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Query Failure Explanation in Inconsistent
Knowledge Bases: A Dialogical Approach

Abdallah Arioua, Nouredine Tamani, Madalina Croitoru and Patrice Buche

Abstract In the EcoBioCap project (www.ecobiocap.eu) about the next generation
of packaging, a decision support system has been built that uses argumentation to
deal with stakeholder preferences. However, when testing the tool the domain ex-
perts did not always understand the output of the system. The approach developed
in this paper is the first step to the construction of a decision support system en-
dowed with an explanation module. We place ourselves in the equivalent setting
of inconsistent Ontology-Based Data Access (OBDA) and addresses the problem
of explaining Boolean Conjunctive Query (BCQ) failure. Our proposal relies on an
interactive and argumentative approach where the processes of explanation takes
the form of a dialogue between the User and the Reasoner. We exploit the equiva-
lence between argumentation and inconsistency tolerant semantics to prove that the
Reasoner can always provide an answer for user’s questions.

1 Introduction

In the popular ONTOLOGY-BASED DATA ACCESS setting the domain knowledge is
represented by an ontology facilitating query answering over existing data [19]. In
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practical systems involving large amounts of data and multiple data sources, data in-
consistency with respect to the ontology is difficult to prevent. Many inconsistency-
tolerant semantics [5, 4, 16, 17] have been proposed that rely on the notion of data
repairs i.e. subsets of maximally consistent data with respect to the ontology. Differ-
ent query answering strategies over these repairs (called semantics) are investigated
in the literature. For instance, computing answers that hold in every repair corre-
sponds to AR-semantics, computing answers that hold under the intersection closed
repairs corresponds to ICR-semantics, etc.

In this paper we will consider inconsistent knowledge bases and focus on the
ICR-semantics (Intersection of Closed Repair). The particular choice of the ICR-
semantics for OBDA is due to its interesting productivity properties as shown in [4].
Under the ICR-semantics, maximal (in terms of set inclusion) consistent subsets
(called repairs) of the knowledge base are constructed. Querying the knowledge
base is done on the intersection of repairs after ontology closure.

Query answering under these semantics may not be intuitively straightforward
and can lead to loss of user’s trust, satisfaction and may affect the system’s usability
[18]. Moreover, as argued by Calvanese et al. in [10] explanation facilities should
not just account for user’s “Why Q ?” question (why a query holds under a given
inconsistency-tolerant semantics) but also for question like “Why not Q 7 (why a
query does not hold under a given inconsistency-tolerant semantics), which is the
research problem addressed in this paper. Precisely: “Given an inconsistent knowl-
edge base, denoted by KB, and a boolean conjunctive query Q, why Q is not entailed
from KB under the ICR-semantics?”.

To address this issue we use argumentation as an approach for explanation. We
consider the logical instantiation of Dung’s [14] abstract argumentation framework
for OBDA in [12] and we exploit the equivalence result shown by the authors be-
tween the ICR-semantics and sceptical acceptance under preferred semantics to
guarantee the existence of an explanation for any failed query. The explanation takes
the form of a dialogue between the User and the Reasoner with the purpose of ex-
plaining the query failure. At each level of the dialogue we use (an introduced)
language-based primitives such as clarification and deepening to refine the answer.

This paper improves over and extends the work presented in [1]. Its contribution
lies in the following points: first, it puts forward the explanation power of argu-
mentation in the benefit of Semantic Web. Second, it improves OBDA system’s us-
ability and enhances its user-friendliness. To the best of our knowledge, we are the
first to propose query failure explanation in the context of OBDA for inconsistent
knowledge bases by means of argumentation. Our approach differs from [6, 10]
in handling query failure since we consider an inconsistent setting within OBDA. In
addition, the work presented in [15] is neither applied to an OBDA context nor to
the Datalog+/- language.

The paper is organized as follows. In Section 2, we recall the scope of the paper
and formally define the addressed problem using an illustrating example. In Section
3 and 4, we present the language and the corresponding argumentation framework.
In Section 5, we introduce the formalization of the proposed explanation and show
several properties. Finally, Section 6 concludes the paper.
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2 Paper in a Nutshell

Let us introduce the motivation and the formal context of our work.

