
HAL Id: lirmm-01097136
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01097136v1

Submitted on 4 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting Chase Termination for Existential Rules and
their Extension to Nonmonotonic Negation

Jean-François Baget, Fabien Garreau, Marie-Laure Mugnier, Swan Rocher

To cite this version:
Jean-François Baget, Fabien Garreau, Marie-Laure Mugnier, Swan Rocher. Revisiting Chase Termi-
nation for Existential Rules and their Extension to Nonmonotonic Negation. NMR: Non-Monotonic
Reasoning, Jul 2014, Vienna, Austria. �lirmm-01097136�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01097136v1
https://hal.archives-ouvertes.fr

ar
X

iv
:1

40
5.

10
71

v2
 [

cs
.A

I]
 2

5
Ju

l 2
01

4

Revisiting Chase Termination for Existential Rules
and their Extension to Nonmonotonic Negation

Jean-François Baget
INRIA

Fabien Garreau
University of Angers

Marie-Laure Mugnier
University of Montpellier

Swan Rocher
University of Montpellier

Abstract

Existential rules have been proposed for representing onto-
logical knowledge, specifically in the context of Ontology-
Based Data Access. Entailment with existential rules is un-
decidable. We focus in this paper on conditions that ensure
the termination of a breadth-first forward chaining algorithm
known as the chase. Several variants of the chase have been
proposed. In the first part of this paper, we propose a new tool
that allows to extend existing acyclicity conditions ensuring
chase termination, while keeping good complexity properties.
In the second part, we study the extension to existential rules
with nonmonotonic negation under stable model semantics,
discuss the relevancy of the chase variants for these rules and
further extend acyclicity results obtained in the positivecase.

Introduction
Existential rules (also called Datalog+/-) have been

proposed for representing ontological knowledge, specifi-
cally in the context of Ontology-Based Data Access, that
aims to exploit ontological knowledge when accessing data
(Calı̀, Gottlob, and Lukasiewicz 2009a; Baget et al. 2009).
These rules allow to assert the existence of unknown indivi-
duals, a feature recognized as crucial for representing know-
ledge in an open domain perspective. Existential rules gene-
ralize lightweight description logics, such as DL-Lite and
EL (Calvanese et al. 2007; Baader, Brandt, and Lutz 2005)
and overcome some of their limitations by allowing any pre-
dicate arity as well as cyclic structures.

Entailment with existential rules is known
to be undecidable (Beeri and Vardi 1981;
Chandra, Lewis, and Makowsky 1981). Many sufficient
conditions for decidability, obtained by syntactic restric-
tions, have been exhibited in knowledge representation and
database theory (see e.g., the overview in (Mugnier 2011)).
We focus in this paper on conditions that ensure the
termination of a breadth-first forward chaining algorithm,
known as thechase in the database literature. Given a
knowledge base composed of data and existential rules,
the chase saturates the data by application of the rules.
When it is ensured to terminate, inferences enabled by the
rules can be materialized in the data, which can then be
queried like a classical database, thus allowing to benefit
from any database optimizations technique. Several variants
of the chase have been proposed, which differ in the way

they deal with redundant information (Fagin et al. 2005;
Deutsch, Nash, and Remmel 2008; Marnette 2009). It fol-
lows that they do not behave in the same way with respect to
termination. In the following, when we writethechase, we
mean one of these variants. Various acyclicity notions have
been proposed to ensure the halting of some chase variants.

Nonmonotonic extensions to existen-
tial rules were recently considered in
(Calı, Gottlob, and Lukasiewicz 2009b) with stratified
negation, (Gottlob et al. 2012) with well-founded semantics
and (Magka, Krötzsch, and Horrocks 2013) with stable
model semantics. This latter work studies skolemized
existential rules and focuses on cases where a finite unique
model exists.

In this paper, we tackle the following issues : Can we still
extend known acyclicity notions ? Would any chase variant
be applicable to existential rules provided with nonmonoto-
nic negation, a useful feature for ontological modeling?

1. Extending acyclicity notions.Acyclicity conditions
can be classified into two main families : the first one
constrains the way existential variables are propagated du-
ring the chase (e.g. (Fagin et al. 2003; Fagin et al. 2005;
Marnette 2009; Krötzsch and Rudolph 2011)) and the se-
cond one encodes dependencies between rules, i.e.,
the fact that a rule may lead to trigger another
rule (e.g. (Baget 2004; Deutsch, Nash, and Remmel 2008;
Baget et al. 2011)). These conditions are based on different
graphs, but all of them can be seen as can as forbidding “dan-
gerous” cycles in the considered graph. We define a new fa-
mily of graphs that allows to extend these acyclicity notions,
while keeping good complexity properties.

2. Processing rules with nonmonotonic negation.We
define a notion of stable models on nonmonotonic exis-
tential rules and provide a derivation algorithm that
instantiate rules “on the fly” (Lefèvre and Nicolas 2009;
Dao-Tran et al. 2012). This algorithm is parametrized by a
chase variant. We point out that, differently to the positive
case, not all variants of the chase lead to sound procedures
in presence of nonmonotonic negation ; furthermore, skole-
mizing existential variables or not makes a semantic diffe-
rence, even when both computations terminate. Finally, we
further extend acyclicity results obtained on positive rules
by exploiting negative information as well.

A technical report with the proofs omit-

http://arxiv.org/abs/1405.1071v2

ted for space restriction reasons is available
http://www2.lirmm.fr/˜baget/publications/nmr2014-long.pdf.

Preliminaries
Atomsets We consider first-order vocabularies with
constants but no other function symbols. Anatomis of the
form p(t1, . . . , tk) wherep is a predicate of arityk and the
ti are terms, i.e., variables or constants (in the paper we de-
note constants bya, b, c, ... and variables byx, y, z, ...). An
atomsetis a set of atoms. Unless indicated otherwise, we
will always considerfinite atomsets. IfF is an atom or an
atomset, we writeterms(F) (resp.vars(F), resp.csts(F)) the
set of terms (resp. variables, resp. constants) that occur in F.
If F is an atomset, we writeφ(F) the formula obtained by
the conjunction of all atoms inF, andΦ(F) the existential
closure ofφ(F). We say that an atomsetF entailsan atomset
Q (notationF |= Q) if Φ(F) |= Φ(Q). It is well-known that
F |= Q iff there exists ahomomorphismfrom Q to F, i.e., a
substitutionσ : vars(F) → terms(Q) such thatσ(Q) ⊆ F.
Two atomsetsF andF′ are said to beequivalentif F |= F′

andF′ |= F. If there is a homomorphismσ from an atomset
F to itself (i.e., anendomorphismof F) thenF andσ(F) are
equivalent. An atomsetF is acore if there is no homomor-
phism fromF to one of its strict subsets. Among all atomsets
equivalent to an atomsetF, there exists a unique core (up to
isomorphism). We call this atomsetthecore ofF.

