Abdallah Arioua
email: abdallaharioua@gmail.com

Nouredine Tamani
email: tamani@lirmm.fr

Madalina Croitoru
email: croitoru@lirmm.fr

Patrice Buche
email: patrice.buche@supagro.inra.fr

Query Failure Explanation in Inconsistent Knowledge Bases: A Dialogical Approach

In the EcoBioCap project (www.ecobiocap.eu) about the next generation of packaging, a decision support system has been built that uses argumentation to deal with stakeholder preferences. However, when testing the tool the domain experts did not always understand the output of the system. The approach developed in this paper is the first step to the construction of a decision support system endowed with an explanation module. We place ourselves in the equivalent setting of inconsistent Ontology-Based Data Access (OBDA) and addresses the problem of explaining Boolean Conjunctive Query (BCQ) failure. Our proposal relies on an interactive and argumentative approach where the processes of explanation takes the form of a dialogue between the User and the Reasoner. We exploit the equivalence between argumentation and inconsistency tolerant semantics to prove that the Reasoner can always provide an answer for user's questions.

Introduction

In the popular ONTOLOGY-BASED DATA ACCESS setting the domain knowledge is represented by an ontology facilitating query answering over existing data [START_REF] Poggi | Linking data to ontologies[END_REF]. In practical systems involving large amounts of data and multiple data sources, data inconsistency with respect to the ontology is difficult to prevent. Many inconsistencytolerant semantics [START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontology-based data access[END_REF][START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF][START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF][START_REF] Lukasiewicz | Complexity of inconsistency-tolerant query answering in datalog+[END_REF] have been proposed that rely on the notion of data repairs i.e. subsets of maximally consistent data with respect to the ontology. Different query answering strategies over these repairs (called semantics) are investigated in the literature. For instance, computing answers that hold in every repair corresponds to AR-semantics, computing answers that hold under the intersection closed repairs corresponds to ICR-semantics, etc.

In this paper we will consider inconsistent knowledge bases and focus on the ICR-semantics (Intersection of Closed Repair). The particular choice of the ICRsemantics for OBDA is due to its interesting productivity properties as shown in [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF]. Under the ICR-semantics, maximal (in terms of set inclusion) consistent subsets (called repairs) of the knowledge base are constructed. Querying the knowledge base is done on the intersection of repairs after ontology closure.

Query answering under these semantics may not be intuitively straightforward and can lead to loss of user's trust, satisfaction and may affect the system's usability [START_REF] Mcguinness | Usability issues in knowledge representation systems[END_REF]. Moreover, as argued by Calvanese et al. in [START_REF] Calvanese | Reasoning about explanations for negative query answers in dl-lite[END_REF] explanation facilities should not just account for user's "Why Q ?" question (why a query holds under a given inconsistency-tolerant semantics) but also for question like "Why not Q ?" (why a query does not hold under a given inconsistency-tolerant semantics), which is the research problem addressed in this paper. Precisely: "Given an inconsistent knowledge base, denoted by KB, and a boolean conjunctive query Q, why Q is not entailed from KB under the ICR-semantics?".

To address this issue we use argumentation as an approach for explanation. We consider the logical instantiation of Dung's [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] abstract argumentation framework for OBDA in [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] and we exploit the equivalence result shown by the authors between the ICR-semantics and sceptical acceptance under preferred semantics to guarantee the existence of an explanation for any failed query. The explanation takes the form of a dialogue between the User and the Reasoner with the purpose of explaining the query failure. At each level of the dialogue we use (an introduced) language-based primitives such as clarification and deepening to refine the answer.

This paper improves over and extends the work presented in [START_REF] Arioua | Query failure explanation in inconsistent knowledge bases an argumentation approach: Extended abstract[END_REF]. Its contribution lies in the following points: first, it puts forward the explanation power of argumentation in the benefit of Semantic Web. Second, it improves OBDA system's usability and enhances its user-friendliness. To the best of our knowledge, we are the first to propose query failure explanation in the context of OBDA for inconsistent knowledge bases by means of argumentation. Our approach differs from [START_REF] Borgida | Explanation in the dl-lite family of description logics[END_REF][START_REF] Calvanese | Reasoning about explanations for negative query answers in dl-lite[END_REF] in handling query failure since we consider an inconsistent setting within OBDA. In addition, the work presented in [START_REF] Garcia | Formalizing dialectical explanation support for argument-based reasoning in knowledge-based systems[END_REF] is neither applied to an OBDA context nor to the Datalog+/-language.