The Context. Several semantics that allow answering queries in the presence of
inconsistency have been studied in the literature and here we only focus on the ICR-
semantics.

The Problem. Consider a knowledge base about university staff and students which
contains inconsistent knowledge. This inconsistency is handled by ICR-semantics.
The User might be interested in knowing why the knowledge base does not entail
the query Q:*Luca is a student”. Such query failure might occur, for instance, after
the User does not find in the answer set the expected output (e.g. the User asked
for all the students and Luca did not appear in the answer list). Another possibility
is when the User asks for the existence of students in the knowledge base and the
system answers that no students are present in the knowledge base.

Observe that the answer 8 (e.g. Luca in the example above) is a negative answer
for a conjunctive query Q (e.g. get me all the students in the example above) if
and only if the boolean conjunctive query Q(6) (e.g. student(Luca) in the example
above) has failed. Hence, in this paper we concentrate only on explaining the failure
of a boolean conjunctive query. Let us formally introduce the problem of Query
Failure Explanation in inconsistent knowledge bases.

Definition 1 (Query Failure Explanation Problem 7). Let % be an inconsistent
knowledge base, QO a Boolean Conjunctive Query such that 2 F;cp Q. We call
&P = (' ,0Q) a Query Failure Explanation Problem (QFEP).

The Guidelines of the Solution. To address the Query Failure Explanation Prob-
lem, we use a logical instantiation of Dung’s [14] abstract argumentation framework
for OBDA in [12] which ensures that the argumentation framework used through-
out the paper respects the rationality postulates [11]. The arguments are then used
for query failure explanation as follows. First, we introduce two notions over the
arguments: clarifying and deepening. The former notion serves at unfolding the
knowledge used in the argument, and the latter is used to explicit the reason for an
attack between two arguments. We then describe a dialectical system of explanation
custom-tailored for inconsistent knowledge base query failure. The User and the
Reasoner will take turns in a dialogue with the final aim that the User understands
why a query is not entailed under the ICR-semantics by the knowledge base.

3 Formal Settings

In this section, we introduce: (1) OBDA setting and representation language, (2) the
inconsistency-tolerant semantics.
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3.1 OBDA Setting

There are two major approaches to represent an ontology for the OBDA problem:
Description Logics (such as &.% [2] and DL-Lite [9] families) and rule-based lan-
guages (such as Datalog+/- [7] language, a generalization of Datalog that allows for
existentially quantified variables in rules heads). Despite Datalog+/- undecidability
when answering conjunctive queries, different decidable fragments of Datalog+/-
are studied in the literature [3]. These fragments generalize the aforementioned
Description Logics families and overcome their limitations by allowing any predi-
cate arity as well as cyclic structures. Here we follow the second method and use
a general rule-based setting knowledge representation language equivalent to the
Datalog+/- language.

3.2 Language Specification

We consider the positive existential conjunctive fragment of first-order logic, de-
noted by FOL(A,3), which is composed of formulas built with the connectors
(A,—) and the quantifiers (3,V). We consider first-order vocabularies with con-
stants but no other function symbol. A term ¢ is a constant or a variable, different
constants represent different values (unique name assumption), an atomic formula
(or atom) is of the form p(#y,...,#,) where p is an n-ary predicate, and 71, ...,t, are
terms. A ground atom is an atom with no variables. A variable in a formula is free
if it is not in the scope of a quantifier. A formula is closed if it has no free variables.
We denote by X (with a bold font) a sequence of variables Xi, ..., Xy with k> 1. A
conjunct C[X] is a finite conjunction of atoms, where X is the sequence of variables
occurring in C. Given an atom or a set of atoms A, vars(A), consts(A) and terms(A)
denote its set of variables, constants and terms, respectively.

An existential rule (or simply a rule) is a first-order formula of the form » =
VX VY (H[X,Y]) = 3Z C[Z,Y], with vars(H) = XUY, and vars(C) = ZUY where
H and C are conjuncts called the hypothesis and conclusion of r respectively. We
denote by r = (H,C) a contracted form of a rule r. An existential rule with an empty
hypothesis is called a fact. A fact is an existentially closed (with no free variable)
conjunct. i.e. Ix(teacher(x) A employee(x)).