Existential Rules An existential rule(and simply a rule
hereafter) is of the formB→ H, whereB andH are atom-
sets, respectively called thebodyand theheadof the rule.
To an existential ruleR : B → H we assign a formula
Φ(R) = ∀~x∀~y(φ(B) → ∃~zφ(H)), wherevars(B) = ~x ∪ ~y,
and vars(H) = ~x ∪ ~z. Variables~x, which appear in both
B and H, are calledfrontier variables, while variables~z,
which appear only inH are calledexistential variables. E.g.,
Φ(b(x, y) → h(x, z)) = ∀x∀y(b(x, y) → ∃zh(x, z)). The pre-
sence of existential variables in rule heads is the distingui-
shing feature of existential rules.

A knowledge baseis a pairK = (F,R) whereF is an
atomset (the set of facts) andR is a finite set of existential
rules. We say thatK = (F, {R1, . . . ,Rk}) entailsan atomset
Q (notationK |= Q) if Φ(F),Φ(R1), . . . ,Φ(Rk) |= Φ(Q). The
fundamental problem we consider, denoted byentailment,
is the following : given a knowledge baseK and an atomset
Q, is it true thatK |= Q? WhenΦ(Q) is seen as a Boolean
conjunctive query, this problem is exactly the problem of
determining ifK yields a positive answer to this query.

A rule R : B → H is applicable to an atomsetF if
there is a homomorphismπ from B to F. Then theap-
plication of R to F according toπ produces an atomset
α(F,R, π) = F ∪ π(safe(H)), where safe(H) is obtained
from H by replacing existential variables with fresh ones.
An R-derivation fromF is a (possibly infinite) sequence
F0 = σ0(F), . . . , σk(Fk), . . . of atomsets such that∀0 ≤ i,
σi is an endomorphism ofFi (that will be used to remove re-
dundancy inFi) and∀0 < i, there is a rule (R : B→ H) ∈ R
and a homomorphismπi from B to σi(Fi−1) such thatFi =

α(σi(Fi−1),R, πi).

Example 1 Consider the existential rule R =

human(x) → hasParent(x, y), human(y) ; and the atomset
F = {human(a)}. The application of R to F produces an
atomset F′ = F ∪ {hasParent(x, y0), human(y0)} where y0 is
a fresh variable denoting an unknown individual. Note that
R could be applied again to F′ (mapping x to y0), which
would create another existential variable and so on.

A finite R-derivationF0, . . . , Fk from F is said to befrom
F to Fk. Given a knowledge baseK = (F,R), K |= Q iff there
exists a finiteR-derivation fromF to F′ such thatF′ |= Q
(Baget et al. 2011).

Let Ri andRj be rules, andF be an atomset such thatRi is
applicable toF by a homomorphismπ ; a homomorphismπ′

from B j to F′ = α(F,Ri, π) is said to benewif π′(B j) * F.
Given a ruleR= B→ H, a homomorphismπ from B to F is
said to beusefulif it cannot be extended to a homomorphism
from B∪ H to F ; if π is not useful thenα(F,R, π) is equiva-
lent toF, but this is not a necessary condition forα(F,R, π)
to be equivalent toF.

Chase Termination
An algorithm that computes anR-derivation by exploring

all possible rule applications in a breadth-first manner is cal-
led a chase. In the following, we will also call chase the
derivation it computes. Different kinds of chase can be defi-
ned by using different properties to computeF′i = σi(Fi) in
the derivation (hereafter we writeF′i for σi(Fi) when there is
no ambiguity). All these algorithms are sound and complete
w.r.t. theentailment problem in the sense that (F,R) |= Q
iff they provide in finite (but unbounded) time a finiteR-
derivation fromF to Fk such thatFk |= Q.

Different kinds of chase In theoblivious chase(also cal-
led naive chase), e.g., (Calı̀, Gottlob, and Kifer 2008), a rule
R is applied according to a homomorphismπ only if it has
not already been applied according to the same homomor-
phism. LetFi = α(F′i−1,R, π), then F′i = F′i−1 if R was
previously applied according toπ, otherwiseF′i = Fi . This
can be slightly improved. Two applicationsπ andπ′ of the
same rule add the same atoms if they map frontier variables
identically (for any frontier variablex of R, π(x) = π′(x)) ;
we say that they are frontier-equal. In thefrontier chase, let
Fi = α(F′i−1,R, π), we takeF′i = F′i−1 if R was previously
applied according to someπ′ frontier-equal toπ, otherwise
F′i = Fi . Theskolem chase(Marnette 2009) relies on a sko-
lemisation of the rules : a ruleR is transformed into a rule
skolem(R) by replacing each occurrence of an existential va-
riabley with a functional termf R

y (~x), where~x are the frontier
variables ofR. Then the oblivious chase is run on skolemized
rules. It can easily be checked that frontier chase and skolem
chase yield isomorphic results, in the sense that they gene-
rate exactly the same atomsets, up to a bijective renaming of
variables by skolem terms.

The restricted chase (also called standard chase)
(Fagin et al. 2005) detects a kind of local redundancy. Let
Fi = α(F′i−1,R, π), thenF′i = Fi if π is useful, otherwiseF′i =
F′i−1. The core chase(Deutsch, Nash, and Remmel 2008)
considers the strongest possible form of redundancy : for
anyFi , F′i is the core ofFi .

http://www2.lirmm.fr/~baget/publications/nmr2014-long.pdf

A chase is said to belocal if ∀i ≤ j, F′i ⊆ F′j . All chase
variants presented above are local,except for the core chase.
This property will be critical for nonmonotonic existential
rules.

Chase termination Sinceentailment is undecidable, the
chase may not halt. We callC-chasea chase relying on some
criterionC to generateσ(Fi) = F′i . SoC can be oblivious,
skolem, restricted, core or any other criterion that ensures
the equivalence betweenFi andF′i . A C-chase generates a
possibly infiniteR-derivationσ0(F), σ1(F1), . . . , σk(Fk), . . .