The paper is organized as follows. In Section 2, we recall the scope of the paper and formally define the addressed problem using an illustrating example. In Section 3 and 4, we present the language and the corresponding argumentation framework. In Section 5, we introduce the formalization of the proposed explanation and show several properties. Finally, Section 6 concludes the paper.

Let us introduce the motivation and the formal context of our work. The Context. Several semantics that allow answering queries in the presence of inconsistency have been studied in the literature and here we only focus on the ICRsemantics. The Problem. Consider a knowledge base about university staff and students which contains inconsistent knowledge. This inconsistency is handled by ICR-semantics. The User might be interested in knowing why the knowledge base does not entail the query Q:"Luca is a student". Such query failure might occur, for instance, after the User does not find in the answer set the expected output (e.g. the User asked for all the students and Luca did not appear in the answer list). Another possibility is when the User asks for the existence of students in the knowledge base and the system answers that no students are present in the knowledge base.

Observe that the answer δ (e.g. Luca in the example above) is a negative answer for a conjunctive query Q (e.g. get me all the students in the example above) if and only if the boolean conjunctive query Q(δ) (e.g. student(Luca) in the example above) has failed. Hence, in this paper we concentrate only on explaining the failure of a boolean conjunctive query. Let us formally introduce the problem of Query Failure Explanation in inconsistent knowledge bases.

Definition 1 (Query Failure Explanation Problem P). Let K be an inconsistent knowledge base, Q a Boolean Conjunctive Query such that K ICR Q. We call P = K , Q a Query Failure Explanation Problem (QFEP).

The Guidelines of the Solution. To address the Query Failure Explanation Problem, we use a logical instantiation of Dung's [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] abstract argumentation framework for OBDA in [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] which ensures that the argumentation framework used throughout the paper respects the rationality postulates [START_REF] Caminada | On the evaluation of argumentation formalisms[END_REF]. The arguments are then used for query failure explanation as follows. First, we introduce two notions over the arguments: clarifying and deepening. The former notion serves at unfolding the knowledge used in the argument, and the latter is used to explicit the reason for an attack between two arguments. We then describe a dialectical system of explanation custom-tailored for inconsistent knowledge base query failure. The User and the Reasoner will take turns in a dialogue with the final aim that the User understands why a query is not entailed under the ICR-semantics by the knowledge base.

Formal Settings

In this section, we introduce: (1) OBDA setting and representation language, (2) the inconsistency-tolerant semantics.

OBDA Setting

There are two major approaches to represent an ontology for the OBDA problem: Description Logics (such as E L [START_REF] Baader | Pushing the el envelope[END_REF] and DL-Lite [START_REF] Calvanese | Tractable reasoning and efficient query answering in description logics: The dl-lite family[END_REF] families) and rule-based languages (such as Datalog+/- [START_REF] Calì | Datalog+/-: a unified approach to ontologies and integrity constraints[END_REF] language, a generalization of Datalog that allows for existentially quantified variables in rules heads). Despite Datalog+/-undecidability when answering conjunctive queries, different decidable fragments of Datalog+/are studied in the literature [START_REF] Baget | Walking the complexity lines for generalized guarded existential rules[END_REF]. These fragments generalize the aforementioned Description Logics families and overcome their limitations by allowing any predicate arity as well as cyclic structures. Here we follow the second method and use a general rule-based setting knowledge representation language equivalent to the Datalog+/-language.

Language Specification

We consider the positive existential conjunctive fragment of first-order logic, denoted by FOL(∧, ∃), which is composed of formulas built with the connectors (∧, →) and the quantifiers (∃, ∀). We consider first-order vocabularies with constants but no other function symbol. A term t is a constant or a variable, different constants represent different values (unique name assumption), an atomic formula (or atom) is of the form p(t 1 , ...,t n) where p is an n-ary predicate, and t 1 , ...,t n are terms. A ground atom is an atom with no variables. A variable in a formula is free if it is not in the scope of a quantifier. A formula is closed if it has no free variables. We denote by X (with a bold font) a sequence of variables X 1 , ..., X k with k ≥ 1. A conjunct C[X] is a finite conjunction of atoms, where X is the sequence of variables occurring in C. Given an atom or a set of atoms A, vars(A), consts(A) and terms(A) denote its set of variables, constants and terms, respectively.