We recall that a homomorphism 7 from set of atoms A; to set of atoms A is a
substitution of vars(A;) by terms(Az) such that 7(A;) C Az. Given two facts f and
f'. We have f |= f if and only if there is a homomorphism from f’ to f, where =
is the first-order semantic entailment.

A rule r = (H,C) is applicable to a set of facts F if and only if there exists
F' C F such that there is a homomorphism 7 from H to the conjunction of elements
of F'. For instance, the rule Vx(treacher(x) — employee(x)) is applicable to the set
{teacher(Tom),cute(Tom)} because there is a homomorphism from teacher(x) to
teacher(Tom). If a rule r is applicable to a set of facts F, its application according
to 7 produces a set F U{m(C)}. The new set F U{7m(C)}, denoted also by r(F), is
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called immediate derivation of F by r. In our example the produced set (immediate
derivation) is {reacher(Tom),employee(Tom),cute(Tom)}.

A negative constraint (or constraint) is a first-order formula n = VX H[X] — L
where H[X] is a conjunct called hypothesis of n and X is a sequence of vari-
ables appearing in the hypothesis. For example, n = VxVyVz(supervises(x,y) A
work_in(x,z) A directs(y,z)) — L, means that it is impossible for x to supervise
y if x works in department z and y directs z.

The Knowledge Base .7 = (.%,%,./") consists of a finite set of facts .#, a finite
set of existential rules % and a finite set of negative constrains .//".

Example 1. The following example is inspired from [8]. In an enterprise, employ-
ees work in departments and use offices which are located in departments, some
employees direct departments, and supervise other employees. In addition, a super-
vised employee cannot be a manager. A director of a given department cannot be
supervised by an employee of the same department, and an employee cannot work in
more than one department. The following sets of (existential) rules % and negative
constraints .#” model the corresponding ontology:

VxVy (works_in(x,y) — emp(x)) (r1)
VxVy (directs(x,y) — emp(x)) (r2)
) Vay (directs(x,y) Aworks_in(x,y) — manager(x)) (r3)
VxVyVz locate_office(y,z) A uses_office(x,y) — works_in(x,z)  (r4)
VxVy (supervises(x,y) Amanager(y)) — L (m)
N = < VxVyWz (supervises(x,y) Aworks_in(x,z) Adirects(y,z)) = L (n2)
VxVyVz (works_in(x,y) Aworks_in(x,z)) — L (n3)
Let us suppose the following set of facts .% that represent explicit knowledge:
directs(John,d,) (f1) directs(Tom,d) (f2)
directs(Tom,d,) (f3) supervises(Tom,John) (fa)
7 works_in(John,d,) (f5) works_in(Tom,d;) (fo)
works_in(Carlo, Statistics) (f7)  works_in(Luca,Statistics)  (fg)
works_in(Jane,Statistics) (fo)  works_in(Linda,Statistics) (fio)

uses_office(Linda,01)  (fi11) locate_office(o1,Accounting) (fi2)

ZZ-derivation. Let F' C .% be a set of facts and & be a set of rules. An %Z-derivation
of F in % is a finite sequence (Fj, ..., F,) of sets of facts such that Fy = F, and for
alli € {0,...,n—1} there is arule r; = (H;,C;) € % and a homomorphism 7; from H;
to F; such that F;.| = F;U{n(C;)}. For a set of facts F C .% and a query Q and a set
of rules %, we say F,% |= Q if and only if there exists an #Z-derivation (Fp, ..., F,;)
such that F, = Q.
Closure. Given a set of facts ' C .% and a set of rules &, the closure of F with
respect to %, denoted by Clg(F), is defined as the smallest set (with respect to C)
which contains F and is closed under #-derivation.

Finally, we say that a set of facts F C .% and a set of rules % entail a fact f (and
we write F,% = f) if and only if the closure of F by all the rules entails f (i.e.
Clz(F) E 1.