We say that this derivationproducesthe (possibly infi-
nite) atomset (F,R)C = ∪0≤i≤∞σi(Fi)\∪0≤i≤∞(σi(Fi)), where
(σi(Fi)) = Fi \ σ(Fi). Note that this produced atomset is
usually defined as the infinite union of theσi(Fi). Both defi-
nitions are equivalent when the criterionC is local. But the
usual definition would produce too big an atomset with a
non-local chase such as the core chase : an atom generated
at stepi and removed at stepj would still be present in the
infinite union. We say that a (possibly infinite) derivation ob-
tained by theC-chase iscompletewhen any further rule ap-
plication on that derivation would produce the same atomset.
A complete derivation obtained by anyC-chase produces a
universal model(i.e., most general) of (F,R) : for any atom-
setQ, we haveF,R |= Q iff (F,R)C |= Q.

We say that theC-chasehaltson (F,R) when theC-chase
generates a finite completeR-derivation fromF to Fk. Then
(F,R)C = σk(Fk) is a finite universal model. We say thatR is
universally C-terminatingwhen theC-chase halts on (F,R)
for any atomsetF. We callC-finite the class of universally
C-terminating sets of rules. It is well known that the chase
variants do not behave in the same way w.r.t. termination.
The following examples highlight these different behaviors.

Example 2 (Oblivious/ Skolem chase)Let R= p(x, y) →
p(x, z) and F= {p(a, b)}. The oblivious chase does not halt :
it adds p(a, z0), p(a, z1), etc. The skolem chase considers the
rule p(x, y)→ p(x, f R

z (x)) ; it adds p(a, f R
y (a)) then halts.

Example 3 (Skolem/ Restricted chase)Let R : p(x) →
r(x, y), r(y, y), p(y) and F = {p(a)}. The skolem chase does
not halt : at Step 1, it maps x to a and adds r(a, f R

y (a)),
r(f R

y (a), f R
y (a)) and p(f R

y (a)) ; at step 2, it maps x to fR
y (a)

and adds r(f R
y (a), f R

y (f R
y (a))), etc. The restricted chase per-

forms a single rule application, which adds r(a, y0), r(y0, y0)
and p(y0) ; indeed, the rule application that maps x to y0
yields only redundant atoms w.r.t. r(y0, y0) and p(y0).

Example 4 (Restricted/ Core chase)Let F = s(a), R1 =

s(x) → p(x, x1), p(x, x2), r(x2, x2), R2 = p(x, y) → q(y) and
R3 = q(x) → r(x, y), q(y). Note that R1 creates redundancy
and R3 could be applied indefinitely if it were the only rule.
R1 is the first applied rule, which creates new variables, cal-
led x1 and x2 for simplicity. The restricted chase does not
halt : R3 is not applied on x2 because it is already satisfied
at this point, but it is applied on x1, which creates an infinite
chain. The core chase applies R1, computes the core of the
result, which removes p(a, x1), then halts.

It is natural to consider the oblivious chase as the weakest
form of chase and necessary to consider the core chase as

the strongest form of chase (since the core is the minimal re-
presentative of its equivalence class). We say that a criterion
C is stronger thanC′ and writeC ≥ C′ whenC′-finite ⊆
C-finite. We say thatC is strictly strongerthanC′ (and write
C > C′) whenC ≥ C′ andC′ � C.

It is well-known that core> restricted > skolem
> oblivious. An immediate remark is that core-finite
corresponds tofinite expansion sets (fes)defined in
(Baget and Mugnier 2002). To sum up, the following in-
clusions hold betweenC-finite classes : oblivious-finite⊂
skolem-finite= frontier-finite⊂ restricted-finite⊂ core-finite
= fes.

Known Acyclicity Notions
We can only give a brief overview of known acylicity no-

tions, which should however allow to place our contribution
within the existing landscape. A comprehensive taxonomy
can be found in (Cuenca Grau et al. 2013).

Acyclicity notions ensuring that some chase variant ter-
minates can be divided into two main families, each of them
relying on a different graph : a “position-based” approach
which basically relies on a graph encoding variable sharing
between positions in predicates and a “rule dependency ap-
proach” which relies on a graph encoding dependencies bet-
ween rules, i.e., the fact that a rule may lead to trigger ano-
ther rule (or itself).

Position-based approach In the position-based approach,
cycles identified as dangerous are those passing through po-
sitions that may contain existential variables ; intuitively,
such a cycle means that the creation of an existential variable
in a given position may lead to create another existential va-
riable in the same position, hence an infinite number of exis-
tential variables. Acyclicity is then defined by the absence
of dangerous cycles. The simplest notion of acyclicity in
this family is that ofweak acyclicity (wa)(Fagin et al. 2003)
(Fagin et al. 2005), which has been widely used in data-
bases. It relies on a directed graph whose nodes are the posi-
tions in predicates (we denote by (p, i) the positioni in pre-
dicatep). Then, for each ruleR : B→ H and each variable
x in B occurring in position (p, i), edges with origin (p, i) are
built as follows : if x is a frontier variable, there is an edge
from (p, i) to each position ofx in H ; furthermore, for each
existential variabley in H occurring in position (q, j), there
is a special edge from (p, i) to (q, j). A set of rules is weakly
acyclic if its associated graph has no cycle passing through
a special edge.

Example 5 (Weak-acyclicity) Let R1 = h(x) → p(x, y),
where y is an existential variable, and R2 = p(u, v), q(v) →
h(v). The position graph of{R1,R2} contains a special edge
from(h, 1) to (p, 2)due to R1 and an edge from(p, 2) to (h, 1)
due to R2, thus{R1,R2} is not wa.

Weak-acyclicity has been generalized, mainly by shif-
ting the focus from positions to existential variables (joint-
acyclicity (ja)(Krötzsch and Rudolph 2011)) or to posi-
tions in atoms instead of predicates (super-weak-acyclicity
(swa) (Marnette 2009)). Other related notions can be
imported from logic programming, e.g.,finite domain

(fd) (Calimeri et al. 2008) and argument-restricted (ar)
(Lierler and Lifschitz 2009). See the first column in Figure
1, which shows the inclusions between the corresponding
classes of rules (all these inclusions are known to be strict).

Rule Dependency In the second approach, the aim
is to avoid cyclic triggering of rules (Baget 2004;
Baget et al. 2009; Deutsch, Nash, and Remmel 2008;
Cuenca Grau et al. 2012). We say that a ruleR2 depends
on a ruleR1 if there exists an atomsetF such thatR1 is
applicable toF according to a homomorphismπ andR2 is
applicable toF′ = α(F,R1, π) according to a new useful
homomorphism. This abstract dependency relation can be
effectively computed with a unification operation known
as piece-unifier (Baget et al. 2009). Piece-unification takes
existential variables into account, hence is more complex
than the usual unification between atoms. Apiece-unifier
of a rule bodyB2 with a rule headH1 is a substitution
µ of vars(B′2) ∪ vars(H′1), whereB′2 ⊆ B2 and H′1 ⊆ H1,
such that(1) µ(B′2) = µ(H

′
1) and (2) existential variables

in H′1 are not unified with separating variables ofB′2, i.e.,
variables that occur both inB′2 and in (B2 \ B′2) ; in other
words, if a variablex occuring in B′2 is unified with an
existential variabley in H′1, then all atoms in whichx occurs
also belong toB′2. It holds thatR2 depends onR1 iff there
is a piece-unifier ofB2 with H1 satisfying easy to check
additional conditions (atom erasing (Baget et al. 2011) and
usefulness (Cuenca Grau et al. 2013)).