An existential rule (or simply a rule) is a first-order formula of the form r = ∀X ∀Y (H[X, Y]) → ∃Z C[Z, Y], with vars(H) = X∪Y, and vars(C) = Z∪Y where H and C are conjuncts called the hypothesis and conclusion of r respectively. We denote by r = (H,C) a contracted form of a rule r. An existential rule with an empty hypothesis is called a fact. A fact is an existentially closed (with no free variable) conjunct. i.e. ∃x(teacher(x) ∧ employee(x)).

We recall that a homomorphism π from set of atoms A 1 to set of atoms A 2 is a substitution of vars(A 1) by terms(A 2) such that π(A 1) ⊆ A 2 . Given two facts f and f . We have f |= f if and only if there is a homomorphism from f to f , where |= is the first-order semantic entailment.

A rule r = (H,C) is applicable to a set of facts F if and only if there exists F ⊆ F such that there is a homomorphism π from H to the conjunction of elements of F . For instance, the rule ∀x(teacher(x) → employee(x)) is applicable to the set {teacher(Tom), cute(Tom)} because there is a homomorphism from teacher(x) to teacher(Tom). If a rule r is applicable to a set of facts F, its application according to π produces a set F ∪ {π(C)}. The new set F ∪ {π(C)}, denoted also by r(F), is called immediate derivation of F by r. In our example the produced set (immediate derivation) is {teacher(Tom), employee(Tom), cute(Tom)}.

A negative constraint (or constraint) is a first-order formula n = ∀X H[X] →⊥ where H[X] is a conjunct called hypothesis of n and X is a sequence of variables appearing in the hypothesis. For example, n = ∀x∀y∀z(supervises(x, y) ∧ work_in(x, z) ∧ directs(y, z)) → ⊥, means that it is impossible for x to supervise y if x works in department z and y directs z. The Knowledge Base K = (F , R, N) consists of a finite set of facts F , a finite set of existential rules R and a finite set of negative constrains N .

Example 1. The following example is inspired from [START_REF] Calì | A general datalog-based framework for tractable query answering over ontologies[END_REF]. In an enterprise, employees work in departments and use offices which are located in departments, some employees direct departments, and supervise other employees. In addition, a supervised employee cannot be a manager. A director of a given department cannot be supervised by an employee of the same department, and an employee cannot work in more than one department. The following sets of (existential) rules R and negative constraints N model the corresponding ontology:

R =          ∀x∀y (works_in(x, y) → emp(x)) (r 1) ∀x∀y (directs(x, y) → emp(x)) (r 2) ∀x∀y (directs(x, y) ∧ works_in(x, y) → manager(x)) (r 3) ∀x∀y∀z locate_office(y, z) ∧ uses_office(x, y) → works_in(x, z) (r 4) N =      ∀x∀y (supervises(x, y) ∧ manager(y)) → ⊥ (n 1) ∀x∀y∀z (supervises(x, y) ∧ works_in(x, z) ∧ directs(y, z)) → ⊥ (n 2) ∀x∀y∀z (works_in(x, y) ∧ works_in(x, z)) → ⊥
(n 3) Let us suppose the following set of facts F that represent explicit knowledge:

F =                directs(John, d 1) (f 1) directs(Tom, d 1) (f 2) directs(Tom, d 2) (f 3) supervises(Tom, John) (f 4) works_in(John, d 1) (f 5) works_in(Tom, d 1) (f 6) works_in(Carlo, Statistics) (f 7) works_in(Luca, Statistics) (f 8) works_in(Jane, Statistics) (f 9) works_in(Linda, Statistics) (f 10) uses_office(Linda, o 1) (f 11) locate_office(o 1 , Accounting) (f 12)
R-derivation. Let F ⊆ F be a set of facts and R be a set of rules. An R-derivation of F in K is a finite sequence F 0 , ..., F n of sets of facts such that F 0 = F, and for all i ∈ {0, ..., n -1} there is a rule

r i = (H i ,C i) ∈ R and a homomorphism π i from H i to F i such that F i+1 = F i ∪ {π(C i)}.
For a set of facts F ⊆ F and a query Q and a set of rules R, we say F, R |= Q if and only if there exists an R-derivation F 0 , ..., F n such that F n |= Q. Closure. Given a set of facts F ⊆ F and a set of rules R, the closure of F with respect to R, denoted by Cl R (F), is defined as the smallest set (with respect to ⊆) which contains F and is closed under R-derivation.