Abdallah Arioua, Nouredine Tamani, Madalina Croitoru and Patrice Buche

A conjunctive query (CQ) has the form Q(X) = IYP[X,Y] where @[X,Y] is a
conjunct such that X and Y are variables appearing in ¢. A boolean CQ (BCQ) is
a CQ of the form Q() with an answer yes or no, e.g. Q = Ixemp(x). We refer to a
BCQ with an answer no as failed query, whereas a query with the answer yes as
accepted query. Unless stated otherwise, we refer to a BC query as a query.

3.3 Inconsistency-Tolerant Semantics

Given a knowledge base .7 = (#,%,./), aset F C % is said to be inconsistent
if and only if there exists a constraint n € .4 such that F |= H,, where H, is the
hypothesis of the constraint n. A set of facts is consistent if and only if it is not
inconsistent. A set F C .% is Z-inconsistent if and only if there exists a constraint
n € 4 suchthat Cl,(F) = Hy. A set of facts is said to be Z-inconsistent if and only
if it is not Z-consistent. A knowledge base (F,%,./") is said to be inconsistent if
and only if .# is Z-inconsistent.

Notice that (like in classical logic), if a knowledge base % = (F,Z,./) is
inconsistent, then everything is entailed from it. A common solution [4, 16] is to
construct maximal (with respect to set inclusion) consistent subsets of .#". Such
subsets are called repairs and denoted by Zepair(#"). Once the repairs are com-
puted, different semantics can be used for query answering over the knowledge base.
In this paper we focus on (Intersection of Closed Repairs semantics) [4].

Definition 2 (ICR-semantics). Let 2" = (F,%,.4") be a knowledge base and let
O be a query. Q is ICR-entailed from %", written JZ |=;cg Q if and only if:

ﬂ,&/e.%epair(){/) Clgg(ﬂf) ): 0.
Example 2. The knowledge base in Example 1 is inconsistent because the set of
facts {f1, fa, fo} C .Z is inconsistent since it violates the negative constraint n,. To
be able to reason in presence of inconsistency one has to construct first the repairs
and intersect their closure. The following is of the repairs:
) = {directs(John,d, ), supervises(Tom,John), works_in(Linda, Statistic),
uses_office(Linda,01), directs(Tom,d), directs(Tom,d,), works_in(Carlo,
Statistic), works_in(Jane, Statistic), works_in(Luca, Statistic), emp(John),
emp(Tom), emp(Carlo), emp(Luca), emp(Jane), emp(Linda)}.
The intersection of all closed repairs is:
Nacszepair(x)) CLaz(A) = {directs(Tom,d,), directs(Tom,d, ), works_in(Carlo,
Statistics), works_in(Luca, Statistics), works_in(Jane, Statistics), emp(Carlo),
emp(Jane), emp(Luca), emp(Tom), emp(John), emp(Linda)}.

Observe that in the intersection of all closed repairs there is works_in(Luca, Statistics).
That means that works_in(Luca, Statistics) is ICR-entailed from the knowledge
base. Whereas, works_in(Linda, Statistics) is not ICR-entailed since the facts about
Linda are conflicting (because she works also for the department of Accounting).
We can conclude that the ICR-semantics is prudent and operates according to the
principle “when in doubt, throw it out”.
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4 Argumentation Framework, Deepening and Clarification

In what follows we present the definition of argumentation framework in the context
of rule-based languages. We use the definition of argument of [12] and extend it to
the notions of deepened and clarified arguments.

4.1 Rule-Based Dung Argumentation Framework

As defined in [12], given a knowledge base # = (F,Z,.V), the corresponding
argumentation framework o/ F , is a pair (Arg,Att) where Arg is the set of ar-
guments that can be constructed from .% and Att is an asymmetric binary relation
called attack defined over Arg X Arg. An argument is defined as follows.

Definition 3 (Argument [12]). Given a knowledge base %" = (%, %,./), an ar-
gument a is a tuple a = (Fy, Fy, ..., F,,C) where:

o (Fy,...,F,) is an Z-derivation of Fp in ¢/,

e C is an atom, a conjunction of atoms, the existential closure of an atom or the
existential closure of a conjunction of atoms such that F;, = C.