Example 6 (Rule dependency)Consider the rules from
Example 5. There is no piece-unifier of B2 with H1. The sub-
stitutionµ = {(u, x), (v, y)}, with B′2 = p(u, v) and H′1 = H1,
is not a piece-unifier because v is unified with an existential
variable, whereas it is a separating variable of B′2 (thus, q(v)
should be included in B′2, which is impossible). Thus R2 does
not depend on R1.

The graph of rule dependenciesof a set of rulesR, de-
noted by GRD(R), encodes the dependencies between rules
in R. It is a directed graph with set of nodesR and an edge
(Ri ,Rj) if Rj depends onRi (intuition : “Ri may lead to trig-
gerRj in a new way”). E.g., considering the rules in Example
6, the only edge is (R2,R1).

When the GRD is acyclic (aGRD, (Baget 2004)), any de-
rivation sequence is necessarily finite. This notion is incom-
parable with those based on positions.

We point out here that theobliviouschase may not stop
onwa rules. Thus, the only acyclicity notion in Figure 1 that
ensures the termination of the oblivious chase isaGRDsince
all other notions generalizewa.

Combining both approches Both approaches have their
weaknesses : there may be a dangerous cycle on positions
but no cycle w.r.t. rule dependencies (see the preceeding
examples), and there may be a cycle w.r.t. rule dependencies
whereas rules contain no existential variables (e.g.p(x, y)→
p(y, x), q(x)). Attempts to combine both notions only succe-
ded to combine them in a “modular way” : if the rules in
each strongly connected component (s.c.c.) of the GRD be-
long to afesclass, then the set of rules isfes(Baget 2004;
Deutsch, Nash, and Remmel 2008). More specifically, it is

wa a-grd

waD

waU

waU+

f d

ar

ja

swa

msa

f dD

arD

jaD

swaD

msaD

f dU

arU

jaU

swaU

msaU

f dU+

arU+

jaU+

swaU+

msaU+

m f a

P coNP

Exp

2-Exp

Figure 1 – Relations between recognizable acyclicity pro-
perties. All inclusions are strict and complete (i.e., if there is
no path between two properties then they are incomparable).

easy to check that if for a givenC-chase, each s.c.c. isC-
finite, then theC-chase stops.

In this paper, we propose an “integrated” way of combi-
ning both approaches, which relies on a single graph. This
allows to unify preceding results and to generalize them wi-
thout complexity increasing (the new acyclicity notions are
those with a gray background in Figure 1).

Finally, let us mentionmodel-faithful acyclicity (mfa)
(Cuenca Grau et al. 2012), which generalizes the previous
acyclicity notions and cannot be captured by our approach.
Briefly, mfa involves running the skolem chase until ter-
mination or a cyclic functional term is found. The price
to pay for the generality of this property is high com-
plexity : checking if a set of rules is universally mfa (i.e.,for
any set of facts) is 2EXPTIME-complete. Checkingmodel-
summarizing acyclicity (msa), which approximates mfa, re-
mains EXPTIME-complete. In contrast, checking position-
based properties is in PTIME and checking agrd is also co-
NP-complete. Sets of rules satisfying mfa are skolem-finite
(Cuenca Grau et al. 2012), thus all properties studied in this
paper ensureC-finiteness, whenC ≥ skolem.

Extending Acyclicity Notions
In this section, we combine rule dependency and propa-

gation of existential variables into a single graph. W.l.o.g.
we assume that distinct rules do not share any variable. Gi-

ven an atoma = p(t1, . . . , tk), the ith position ina is deno-
ted by <a, i>, with pred(<a, i>) = p and term(<a, i>) = ti . If
A is an atomset such thata ∈ A, we say that<a, i> is in A.
If term(<a, i>) is an existential (resp. frontier) variable,<a, i>
is called anexistential(resp.frontier) position. In the follo-
wing, we use “position graph” as a generic name to denote
a graph whose nodes are positions inatoms.

We first define the notion of a basic position graph, which
takes each rule in isolation. Then, by adding edges to this
graph, we define three position graphs with increasing ex-
pressivity, i.e., allowing to check termination for increasin-
gly larger classes of rules.

Definition 1 ((Basic) Position Graph (PG)) The position
graphof a rule R : B → H is the directed graph PG(R)
defined as follows :

– there is a node for each<a, i> in B or in H ;
– for all frontier positions<b, i>∈ B and all <h, j>∈ H,

there is an edge from<b, i> to <h, j> if term(<b, i>) =
term(<h, j>) or if <h, j> is existential.

Given a set of rulesR, thebasic position graphofR, denoted
by PG(R), is the disjoint union of PG(Ri), for all Ri ∈ R.

An existential position<a, i> is said to beinfinite if there is
an atomsetF such that running the chase onF produces an
unbounded number of instantiations ofterm(<a, i>). To detect
infinite positions, we encode how variables may be “propa-
gated” among rules by adding edges toPG(R), calledtran-
sition edges, which go from positions in rule heads to po-
sitions in rule bodies. The set of transition edges has to be
correct : if an existential position<a, i> is infinite, there must
be a cycle going through<a, i> in the graph.

We now define three position graphs by adding transition
edges toPG(R), namelyPGF (R), PGD(R) andPGU(R). All
three graphs have correct sets of edges. Intuitively,PGF(R)
corresponds to the case where all rules are supposed to de-
pend on all rules ; its set of cycles is in bijection with the
set of cycles in the predicate position graph defining weak-
acyclicity. PGD(R) encodes actual paths of rule dependen-
cies. Finally, PGU(R) adds information about the piece-
unifiers themselves. This provides an accurate encoding of
variable propagation from an atom position to another.