Finally, we say that a set of facts F ⊆ F and a set of rules R entail a fact f (and we write F, R |= f) if and only if the closure of F by all the rules entails f (i.e. Cl R (F) |= f).

A conjunctive query (CQ) has the form Q(X) = ∃YΦ[X, Y] where Φ[X, Y] is a conjunct such that X and Y are variables appearing in Φ. A boolean CQ (BCQ) is a CQ of the form Q() with an answer yes or no, e.g. Q = ∃x emp(x). We refer to a BCQ with an answer no as failed query, whereas a query with the answer yes as accepted query. Unless stated otherwise, we refer to a BC query as a query.

Inconsistency-Tolerant Semantics

Given a knowledge base K = (F , R, N), a set F ⊆ F is said to be inconsistent if and only if there exists a constraint n ∈ N such that F |= H n , where H n is the hypothesis of the constraint n. A set of facts is consistent if and only if it is not inconsistent. A set

F ⊆ F is R-inconsistent if and only if there exists a constraint n ∈ N such that Cl R (F) |= H n . A set of facts is said to be R-inconsistent if and only if it is not R-consistent. A knowledge base (F , R, N) is said to be inconsistent if and only if F is R-inconsistent.
Notice that (like in classical logic), if a knowledge base K = (F , R, N) is inconsistent, then everything is entailed from it. A common solution [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF][START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF] is to construct maximal (with respect to set inclusion) consistent subsets of K . Such subsets are called repairs and denoted by Repair(K). Once the repairs are computed, different semantics can be used for query answering over the knowledge base. In this paper we focus on (Intersection of Closed Repairs semantics) [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF].

Definition 2 (ICR-semantics). Let K = (F , R, N) be a knowledge base and let Q be a query. Q is ICR-entailed from K , written K |= ICR Q if and only if:

A ∈Repair(K) Cl R (A) |= Q. Example 2.
The knowledge base in Example 1 is inconsistent because the set of facts { f 1 , f 4 , f 6 } ⊆ F is inconsistent since it violates the negative constraint n 2 . To be able to reason in presence of inconsistency one has to construct first the repairs and intersect their closure. The following is of the repairs: A 1 = {directs(John, d 1), supervises(Tom, John), works_in(Linda, Statistic), uses_office(Linda, o 1), directs(Tom, d 1), directs(Tom, d 2), works_in(Carlo, Statistic), works_in(Jane, Statistic), works_in(Luca, Statistic), emp(John), emp(Tom), emp(Carlo), emp(Luca), emp(Jane), emp(Linda)}. The intersection of all closed repairs is:

A∈Repair(K)) Cl R (A) = {directs(Tom, d 1), directs(Tom, d 2)
, works_in(Carlo, Statistics), works_in(Luca, Statistics), works_in(Jane, Statistics), emp(Carlo), emp(Jane), emp(Luca), emp(Tom), emp(John), emp(Linda)}.

Observe that in the intersection of all closed repairs there is works_in(Luca, Statistics). That means that works_in(Luca, Statistics) is ICR-entailed from the knowledge base. Whereas, works_in(Linda, Statistics) is not ICR-entailed since the facts about Linda are conflicting (because she works also for the department of Accounting). We can conclude that the ICR-semantics is prudent and operates according to the principle "when in doubt, throw it out".

Argumentation Framework, Deepening and Clarification

In what follows we present the definition of argumentation framework in the context of rule-based languages. We use the definition of argument of [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] and extend it to the notions of deepened and clarified arguments.

Rule-Based Dung Argumentation Framework

As defined in [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF], given a knowledge base K = (F , R, N), the corresponding argumentation framework A F K is a pair (Arg, Att) where Arg is the set of arguments that can be constructed from F and Att is an asymmetric binary relation called attack defined over Arg × Arg. An argument is defined as follows.