Fpy is the support of the argument a (denoted Supp(a)) and C is its conclusion
(denoted Conc(a)).

Example 3 (Argument). The following argument indicates that John is an employee
because he directs department d:
a = ({directs(John,d\)},{directs(John,d,),emp(John)},emp(John)).

Definition 4 (Attack [12]). The attack between two arguments expresses the con-
flict between their conclusion and support. An argument a attacks an argument b iff
there exists a fact f € Supp(b) such that {Conc(a), f} is Z-inconsistent.

Example 4 (Attack). Consider the argument a of Example 3, the following argument

b = ({supervises(Tom,John),works_in(Tom,d )}, supervises(Tom,John) Aworks

_in(Tom,dy)) attacks a, because {supervises(Tom,John) Aworks_in(Tom,d ), direc
ts(John,dy)} is Z-inconsistent since it violates the constraint ;.

4.1.1 Admissibility, Semantics and Extensions

Let % = (F,%,./) be aknowledge base and & % y its corresponding argumen-
tation framework. Let & C Arg be a set of arguments. We say that & is conflict free
if and only if there exist no arguments a,b € & such that (a,b) € Att. & defends
an argument a if and only if for every argument b € Arg, if we have (b,a) € Att
then there exists ¢ € & such that (¢,b) € Att. & is admissible if and only if it is
conflict free and defends all its arguments. & is a preferred extension if and only if
it is maximal (with respect to set inclusion) admissible set (please see [14] for other
types of semantics).
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We denote by Ext (o7 .% 4 ) the set of all extensions of 7%  under one Dung’s
semantics. An argument is sceptically accepted if it is in all extensions, credulously
accepted if it is in at least one extension and not accepted if it is not in any extension.

4.1.2 Equivalence between ICR and Preferred semantics

Let # = (% ,%,./") be aknowledge base and <7 %  the corresponding argumen-
tation framework. A query Q is sceptically accepted under preferred semantics if and
only if (Ngepxe (w7 ) Concs(&)) F Q, such that Concs(&’) = Uyes Conc(a). The
results of [12] show the equivalence between sceptically acceptance under preferred
semantics and ICR-entailment:

Theorem 1 (Semantics equivalence [12]). Let #" = (F,%,. N ) be a knowledge
base, let o/ F y the corresponding argumentation framework, Q a query. X =jcgr
Q if and only if Q sceptically accepted under preferred semantics.

4.2 Deepening and Clarifying

In the following we show some functionalities that give the User the possibility to
manipulate arguments to gain clarity, namely: deepening and clarification.

Deepening aims at showing the reason why an argument attacks another. In our
knowledge base the attack is justified by the violation of a constraint. Put differ-
ently, an argument attacks another argument if the conclusion of the former and the
hypothesis of the latter are mutually exclusive. Thus deepening amounts to explain
the attack between two arguments by showing the violated constraint.

Definition 5 (Deepening D). Given two arguments a,b € Arg. The mapping deep-
ening denoted by I is a total function from the set Att to 2" defined as follows:
D(b,a) = {nc| 1. nc € A and,
2. 3f € Supp(a) such that C1,({Conc(b), f}) = Hpc.
}, where H, is the hypothesis of the constraint nc.

Example 5 (Deepening). Consider the argument a of Example 3, the argument b =
({supervises(Tom,John), works_in(Tom,dy)}, supervises(Tom,John) A works_in
(Tom,d,)) attacks a. Deepening is D(b,a) = {VxVyVz (supervises(x,y) A
work_in(x,z) Adirects(y,z)) — L} which explains why the argument b attacks a.

The information carried by the argument would be more useful if the structure
exhibits the line of reasoning that leads to the conclusion. We call this clarifying the
argument.

Definition 6 (Clarifying C). Given an argument a € Arg. The mapping clarifica-
tion denoted by C is a total function from the set Arg to 2% such that: Cla =
(Fo, ..., F,C)) = {r|r € Z such that r is applicable to F; and the application of r
on F; yields F1 foralli € {0,....n—1}}.
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Definition 7 (Clarified Argument). Given an argument a € Arg. The correspond-
ing clarified argument C, is a 3-tuple (Supp(a),C(a),Conc(a)) such that C(a) C Z
are the rules used to derive the conclusion Conc(a).