Definition 2 (PGX) LetR be a set of rules. The three follo-
wing position graphs are obtained from PG(R) by adding a
(transition) edge from each kth position<h, k> in a rule head
Hi to each kth position<b, k> in a rule body Bj, with thesame
predicate, provided that some condition is satisfied :

– full PG, denoted by PGF(R) : no additional condition ;
– dependency PG, denoted by PGD(R) : if R j depends

directly or indirectly on Ri , i.e., if there is a path from
Ri to Rj in GRD(R) ;

– PG with unifiers, denoted by PGU(R) : if there is a
piece-unifierµ of Bj with the head of an agglomera-
ted rule Rj

i such thatµ(term([b, k])) = µ(term([h, k])),

where Rj
i is formally defined below (Definition 3)

An agglomerated rule associated with (Ri ,Rj) gathers in-
formation about selected piece-unifiers along (some) paths
from Ri to (some) predecessors ofRj .

h(x)

p(x, y)

p(x, y)

p(u, v)

p(u, v)

q(v)

h(v)

Figure 2 – PGF(R) andPGD(R) from Example 7. Position
<a, i> is represented by underlining the i-th term ina. Dashed
edges do not belong toPGD(R).

Definition 3 (Agglomerated Rule) Given Ri and Rj rules
from R, an agglomerated rule associated with(Ri ,R j) has
the following form :

Rj
i = Bi ∪t∈T⊆terms(Hi) fr(t)→ Hi

where fr is a new unary predicate that does not appear
in R, and the atomsfr(t) are built as follows. LetP be a
non-empty set of paths from Ri to direct predecessors of
Rj in GRD(R). Let P = (R1, . . . ,Rn) be a path inP. One
can associate a rule RP with P by building a sequence
R1 = Rp

1, . . . ,R
p
n = RP such that∀1 ≤ l < n, there is a piece-

unifierµl of Bl+1 with the head of Rpl , where the body of Rpl+1
is Bp

l ∪{fr(t) | t is a term of Hp
l unified inµl}, and the head of

Rp
l+1 is H1. Note that for all l, Hp

l = H1, however, for l, 1,
Rp

l may have less existential variables than Rl due to the ad-

ded atoms. The agglomerated rule Rj
i built from {RP|P ∈ P}

is Rj
i =
⋃

P∈PRP.

Proposition 1 (Inclusions betweenPGX) Let R be a set
of rules. PGU(R) ⊆ PGD(R) ⊆ PGF(R). Furthermore,
PGD(R) = PGF(R) if the transitive closure of GRD(R) is
a complete graph.

Example 7 (PGF and PGD) Let R = {R1,R2} from
Example 5. Figure 2 pictures PGF (R) and PGD(R). The da-
shed edges belong to PGF(R) but not to PGD(R). Indeed, R2
does not depend on R1. PGF (R) has a cycle while PGD(R)
has not.

Example 8 (PGD and PGU) Let R = {R1,R2}, with R1 =

t(x, y) → p(z, y), q(y) and R2 = p(u, v), q(u) → t(v,w). In
Figure 3, the dashed edges belong to PGD(R) but not to
PGU(R). Indeed, the only piece-unifier of B2 with H1 unifies
u and y. Hence, the cycle in PGD(R) disappears in PGU(R).

We now study how acyclicity properties can be expressed
on position graphs. The idea is to associate, with an acycli-
city property, a function that assigns to each position a subset
of positions reachable from this position, according to some
propagation constraints ; then, the property is fulfilled ifno
existential position can be reached from itself. More preci-
sely, amarking function Yassigns to each node<a, i> in a
position graphPGX, a subset of its (direct or indirect) suc-
cessors, called itsmarking. A marked cyclefor <a, i> (w.r.t.

X and Y) is a cycleC in PGX such that<a, i>∈ C and for
all <a′, i′>∈ C, <a′, i′> belongs to the marking of<a, i>. Ob-
viously, the less situations there are in which the marking
may “propagate” in a position graph, the stronger the acycli-
city property is.

Definition 4 (Acyclicity property) Let Y be a marking
function and PGX be a position graph. Theacyclicity pro-
pertyassociated with Y in PGX, denoted by YX, is satisfied
if there is no marked cycle for an existential position in PGX.
If YX is satisfied, we also say that PGX(R) satisfiesY.

For instance, the marking function associated with weak-
acyclicity assigns to each node the set of its successors in
PGF(R), without any additional constraint. The next propo-
sition states that such marking functions can be defined for
each class of rules betweenwa andswa(first column in Fi-
gure 1), in such a way that the associated acyclicity property
in PGF characterizes this class.

Proposition 2 A set of rulesR is wa (resp. f d, ar, ja, swa)
iff PGF(R) satisfies the acyclicity property associated with
wa- (resp. f d-, ar-, ja-, swa-) marking.

As already mentioned, all these classes can be safely ex-
tended by combining them with the GRD. To formalize this,
we recall the notionY< from (Cuenca Grau et al. 2013) : gi-
ven an acyclicity propertyY, a set of rulesR is said to satisfy
Y< if each s.c.c. ofGRD(R) satisfiesY, except for those com-
posed of a single rule with no loop.1 WhetherR satisfiesY<

can be checked onPGD(R) :

Proposition 3 LetR be a set of rules, and Y be an acyclicity
property.R satisfies Y< iff PGD(R) satisfies Y, i.e., Y< = YD.

For the sake of brevity, ifY1 and Y2 are two acyclicity
properties, we writeY1 ⊆ Y2 if any set of rules satisfyingY1
also satisfiesY2. The following results are straightforward.

Proposition 4 Let Y1,Y2 be two acyclicity properties. If
Y1 ⊆ Y2, then YD

1 ⊆ YD
2 .

Proposition 5 Let Y be an acyclicity property. If a-grd* Y
then Y⊂ YD.

Hence, any class of rules satisfying a propertyYD strictly
includes botha-grd and the class characterized byY ; (e.g.,

1. This particular case is to coveraGRD, in which each s.c.c. is
an isolated node.

t(x, y)

t(x, y)

p(z, y)

p(z, y)

q(y)

p(u, v)

p(u, v)

q(u)

t(v,w)

t(v,w)

Figure 3 – PGD(R) andPGU(R) from Example 8. Dashed
edges do not belong toPGU(R).

Figure 1, from Column 1 to Column 2). More generally,
strict inclusion in the first column leads to strict inclusion
in the second one :

Proposition 6 Let Y1,Y2 be two acyclicity properties such
that Y1 ⊂ Y2, wa⊆ Y1 and Y2 * YD

1 . Then YD
1 ⊂ YD

2 .

The next theorem states thatPGU is strictly more power-
ful than PGD ; moreover, the “jump” fromYD to YU is at
least as large as fromY to YD.

Theorem 1 Let Y be an acyclicity property. If Y⊂ YD then
YD ⊂ YU . Furthermore, there is an injective mapping from
the sets of rules satisfying YD but not Y, to the sets of rules
satisfying YU but not YD.