Definition 3 (Argument [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF]). Given a knowledge base K = (F , R, N), an argument a is a tuple a = (F 0 , F 1 , . . . , F n ,C) where: Definition 4 (Attack [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF]). The attack between two arguments expresses the conflict between their conclusion and support. An argument a attacks an argument b iff there exists a fact f ∈ Supp(b) such that {Conc(a), f } is R-inconsistent.

• (F 0 , . . . , F n) is an R-derivation of F 0 in K , • C is
Example 4 (Attack). Consider the argument a of Example 3, the following argument b = ({supervises(Tom, John), works_in(Tom, d 1)}, supervises(Tom, John) ∧ works _in(Tom, d 1)) attacks a, because {supervises(Tom, John)∧works_in(Tom,d 1), direc ts(John, d 1)} is R-inconsistent since it violates the constraint n 2 .

Admissibility, Semantics and Extensions

Let K = (F , R, N) be a knowledge base and A F K its corresponding argumentation framework. Let E ⊆ Arg be a set of arguments. We say that E is conflict free if and only if there exist no arguments a, b ∈ E such that (a, b) ∈ Att. E defends an argument a if and only if for every argument b ∈ Arg, if we have (b, a) ∈ Att then there exists c ∈ E such that (c, b) ∈ Att. E is admissible if and only if it is conflict free and defends all its arguments. E is a preferred extension if and only if it is maximal (with respect to set inclusion) admissible set (please see [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] for other types of semantics).

We denote by Ext(A F K) the set of all extensions of A F K under one Dung's semantics. An argument is sceptically accepted if it is in all extensions, credulously accepted if it is in at least one extension and not accepted if it is not in any extension.

Equivalence between ICR and Preferred semantics

Let K = (F , R, N) be a knowledge base and A F K the corresponding argumentation framework. A query Q is sceptically accepted under preferred semantics if and only if

(E ∈Ext(A F K) Concs(E)) Q, such that Concs(E) = a∈E Conc(a)
. The results of [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] show the equivalence between sceptically acceptance under preferred semantics and ICR-entailment:

Theorem 1 (Semantics equivalence [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF]). Let K = (F , R, N) be a knowledge base, let A F K the corresponding argumentation framework, Q a query. K |= ICR Q if and only if Q sceptically accepted under preferred semantics.

Deepening and Clarifying

In the following we show some functionalities that give the User the possibility to manipulate arguments to gain clarity, namely: deepening and clarification.

Deepening aims at showing the reason why an argument attacks another. In our knowledge base the attack is justified by the violation of a constraint. Put differently, an argument attacks another argument if the conclusion of the former and the hypothesis of the latter are mutually exclusive. Thus deepening amounts to explain the attack between two arguments by showing the violated constraint. The information carried by the argument would be more useful if the structure exhibits the line of reasoning that leads to the conclusion. We call this clarifying the argument.

Definition 6 (Clarifying C). Given an argument a ∈ Arg. The mapping clarification denoted by C is a total function from the set Arg to 2 R such that: C(a = F 0 , ..., F n ,C) = {r|r ∈ R such that r is applicable to F i and the application of r on F i yields F i+1 for all i ∈ {0, ..., n -1}}. Relying on these notions, in the next section, we provide an argumentation-based explanation called dialectical-explanation based on Walton's Dialogical Model of Explanation [START_REF] Walton | A new dialectical theory of explanation[END_REF][START_REF]Explanation-Aware Computing[END_REF][START_REF] Walton | A Dialogue System Specification for Explanation[END_REF]. In this type of dialogue an exchange of information takes place between an Explainer and Explainee with the purpose of explaining certain assertions.

Dialectical Explanation for Query Failure

In what follows we describe a simple dialectical system of explanation based on the work of [START_REF] Walton | A new dialectical theory of explanation[END_REF][START_REF]Explanation-Aware Computing[END_REF][START_REF] Walton | A Dialogue System Specification for Explanation[END_REF]. Our system is custom-tailored for the problem of Query Failure Explanation under ICR-semantics in inconsistent knowledge bases with rule-based language. Our dialectical explanation involves two parties: the User (the explainee) and the Reasoner (the explainer). The User wants to understand why the query is not ICR-entailed and the Reasoner provides a response aiming at showing the reason why the query is not ICR entailed. We model this explanation through a dialogue composed of moves (speech acts) put forward by both the User and the Reasoner.

