[VSS14] T. Venetis, G. Stoilos, and G. B. Stamou. Query Extensions and Incremental
Query Rewriting for OWL 2 QL Ontologies. J. Data Semantics, 3(1):1–23,
2014.

34

Appendix: Proof of Theorem 17
To prove the completeness of the single-piece based operator, we first prove the fol-
lowing property:

Property 24 For any piece-unifier µ of Q with R, there is a sequence of rewritings of
Q with R using exclusively most general single-piece unifiers and leading to a BCQ
Qs such that Qs ≥ β(Q,R, µ).

Proof: We first introduce some notations. Given a partition P and x a term occurring
in P , P (x) is the class of P that contains x. Let P and P ′ be two partitions such that
the terms of P ′ are included in the terms of P and any class of P ′ is included in a class
of P : then we say that P ′ is a subpart of P (note that if P ′ and P are defined on the
same set, it means that P ′ is finer than P)

Let Pc1, . . . , P cn be the pieces of Q′ according to µ = (Q′, H ′, Pu) and let u
be a substitution associated to Pu. Let Q0 = Q,Q1, . . . Qn = Qs be a sequence
of rewritings of Q built as follows: for 1 ≤ i ≤ n, Qi = β(Qi−1, Ri, µi) where
µi = (Q′i, H

′
i, P

i
u) and ui is a substitution associated with P i

u with:

• Ri is a safely renamed copy of R by a variable renaming hi.

• H ′i is the image by hi of the subset of H ′ unified by u with Pci

• P i
u is obtained from partition hi(Pu) (built from Pu by applying hi) by (1) re-

stricting it to the terms of Q′i and H ′i (2) refining it as much as possible while
keeping the property that it is associated with a unifier of H ′i and Q′i. Note that
P i
u is a subpart of hi(Pu).

• Let u◦i = ui ◦ ui−1 ◦ . . . ◦ u1. Let P i◦
u be the partition assigned to u◦i . We know

that P i◦
u is the join of P 1

u , . . . P
i
u, thus P i◦

u is a subpart of Ph
u , the join of the

hi(Pu) for 1 ≤ i ≤ n. Indeed, for each i, P i
u is a subpart of hi(Pu) and the

following property is easily checked: let s1 and s2 be substitutions with disjoint
domains, and P 1

s , P 2
s be their associated partitions; then, the partition assigned

to s1 ◦ s2 (and to s2 ◦ s1) is exactly the join of P 1
s and P 2

s .

• Q′1 = Pc1 and for i > 1, Q′i = u◦i−1(Pci). We ensure the property than ∀i,
u◦i−1(Pci) ∩ u◦i−1(Q \Q′) = ∅. If u◦i−1(Pci) ∩ u◦i−1(Q \Q′) 6= ∅, we remove
µi from the sequence because it is useless since u◦i−1(Pci) ⊆ u◦i−1(Q \ Q′).
Indeed, let a ∈ u◦i−1(Pci) ∩ u◦i−1(Q \ Q′), there are b ∈ Pci and b′ ∈ Q \ Q′,
b 6= b′ such that u◦i−1(b) = u◦i−1(b

′) = a, so terms(b) ⊆ sep(Pci), so {b} is a
piece, so Pci = {b} and then u◦i−1(Pci) = {a} ⊆ u◦i−1(Q \ Q′). For similar
reasons, we ensure the property that ∀i, ∀j > i, u◦i−1(Pci) ∩ u◦i−1(Pcj) = ∅.

We now show that:

1. µi is a piece-unifier

2. µi is a most general piece-unifier

3. µi is a single-piece unifier

For the first point:

• Q′i ⊆ Qi−1 since ∀i, u◦i−1(Pci)∩u◦i−1(Q\Q′) = ∅ and ∀i, ∀j > i u◦i−1(Pci)∩
u◦i−1(Pcj) = ∅

35

• H ′i ⊆ head(Ri) by construction.

• P i
u satisfies the conditions of a piece-unifier because Pu satisfies them and P i

u is
a subpart of hi(Pu).

For the second point, since P i
u is the finest partition associated with a piece-unifier

of H ′i and Q′i, we are sure that µi is a most general piece-unifier.
For the third point, note that each atom of Q′i corresponds to at least one atom of

Pci. Thus if Pci is composed of a unique atom, so is H ′i which thus forms a single-
piece. Otherwise, Pci is a single-piece from more than one atom; each atom a of Pci
contains a variable x such that Pu(x) contains an existential variable y which comes
from the subset of H ′ unified by u with Pci. Thus the corresponding atom u◦i−1(a)
in Q′i is such that P i

u(u
◦
i−1(x)) contains the existential variable hi(y). So Q′i forms a

single piece.
At the end of the sequence, Qn ⊆ u◦n(Q \ Q′) ∪

⋃
j∈1..n(un(. . . uj(body(Rj))))

and the terms of Pn◦
u are the same as the terms of Ph

u . Since Pn◦
u is a subpart of Ph

u ,
we can say that Pn◦

u is finer than Ph
u so, there is a substitution s such that uh = s ◦ u◦n

and s(u◦n(Q \ Q′)) = uh(Q \ Q′). Let h be the substitution obtained by making
the union of the inverses of the hi, then h(uh(Q \ Q′) = u(Q \ Q′), so h ◦ s is a
homomorphism from u◦n(Q \Q′) to u(Q \Q′). Then we can prove that for all j, 1 ≤
j ≤ n, h(s(un(. . . uj(body(Rj))))) = u(body(R)). Indeed, un(. . . uj(body(Rj))) =
un(. . . u1(body(Rj))) since the terms of body(Rj) do not appear in ui (i < j).

To conclude the proof, we have h(s(Qn)) ⊆ u(body(R))∪u(Q\Q′) = β(Q,µ,R),
hence h ◦ s is a homomorphism from Qn to β(Q,µ,R), thus Qn ≥ β(Q,µ,R). �

Theorem 17 Given a BCQQ and a set of rulesR, the set of rewritings ofQ obtained
by considering exclusively most general single-piece unifiers is sound and complete.

Proof: Soundness holds trivially since a single-piece unifier is a piece-unifier.
For completeness, thanks to Theorem 12, we just have to show by induction on k, the
length of the rewriting sequence leading from Q to a k-piece-rewriting of Q, that: for
any k-piece-rewriting Qr of Q, there exists Qs a piece-rewriting of Q obtained by
using exclusively most general single-piece unifiers such that Qs ≥ Qr.
For k = 0 the property is trivially satisfied.
For k ≥ 1, one hasQr = β(Qr′ , R, µ), withQr′ being a piece-rewriting ofQ obtained
by a piece-rewriting sequence of length k − 1. By induction hypothesis, there exists
Qs′ a piece-rewriting ofQ obtained by using exclusively single-piece unifiers such that
Qs′ ≥ Qr′ . By Lemma 15, either Qs′ ≥ Qr, or there is a piece-unifier µ′ of Qs′ with
R such that β(Qs′ , R, µ′) ≥ Qr. In this latter case, thanks to Property 24, there is a
sequence of rewritings of Qs′ with R using only single-piece unifiers and leading to a
CQ Qs such that Qs ≥ β(Qs′ , R, µ′). �

36