Proof: AssumeY ⊂ YD andR satisfiesYD but notY. R can
be rewritten intoR′ by applying the following steps. First,
for each ruleRi = Bi[~X, ~Y] → Hi [~Y, ~Z] ∈ R, let Ri,1 =

Bi[~X, ~Y] → pi(~X, ~Y) wherepi is a fresh predicate ; andRi,2 =

pi(~X, ~Y) → Hi [~Y, ~Z]. Then, for each ruleRi,1, let R′i,1 be the
rule (B′i,1 → Hi,1) with B′i,1 = Bi,1 ∪ {p′j,i(x j,i) : ∀Rj ∈ R},
wherep′j,i are fresh predicates andx j,i fresh variables. Now,
for each ruleRi,2, letR′i,2 be the rule (Bi,2→ H′i,2) with H′i,2 =
Hi,2 ∪ {p′i, j(zi, j) : ∀Rj ∈ R}, wherezi, j are fresh existential
variables. LetR′ =

⋃

Ri∈R

{R′i,1,R
′
i,2}. This construction ensures

that eachR′i,2 depends onR′i,1, and eachR′i,1 depends on each
R′j,2, thus, there is atransitionedge from eachR′i,1 to R′i,2 and

from eachR′j,2 to eachR′i,1. Hence,PGD(R′) contains exactly

one cycle for each cycle inPGF (R). Furthermore,PGD(R′)
contains at least one marked cycle w.r.t.Y, and thenR′ does
not satisfyYD. Now, each cycle inPGU(R′) is also a cycle in
PGD(R), and, sincePGD(R) satisfiesY, PGU(R′) also does.
Hence,R′ does not belong toYD but toYU . �

We also check that strict inclusions in the second column
in Figure 1 lead to strict inclusions in the third column.

Theorem 2 Let Y1 and Y2 be two acyclicity properties. If
YD

1 ⊂ YD
2 then YU

1 ⊂ YU
2 .

Proof: Let R be a set of rules such thatR satisfiesYD
2 but

does not satisfyYD
1 . We rewriteR into R′ by applying the

following steps. For each pair of rulesRi ,Rj ∈ R such that
there is a dependency path fromRi to Rj ,for each variablex
in the frontier ofRj and each variabley in the head ofRi , if
x andy occur both in a given predicate position, we add to
the body ofRj a new atompi, j,x,y(x) and to the head ofRi a
new atompi, j,x,y(y), wherepi, j,x,y denotes a fresh predicate.
This construction allows each term from the head ofRi to
propagate to each term from the body ofRj , if they share
some predicate position inR. Thus, any cycle inPGD(R) is
also inPGU(R′), without any change in the behavior w.r.t.
the acyclicity properties. HenceR′ satisfiesYU

2 but does not
satisfyYU

1 . �

The next result states thatYU is a sufficient condition for
chase termination :

Theorem 3 Let Y be an acyclicity property ensuring the
halting of some chase variant C. Then, the C-chase halts
for any set of rulesR that satisfies YU (hence YD).

Example 9 Consider again the set of rulesR from Example
8. Figure 3 pictures the associated position graphs PGD(R)
and PGU(R).R is notaGRD, norwa, norwaD since PGD(R)
contains a (marked) cycle that goes through the existen-
tial position <t(v,w), 2>. However,R is obviouslywaU since
PGU(R) is acyclic. Hence, the skolem chase and stronger
chase variants halt forR and any set of facts.

Finally, we remind that classes fromwa to swacan be re-
cognized in PTIME, and checkinga-grd is coNP-complete.
Hence, as stated by the next result, the expressiveness gain
is without increasing worst-case complexity.

Theorem 4 (Complexity) Let Y be an acyclicity property,
and R be a set of rules. If checking thatR satisfies Y is
in coNP, then checking thatR satisfies YD or YU is coNP-
complete.

Further Refinements
Still without complexity increasing, we can further ex-

tendYU into YU+ by a finer analysis of marked cycles and
unifiers. We define the notion ofincompatiblesequence of
unifiers, which ensures that a given sequence of rule appli-
cations is impossible. Briefly, a marked cycle for which all
sequences of unifiers are incompatible can be ignored. Be-
side the gain for positive rules, this refinement will allow one
to take better advantage of negation.

We first point out that the notion of piece-unifier is not
appropriate to our purpose. We have to relax it, as illustrated
by the next example. We callunifier, of a rule bodyB2 with a
rule headH1, a substitutionµ of vars(B′2) ∪ vars(H′1), where
B′2 ⊆ B2 and H′1 ⊆ H1, such thatµ(B′2) = µ(H

′
1) (thus, it

satisfies Condition (1) of a piece-unifier).

Example 10 LetR = {R1,R2,R3,R4} with :
R1 : p(x1, y1)→ q(y1, z1)
R2 : q(x2, y2)→ r(x2, y2)
R3 : r(x3, y3) ∧ s(x3, y3)→ p(x3, y3)
R4 : q(x4, y4)→ s(x4, y4)
There is a dependency cycle(R1,R2,R3,R1) and a corres-
ponding cycle in PGU . We want to know if such a sequence
of rule applications is possible. We build the following new
rule, which is a composition of R1 and R2 (formally defined
later) : R1 ⋄µ R2 : p(x1, y1)→ q(y1, z1) ∧ r(y1, z1)
There is no piece-unifier of R3 with R1 ⋄µ R2, since y3 would
be a separating variable mapped to the existential variable
z1. This actually means that R3 is not applicableright after
R1 ⋄µ R2. However, the atom needed to apply s(x3, y3) can
be brought by a sequence of rule applications(R1,R4). We
thus relax the notion of piece-unifier to take into account
arbitrary long sequences of rule applications.

Definition 5 (Compatible unifier) Let R1 and R2 be rules.
A unifierµ of B2 with H1 is compatibleif, for each position
<a, i> in B′2, such thatµ(term(<a, i>)) is an existential variable
z in H′1, PGU(R) contains a path, from a position in which z
occurs, to<a, i>, that does not go through another existential
position. Otherwise,µ is incompatible.

Note that a piece-unifier is necessarily compatible.

Proposition 7 Let R1 and R2 be rules, and letµ be a unifier
of B2 with H1. If µ is incompatible, then no application of R2
can use an atom inµ(H1).

We define the rule corresponding to the composition of
R1 andR2 according to a compatible unifier, then use this
notion to define a compatible sequence of unifiers.