Example 7 (Motivating Example Count. Example 1). Consider the following conjunctive query Q(x) = ∀x works_in(x, Statistics) stands for "Get me all the employees in the department of statistics". The system returns as a result the set of answers A = {Carlo, Luca, Jane} under ICR-semantics. The User expected that the query Q(Linda) = Works_in(Linda, Statistics) is also ICR-entailed, that means "Linda" is a part of the answers of Q(x). In addition, the User knows also a set of arguments that support his/her expectation denoted by Arg + (Q(Linda)) = {ω} such that ω = ({works_in(Linda, Statistics)}, works_in(Linda, Statistics)) which stands for "Linda is an employee in the department of statistics since it is specified as a fact". Now the User wants to understand why Q(Linda) is not ICR-entailed. A dialectical explanation is represented as follows:

1. User: Why not Q(Linda) given that ω ? 2. Reasoner: Because ({Works_in(Linda, Accounting)},Works_in(Linda, Accounting)) (is a counterargument denoted by ω 1) 3. User: Why Works_in(Linda, Accounting) ? 4. Reasoner: Because uses_office(Linda, o 1) and locate_in(o 1 , Accounting) so works_in(Linda, Accounting) 5. User: how's that can be a problem ? 6. Reasoner: The following negative constraint is violated n 3 = ∀x∀y∀z (works_in(x, y) ∧ works_in(x, z)) → ⊥.

We denote by Arg + (Q) the set of all arguments that support the query Q, namely

a ∈ Arg + (Q) if and only if Conc(a) |= Q.
This dialogue is governed by rules (pre/post conditions, termination and success rules) that specify what type of moves should follow the other, the conditions under which the dialogue terminates, and when and under which conditions the explanation has been successfully achieved (success rules).

In what follows we define types of moves that can be used in the dialogue.

Definition 8 (Moves).

A move is a 3-tuple m = ID, I, ω such that:

1. m is an explanation request, denoted by m ERQ if and only if ID = User, I is a query Q and ω is an argument supporting Q. 2. m is an explanation response, denoted by m ERP if and only if ID = Reasoner, I is an argument supporting Q and ω is an argument such that ω attacks I. 3. m is a follow-up question, denoted by m FQ if and only if ID = User, I is an argument and ω is either Conc(I) or an argument ω 1 that supports Q such that (ω, ω 1) ∈ Att. 4. m is a follow-up answer, denoted by m FA if and only if ID = Reasoner, I is an argument and ω is either a deepening D or a clarified argument C(I).

The explanation request m ERQ = User, Q, ω is an explanation request made by the User asking "why the query Q is not ICR-entailed while there is an argument ω asserts the entailment of Q", an explanation response m ERP = Reasoner, ω, ω 1 made by the Reasoner is an explanation for the previous inquiry by showing that the argument ω (that supports Q) is the subject of an attack made by ω 1 . The User also can ask a follow-up question if the Reasoner provides an explanation. The follow-up question m FQ = User, ω 1 , ω is a compound move, it can represent a need for deepening (the User wants to know why the argument ω 1 is attacking the argument ω) or the need for clarification (how the argument ω 1 comes to a certain conclusion). To distinguish them, the former has ω = Conc(ω 1) and the latter has ω as an argument. A follow-up answer m FA = Reasoner, ω 1 , ω 1 is also a compound move. Actually, it depends on the follow-up question. It shows the argument ω 1 that needs to be deepened (resp. clarified) and its deepening (resp. clarification) by the deepening mapping D(ω 1 , ω) (resp. clarification mapping C(ω)) in Definition 4 (resp. Definition 6).

In what follows we specify the structure of dialectical explanation and the rules that have to be respected throughout the dialogue. Definition 9 (Dialectical Explanation). Given a QFEP P. A dialectical explanation D exp for P is a non-empty sequence of moves m s 1 , m s 2 , ..., m s n where s ∈ {ERQ, FQ, ERP, FA} and i ∈ {1, ..., n} such that:

1. The first move is always an explanation request m ERQ 1 , we call it an opening. 2. s ∈ {ERQ, FQ} if and only if i is odd, s ∈ {ERP, FA} if and only if i is even.