Example 6 (Clarification count. Example 3). A clarified version of the argument
a is C, =({diretes(John,dy)},{VxVd directs(x,d) — emp(x)},emp(John))} such
that Supp(a) = {directs(John,d,)}, C(a) = {VaVddirects(x,d) — emp(x)} and
Conc(a) = emp(John).

Relying on these notions, in the next section, we provide an argumentation-based
explanation called dialectical-explanation based on Walton’s Dialogical Model of
Explanation [21, 20, 13]. In this type of dialogue an exchange of information takes
place between an Explainer and Explainee with the purpose of explaining certain
assertions.

5 Dialectical Explanation for Query Failure

In what follows we describe a simple dialectical system of explanation based on the
work of [21, 20, 13]. Our system is custom-tailored for the problem of Query Failure
Explanation under ICR-semantics in inconsistent knowledge bases with rule-based
language. Our dialectical explanation involves two parties: the User (the explainee)
and the Reasoner (the explainer). The User wants to understand why the query is
not ICR-entailed and the Reasoner provides a response aiming at showing the reason
why the query is not ICR entailed. We model this explanation through a dialogue
composed of moves (speech acts) put forward by both the User and the Reasoner.

Example 7 (Motivating Example Count. Example I). Consider the following con-
junctive query Q(x) = Vxworks_in(x, Statistics) stands for “Get me all the employ-
ees in the department of statistics”. The system returns as a result the set of answers
A = {Carlo,Luca,Jane} under ICR-semantics. The User expected that the query
O(Linda) = Works_in(Linda, Statistics) is also ICR-entailed, that means “Linda”
is a part of the answers of Q(x). In addition, the User knows also a set of argu-
ments that support his/her expectation denoted by Arg™ (Q(Linda)) = { @} such that
o = ({works_in(Linda, Statistics) },works_in(Linda, Statistics)) which stands for
“Linda is an employee in the department of statistics since it is specified as a fact”.
Now the User wants to understand why Q(Linda) is not ICR-entailed. A dialectical
explanation is represented as follows:

1. User: Why not Q(Linda) given that @ ?

2. Reasoner: Because ({Works_in(Linda,Accounting) },Works_in(Linda,
Accounting)) (is a counterargument denoted by ;)

3. User: Why Works_in(Linda,Accounting) ?

4. Reasoner: Because uses_office(Linda,o01) and locate_in(oy,Accounting) so
works_in(Linda,Accounting)

5. User: how’s that can be a problem ?
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6. Reasoner: The following negative constraint is violated
n3 = VxVyVz (works_in(x,y) Aworks_in(x,z)) — L.

We denote by Arg™ (Q) the set of all arguments that support the query Q, namely
a € Arg"(Q) if and only if Conc(a) = Q.

This dialogue is governed by rules (pre/post conditions, termination and success
rules) that specify what type of moves should follow the other, the conditions under
which the dialogue terminates, and when and under which conditions the explana-
tion has been successfully achieved (success rules).

In what follows we define types of moves that can be used in the dialogue.

Definition 8 (Moves). A move is a 3-tuple m = (ID,I, ®) such that:

1. m is an explanation request, denoted by m®™ if and only if ID = User, I is a
query Q and @ is an argument supporting Q.

2. m is an explanation response, denoted by m** if and only if /D = Reasoner,
I is an argument supporting Q and @ is an argument such that @ attacks /.

3. m is a follow-up question, denoted by m™? if and only if ID = User, I is an
argument and o is either Conc([) or an argument ®; that supports Q such that
(w, ) € Att.

4. m is a follow-up answer, denoted by mF if and only if ID = Reasoner, I is an
argument and @ is either a deepening D or a clarified argument C(1).