Definition 6 (Unified rule, Compatible sequence of unifiers)

• Let R1 and R2 be rules such that there is a compa-
tible unifier µ of B2 with H1. The associatedunified rule
Rµ = R1 ⋄µ R2 is defined by Hµ = µ(H1) ∪ µ(H2), and
Bµ = µ(B1) ∪ (µ(B2) \ µ(H1)).
• Let (R1, . . . ,Rk+1) be a sequence of rules. A sequence
s = (R1 µ1 R2 . . . µk Rk+1), where, for1 ≤ i ≤ k, µi is a
unifier of Bi+1 with Hi , is a compatible sequenceof unifiers
if : (1) µ1 is a compatible unifier of B2 with H1, and(2) if
k > 0, the sequence obtained from s by replacing(R1 µ1 R2)
with R1 ⋄µ1 R2 is acompatiblesequence of unifiers.

E.g., in Example 10, the sequence (R1 µ1 R2 µ2 R3 µ3 R1),
with the obviousµi , is compatible. We can now improve all
previous acyclicity properties (see the fourth column in Fi-
gure 1).

Definition 7 (Compatible cycles) Let Y be an acyclicity
property, and PGU be a position graph with unifiers. The
compatible cycles for<a, i> in PGU are all marked cycles C
for <a, i> wrt Y, such that there is a compatible sequence of
unifiers induced by C. Property YU+ is satisfied if, for each
existential position<a, i>, there is no compatible cycle for
<a, i> in PGU .

Results similar to Theorem 1 and Theorem 2 are obtained
for YU+ w.r.t. YU , namely :

– For any acyclicity propertyY, YU ⊂ YU+.
– For any acyclicity propertiesY1 andY2, if YU

1 ⊂ YU
2 ,

thenYU+
1 ⊂ YU+

2 .

Moreover, Theorem 3 can be extended toYU+ : let Y be
an acyclicity property ensuring the halting of some chase
variantC ; then theC-chase halts for any set of rulesR that
satisfiesYU+ (henceYU). Finally, the complexity result from
Theorem 4 still holds for this improvement.

Handling Nonmonotonic Negation
We now add nonmonotonic negation, which we denote

by not. A nonmonotonic existential rule(NME rule) R is
of the form (B+, notB−1 , . . . , notB−k → H), whereB+, B−i
and H are atomsets, respectively called thepositivebody,
thenegativebodies and the head ofR. Note that we genera-
lize the usual notion of negative body by allowing to negate
conjunctions of atoms. Moreover, the rule head may contain
several atoms. However, we impose a safeness condition :
∀1 ≤ i ≤ k, vars(B−i) ⊆ vars(B+). The formula assigned
to R is Φnot(R) = ∀~x∀~y(φ(B+) ∧ notφ(B−1), . . . , notφ(B−k) →
∃~zφ(H). We writepos(R) the existential rule obtained from
R by removing its negative bodies, andpos(R) the set of all
pos(R) rules, forR ∈ R.

About our Stable Model Semantics Answer Set Pro-
gramming (Gelfond 2007) introduced stable model seman-
tics for propositional logic, and was naturally extended to
grounded programs (i.e., sets of NME rules without va-
riables). In this framework, the semantics can be provi-
ded through the Gelfond-Lifschitz reduct operator that al-
lows to compute a saturation (i.e., a chase) using only
grounded NME rules. This semantics can be easily ex-
tended to rules with no existential variable in the head,
or to skolemized NME rules, as done, for instance, in
(Magka, Krötzsch, and Horrocks 2013). The choice of the
chase/saturation mechanism is here irrelevant, since no such
mechanism can produce any redundancy.

The problem comes when considering existential va-
riables in the head of rules. Several semantics have been
proposed in that case, for instance circumscription in
(Ferraris, Lee, and Lifschitz 2011), or justified stable mo-
dels in (You, Zhang, and Zhang 2013). We have chosen not
to adopt circumscription since it translates NME rules to
second-order expressions, and thus would not have allo-
wed to build upon results obtained in the existential rule
formalism. In the same way, we have not considered justi-
fied stable models, whose semantics does not correspond to
stable models on grounded rules, as shown by the following
example :

Example 11 Let Π1 = {∅ → p(a); p(a), notq(a) → t(a).}
be a set of ground NME rules. Then{p(a); q(a)} is a justi-
fied stable model, but not a stable model. LetΠ2 = {∅ →

p(a); p(a), notq(b) → t(a)} . Then{p(a); t(a)} is a stable
model but not a justified stable model.

Let us now recast the Gelfond-Lifschitz reduct-based se-
mantics in terms of the skolem-chase. Essentially (we will
be more precise in the next section), a stable modelM is a
possibly infinite atomset produced by a skolem-chase that
respects some particular conditions :

– all rule applications are sound,i.e.,none of its negative
bodies can be found in the stable model produced (the
rule is not blocked) ;

– the derivation is complete,i.e.,any rule applicable and
not blocked is applied in the derivation.

In the next subsection, we formally define the notion of a
stable model, while replacing the skolem-chase with anyC-
chase. We thus obtain a family of semantics parameterized
by the considered chase, and define different notions ofC-
stable models.

On the Chase and Stable Models We define a no-
tion of stable model directly on nonmonotonic existen-
tial rules and provide a derivation algorithm inspired from
the notion of computation in (Liu et al. 2010) and Answer
Set Programming solvers that instantiate rules on the fly
(Lefèvre and Nicolas 2009; Dao-Tran et al. 2012) instead of
grounding rules before applying them. The difference with
our framework is that they consider normal logic programs,
which are a generalization of skolemized NME rules.

A natural question is then to understand if the choice of a
chase mechanism has an impact, not only on the termination,
but also on the semantics. Thus, we consider the chase as
a parameter. Intuitively, aC-stable setA is produced by a

C-chase that, according to (Gelfond 2007), must satisfy the
NME rules (we say that it issound, i.e.,that no negative body
appearing in the chase is inA) and therationality principle
(the sound chase does not generate anything that cannot be
believed, and it must be complete : any rule application not
present in the chase would be unsound).

To define C-stable sets, we first need to introduce
additional notions. ANME R-derivation from F is a
pos(R)-derivation fromR. This derivationD = (F0 =

σ0(F), . . . , σk(Fk), . . .) produces a possibly infinite atomset
A. Let R be a NME rule such thatpos(R) was applied at
some stepi in D, i.e., Fi+1 = α(σi(Fi), pos(R), πi). We say
that this application isblockedif one of theπi(B−q) (for any
negative bodyB−q in R) can be found inA. This can hap-
pen in two ways. Eitherπi(B−q) can already be found in
σi(Fi) or it appears later in the derivation. In both cases,
there is aσ j(F j) (with j ≥ i) that contains the atomset
πi(B−q), as transformed by the sequence of simplifications
from Fi to F j , i.e., there existsF j with j ≥ i s.t. the atom-
setσi→ j(πi(B−q)) = σ j(. . . (σi+1(πi(B−q))) . . .) is included in
σ j(F j). We say that a derivationD is soundwhen no rule
application is blocked inA. A sound derivation is said to be
completewhen adding any other rule application to the de-
rivation would either make it unsound, or would not change
the produced atomset. The derivation is aC-chase when the
σi used at each step is determined by the criterionC.