3. For every explanation request m ERQ i = User, I i , ω i , I i is the query Q to be explained and ω i is an argument supporting Q and for all m ERQ j such that j < i ω i = ω j . 4. For every explanation response m ERP i = Reasoner, I i , ω i such that i ≥ 1, I i = ω i-1 and ω i = ω such that (ω , I i) ∈ Att. 5. For every follow-up question m FQ i = User, I i , ω i , i 1, I i = ω i-1 and ω is either I i-1 or Conc(ω i-1). 6. For every follow-up answer m FA i = Reasoner, I i , ω i , i 1, I i = I i-1 and ω i = D(I i , ω i-1) or ω = C(I i).

We denote by Arg user (D exp) the set of all arguments put by the User in the dialogue.

As stated, a dialectical explanation is a sequence of moves put forward by either the User or the Reasoner. In the following example we model the dialectical explanation of Example 7 and we show the encoding of different moves.

Example 8 (Cont. Example 7). The opening in line (1) (first move) is an explanation request m ERQ 1 = User, Q(Linda), ω , the Reasoner responded with an explanation response m ERP 2 = Reasoner, ω, ω 1 then the User asked a follow-up question seeking clarification m FQ 3 = User, ω 1 , Conc(ω 1) to know why Conc(ω 1)="Linda is working in department of Accounting". The Reasoner responded with a followup answer for clarification m FA 4 = Reasoner, ω 1 , C(ω 1) showing a line of reasoning that led to the conclusion Conc(ω 1). Another type of follow-up question is presented in line [START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontology-based data access[END_REF] in which the User asked a follow-up question for deepening m FA 5 = Reasoner, ω 1 , ω wondering how the fact that "working in department of Accounting contradicts that Linda works in Department of statistics". The Reasoner responded with a follow-up answer m FA 6 = Reasoner, ω 1 , D(ω 1 , ω) such that D(ω 1 , ω))="An employee cannot work in two different departments at once". The key point of such responses is that it reflects the intuition described in Section 2 about ICR-semantics which dictates that if there is a conflicting information about the query Q then it cannot be deduced.

Every dialogue has to respect certain conditions (protocol). Theses conditions organize the way the Reasoner and the User should put the moves. For each move we specify the conditions that have to be met for the move to be valid (preconditions). We also specify the conditions that identify the next moves (postconditions).

Definition 10 (Pre/Post Condition Rules). Given a QFEP P and a dialectical explanation D exp for P. Then, D exp has to respect the following rules:

Explanation request:

• Preconditions: The beginning of the dialogue or the last move of the Reasoner was either an explanation response or a follow-up answer. • Postconditions: The next move must be an explanation answer.

Explanation response:

• Preconditions: The last move by the User was an explanation request.

• Postconditions: The next move must be either another explanation request (it may implicitly means that the User had not understood the previous explanation) or a follow-up question.

Follow-up question:

• Preconditions: The last move by the Reasoner was an explanation response or this follow-up question is not the second in a row. • Postconditions: The next move must be a follow-up answer.

Follow-up answer:

• Preconditions: The last move by the User was a follow-up question.

• Postconditions: The next move must be an explanation request (it may implicitly means that the User had not understood the previous explanation).

Beside the previous rules, there are termination rules that indicate the end of a dialectical explanation.

Definition 11 (Termination Rules). Given a QFEP P and a dialectical explanation D exp for P. Then D exp terminates when the User puts an empty explanation request m ERQ = User, / 0, / 0 or when Arg User (D exp) = Arg + (Q).

The rules in Definition 9, 10 and 11 state that the Reasoner is always committed to respond with an explanation response, the User then may indicate the end of the dialogue by an empty explanation request (Definition 11) declaring his/her understanding, otherwise starts another explanation request (this indicates that he/she has not understood the last explanation) or asks a follow-up question, the User cannot ask more than two successive follow-up questions. If the User asks a follow-up question then the Reasoner is committed to a follow-up answer. When the User asks for another explanation he/she cannot use an argument that has already been used. If the User ran out of arguments and he/she has not yet understood, the dialogue ends (Definition 11) and the explanation is judged unsuccessful. It is important to notice that when the Reasoner wants to answer the User there may be more than one argument to choose. There are many "selection strategies" that can be used in such case (for instance, the shortest argument, the least attacked argument, etc.), but their study is beyond the scope of the paper.