ERP

The explanation request mE* = (User, Q, ®) is an explanation request made by
the User asking "why the query Q is not ICR-entailed while there is an argument
o asserts the entailment of Q", an explanation response m=¥ = (Reasoner,®, ®;)
made by the Reasoner is an explanation for the previous inquiry by showing that
the argument @ (that supports Q) is the subject of an attack made by @;. The User
also can ask a follow-up question if the Reasoner provides an explanation. The
follow-up question m@ = (User, |, ®) is a compound move, it can represent a
need for deepening (the User wants to know why the argument @, is attacking the
argument m) or the need for clarification (how the argument ®; comes to a certain
conclusion). To distinguish them, the former has @ = Conc(®;) and the latter has @
as an argument. A follow-up answer m™ = (Reasoner, ®;,®/) is also a compound
move. Actually, it depends on the follow-up question. It shows the argument w;
that needs to be deepened (resp. clarified) and its deepening (resp. clarification) by
the deepening mapping D(@;, @) (resp. clarification mapping C(w)) in Definition
4 (resp. Definition 6).

In what follows we specify the structure of dialectical explanation and the rules
that have to be respected throughout the dialogue.

Definition 9 (Dialectical Explanation). Given a QFEP &2. A dialectical expla-
nation %, for & is a non-empty sequence of moves (mj,m3,...,m;) where
s € {ERQ,FQ,ERP,FA} and i € {1,...,n} such that:

1. The first move is always an explanation request mli:RQ, we call it an opening.

2. s € {ERQ,FQ} if and only if i is odd, s € {ERP,FA} if and only if  is even.
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3. For every explanation request m?RQ = (User,I;, w;), I; is the query Q to be ex-

plained and @; is an argument supporting Q and for all mfRQ such that j < i
; ;é @;.

4. For every explanation response m:® = (Reasoner, I;, @;) such that i > 1, I; =
;_1 and @; = @’ such that (@', ];) € Att.

5. For every follow-up question mfa =(UsenI;,w;),i > 1,I; = ®;,—; and o is either
Ii_y or Conc(w;_1).

6. For every follow-up answer mi* = (Reasoner,I;, @), i > 1, I; = I_; and @; =
]D)(Ii, CL),;]) or W = C(ll‘).

We denote by Arg,ser(Zexp) the set of all arguments put by the User in the dialogue.

As stated, a dialectical explanation is a sequence of moves put forward by ei-
ther the User or the Reasoner. In the following example we model the dialectical
explanation of Example 7 and we show the encoding of different moves.

Example 8 (Cont. Example 7). The opening in line (1) (first move) is an explana-
tion request m} = (User, Q(Linda), ®), the Reasoner responded with an explana-
tion response m5™ = (Reasoner, @, ®;) then the User asked a follow-up question
seeking clarification m5" = (User,®;,Conc(®;)) to know why Conc(;)="Linda
is working in department of Accounting”. The Reasoner responded with a follow-
up answer for clarification m§* = (Reasoner, w;,C(®;)) showing a line of reason-
ing that led to the conclusion Conc(®;). Another type of follow-up question is
presented in line (5) in which the User asked a follow-up question for deepen-
ing mlgA = (Reasoner, @, ®) wondering how the fact that “working in department
of Accounting contradicts that Linda works in Department of statistics”. The Rea-
soner responded with a follow-up answer mE* = (Reasoner, @, D(®;, ®)) such that
D(w;, ®))="An employee cannot work in two different departments at once”. The
key point of such responses is that it reflects the intuition described in Section 2
about ICR-semantics which dictates that if there is a conflicting information about

the query Q then it cannot be deduced.

Every dialogue has to respect certain conditions (protocol). Theses conditions or-
ganize the way the Reasoner and the User should put the moves. For each move we
specify the conditions that have to be met for the move to be valid (preconditions).
We also specify the conditions that identify the next moves (postconditions).

Definition 10 (Pre/Post Condition Rules). Given a QFEP & and a dialectical ex-
planation Z,, for &. Then, Z,x,, has to respect the following rules:

Explanation request:

e Preconditions: The beginning of the dialogue or the last move of the Rea-
soner was either an explanation response or a follow-up answer.
e Postconditions: The next move must be an explanation answer.