In what follows we elaborate more on the success and the failure rules.

Definition 12 (Success Rules). Given a QFEP P and a dialectical explanation D exp for P. Then D exp is successful when it terminates with an empty explanation request m ERQ i = User, / 0, / 0 , otherwise it is unsuccessful.

A dialectical explanation is judged to be successful if the User terminates the dialogue voluntarily by putting an empty explanation request. If the User has used all arguments supporting Q then he/she is forced to stop without indicating his/her understanding, in this case we consider the explanation unsuccessful.

By virtue of the equivalence between ICR-semantics and argumentation presented in Section 3, the existence of response is always guaranteed. This property is depicted in the following proposition.

Proposition 1 (Existence of response). Given a QFEP P and a dialectical explanation D exp for P. Then for every m s i ∈ D exp such that s ∈ {ERQ, FQ} and 1 ≤ i ≤ |D exp |, the next move m s i+1 such that s ∈ {ERP, FA} always exists.

Proof. For the move m ERQ i = User, Q, ω the query Q is not ICR-entailed therefore the argument ω that supports Q is not sceptically accepted, hence there is always an argument ω such that (ω , ω) ∈ Att. Thus we can construct the following explanation response move: m ERP i+1 = Reasoner, ω, ω such that s ∈ {ERP}. For the move m FA i the proof is immediate since the mappings deepening D and clarification C are total functions. Another issue is the finiteness of the dialectical explanation. It is not hard to conclude that a dialectical explanation is finite (from success and termination rules).

Proposition 2 (Finiteness). Given a QFEP P and a dialectical explanation D exp for P. D exp is finite.

Conclusion

In this paper we have presented a dialogical approach for explaining boolean conjunctive queries failure, designated by Query Failure Explanation Problem (QFEP), in an inconsistent ontological knowledge base where inconsistency is handled by inconsistency-tolerant semantics (ICR) and issued from the set of facts. The introduced approach relies on both (i) the relation between ontological knowledge base and logical argumentation framework and (ii) the notions of argument deepening and clarifications. So, through a dialogue, the proposed approach explains to the User how and why his/her query is not entailed under ICR semantics.

For future work, we aim at generalizing the explanation to general conjunctive queries and studying the proposed explanation in the context of other inconsistencytolerant semantics.

 an atom, a conjunction of atoms, the existential closure of an atom or the existential closure of a conjunction of atoms such that F n |= C. F 0 is the support of the argument a (denoted Supp(a)) and C is its conclusion (denoted Conc(a)). Example 3 (Argument). The following argument indicates that John is an employee because he directs department d 1 : a = ({directs(John, d 1)}, {directs(John, d 1), emp(John)}, emp(John)).

Definition 5 (

 5 Deepening D). Given two arguments a, b ∈ Arg. The mapping deepening denoted by D is a total function from the set Att to 2 N defined as follows: D(b, a) = {nc| 1. nc ∈ N and , 2. ∃ f ∈ Supp(a) such that Cl R ({Conc(b), f }) |= H nc . }, where H nc is the hypothesis of the constraint nc. Example 5 (Deepening). Consider the argument a of Example 3, the argument b = ({supervises(Tom, John), works_in(Tom, d 1)}, supervises(Tom, John) ∧ works_in (Tom, d 1)) attacks a. Deepening is D(b, a) = {∀x∀y∀z (supervises(x, y)∧ work_in(x, z) ∧ directs(y, z)) → ⊥} which explains why the argument b attacks a.

Definition 7 (

 7 Clarified Argument). Given an argument a ∈ Arg. The corresponding clarified argument C a is a 3-tuple Supp(a), C(a), Conc(a) such that C(a) ⊆ R are the rules used to derive the conclusion Conc(a). Example 6 (Clarification count. Example 3). A clarified version of the argument a is C a =({diretcs(John, d 1)}, {∀x∀d directs(x, d) → emp(x)}, emp(John))} such that Supp(a) = {directs(John, d 1)}, C(a) = {∀x∀d directs(x, d) → emp(x)} and Conc(a) = emp(John).

Acknowledgements The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/ 2007-2013) under the grant agreement n o FP7-265669-EcoBioCAP project.