Explanation response:

e Preconditions: The last move by the User was an explanation request.
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e Postconditions: The next move must be either another explanation request
(it may implicitly means that the User had not understood the previous
explanation) or a follow-up question.

Follow-up question:

e Preconditions: The last move by the Reasoner was an explanation response
or this follow-up question is not the second in a row.
e Postconditions: The next move must be a follow-up answer.

Follow-up answer:

e Preconditions: The last move by the User was a follow-up question.
e Postconditions: The next move must be an explanation request (it may im-
plicitly means that the User had not understood the previous explanation).

Beside the previous rules, there are termination rules that indicate the end of a
dialectical explanation.

Definition 11 (Termination Rules). Given a QFEP £ and a dialectical explanation
Dexp for &. Then ., terminates when the User puts an empty explanation request
mER = (User,0,0) or when Argyser(Zexp) = Arg™ (Q).

The rules in Definition 9, 10 and 11 state that the Reasoner is always commit-
ted to respond with an explanation response, the User then may indicate the end of
the dialogue by an empty explanation request (Definition 11) declaring his/her un-
derstanding, otherwise starts another explanation request (this indicates that he/she
has not understood the last explanation) or asks a follow-up question, the User can-
not ask more than two successive follow-up questions. If the User asks a follow-up
question then the Reasoner is committed to a follow-up answer. When the User
asks for another explanation he/she cannot use an argument that has already been
used. If the User ran out of arguments and he/she has not yet understood, the dia-
logue ends (Definition 11) and the explanation is judged unsuccessful. It is important
to notice that when the Reasoner wants to answer the User there may be more than
one argument to choose. There are many “selection strategies” that can be used in
such case (for instance, the shortest argument, the least attacked argument, etc.), but
their study is beyond the scope of the paper.

In what follows we elaborate more on the success and the failure rules.

Definition 12 (Success Rules). Given a QFEP &7 and a dialectical explanation .,
for &. Then Y.y, is successful when it terminates with an empty explanation re-

quest m?RQ = (User,0,0), otherwise it is unsuccessful.

A dialectical explanation is judged to be successful if the User terminates the
dialogue voluntarily by putting an empty explanation request. If the User has used
all arguments supporting Q then he/she is forced to stop without indicating his/her
understanding, in this case we consider the explanation unsuccessful.

By virtue of the equivalence between ICR-semantics and argumentation pre-
sented in Section 3, the existence of response is always guaranteed. This property is
depicted in the following proposition.



Proposition 1 (Existence of response). Given a QFEP & and a dialectical ex-
planation Doy for &. Then for every m} € Doy, such that s € {ERQ,FQ} and
1 <i < |Dexpl, the next move mj, | such that s € {ERP,FA} always exists.

Proof. For the move mf‘RQ = (User, Q, w) the query Q is not ICR-entailed therefore
the argument @ that supports Q is not sceptically accepted, hence there is always an
argument @’ such that (@', ®) € Att. Thus we can construct the following explana-
tion response move: miy;, = (Reasoner,®,®’) such that s € {ERP}.

For the move mf the proof is immediate since the mappings deepening D and
clarification C are total functions.

Another issue is the finiteness of the dialectical explanation. It is not hard to
conclude that a dialectical explanation is finite (from success and termination rules).

Proposition 2 (Finiteness). Given a QFEP &7 and a dialectical explanation Doy,
Jfor P. Doy is finite.

6 Conclusion

In this paper we have presented a dialogical approach for explaining boolean con-
junctive queries failure, designated by Query Failure Explanation Problem (QFEP),
in an inconsistent ontological knowledge base where inconsistency is handled by
inconsistency-tolerant semantics (ICR) and issued from the set of facts. The intro-
duced approach relies on both (i) the relation between ontological knowledge base
and logical argumentation framework and (ii) the notions of argument deepening
and clarifications. So, through a dialogue, the proposed approach explains to the
User how and why his/her query is not entailed under ICR semantics.

For future work, we aim at generalizing the explanation to general conjunctive
queries and studying the proposed explanation in the context of other inconsistency-
tolerant semantics.
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