Definition 8 (C-stable sets)Let F be a finite atomset, and
R be a set of NME rules. We say that a (possibly infinite)
atomset A is C-stable for(F,R) if there is a complete sound
nonmonotonic C-chase from F that produces A.

Proposition 8 If R is a set of existential rules, then there
is a unique C-stable set, which is equivalent to the univer-
sal model(F,R)C. If {F} ∪ R is a set of skolemized NME
rules (with F being seen as a rule with empty body), then its
skolem-stable sets are in bijection with its stable models.

Sketch of proof :First part of the claim stems from the
fact that existential rules generate a unique branch that
corresponds to a derivation. When that branch is com-
plete, it corresponds to a chase. Second part of the claim
comes from the fact that our definitions mimic the beha-
vior of the sound and complete algorithm implemented in
(Lefèvre and Nicolas 2009). �

C-chase Tree The problem with the fixpoint Definition 8
is that it does not provide an effective algorithm : at each
step of the derivation, we need to know the set produced by
that derivation. The algorithm used in the solver ASPéRIX
(Lefèvre and Nicolas 2009) is here generalized to a proce-
dure that generates the (possibly infinite)C-derivation tree
of (F,R). All nodes of that tree are labeled by three fields.
The field in contains the atomset that was inferred in the
current branch. The fieldout contains the set of forbid-
den atomsets,i.e., that must not be inferred. Finally, the
field mbt (“must be true”) contains the atomset that has yet
to be proven. A node is calledunsoundwhen a forbidden
atomset has been inferred, or has to be proven,i.e., when
out ∩ (in ∪ mbt) , ∅. At the initial step, the root of the
C-derivation tree is a positive node labeled (σ0(F), ∅, ∅).

Then, let us chose a nodeN that is not unsound and has no
child. Assume there is a ruleR = B+, notB−1 , . . . , notB−k →
H in R such that there is a homomorphismπ from B+

to in(N). Then we will (possibly) addk + 1 children un-
der N, namelyN+,N−1 , . . . ,N

−
k . These children are added

if the rule application is not blocked, and produces new
atoms. Intuitively, the positive childN+ encodes the effec-
tive application of the rule, while thek negative children
N−i encode thek different possibilities of blocking the rule
(with each of the negative bodies). Let us consider the se-
quence of positive nodes from the root of the tree toN+.
It encodes apos(R)-derivation fromF. On that derivation,
the C-chase generates a sequenceσ0(F), . . . , σp(Fp),S =
σ(α(σp(Fp), pos(R), π)). S produces something new when
S * σp(Fp). We now have to fill the fields of the obtai-
ned children : let (in, out, mbt) be the label of a nodeN.
Then label(N+) = (S, out ∪ {πi(B−1), . . . , πi(B−k)},mbt) and
label(N−i) = (in, out,mbt ∪ πi(B−i)).

We say that a (possibly infinite) branch in theC-derivation
tree isunsoundwhen it contains an unsound node. A sound
branch is said to becompletewhen its associated derivation
is complete. Finally, a sound and complete branch isstable
when for every nodeN in the branch such thatB− ∈ mbt(N),
there exists a descendantN′ of N such thatB− ∈ in(N′). We
say that a branch isunprovableif there exists a nodeN in the
branch and an atomsetB− ∈ mbt(N) such that no complete
branch containingN is stable. We call aC-chase treeany
C-derivation tree for which all branches are either unsound,
unprovable or complete.

Proposition 9 An atomset A is a C-stable set for(F,R) iff a
C-chase tree of(F,R) contains a stable branch whose asso-
ciated derivation produces A.

On the applicability of the chase variants In the positive
case, all chase variants produce equivalent universal models
(up to skolemization). Moreover, running a chase on equiva-
lent knowledge bases produce equivalent results. Do these
semantic properties still hold with nonmonotonic existential
rules ? The answer is no in general.

The next example shows that the chase variants presen-
ted in this paper, core chase excepted, may produce non-
equivalent results from equivalent knowledge bases.

Example 12 Let F = {p(a, y), t(y)} and F′ =

{p(a, y′), p(a, y), t(y)} be two equivalent atomsets. Let
R : p(u, v), not t(v)→ r(u). For any C-chase other than core
chase, there is a single C-stable set for(F, {R}) which is F
(or sk(F)) and a single C-stable set for(F′, {R}) which is
F′∪{r(a)} (or sk(F′)∪{r(a)}). These sets are not equivalent.

Of course, if we consider that the initial knowledge base is
already skolemized (includingF seen as a rule), this trouble
does not occur with the skolem-chase since there are no re-
dundancies in facts and no redundancy can be created by a
rule application. This problem does not arise with core chase
either. Thus the only two candidates for processing NME
rules are the core chase and the skolem chase (if we assume
a priori skolemisation, which is already a semantic shift).

The choice between both mechanisms is important since,
as shown by the next example, they may produce different

results even when they both produce aunique C-stable set. It
follows that skolemizing existential rules is not an innocuous
transformation in presence of nonmontonic negation.

Example 13 We consider F= i(a), R1 = i(x) → p(x, y),
R2 = i(x) → q(x, y), R3 = q(x, y) → p(x, y), t(y) and R4 =

p(u, v), not t(v)→ r(u). The core chase produces at first step
p(a, y0) and q(a, y1), then p(a, y1) and t(y1) and removes the
redundant atom p(a, y0), hence R4 is not applicable. The
unique core-stable set is{i(a), q(a, y1), p(a, y1), t(y1)}. With
the skolem chase, the produced atoms are p(a, f R1(a)) and
q(a, f R2(a)), then p(a, f R2(a)) and t(f R2(a)). R4 is applied
with p(u, v) mapped to p(a, f R1(a)), which produces r(a).
These atoms yield a unique skolem-stable set. These stable
sets are not equivalent.

Termination of the Chase Tree
On the finiteness ofC-chase trees We say that theC-
chase-tree haltson (F,R) when there exists a finiteC-chase
tree of (F,R) (in that case, a breadth-first strategy for the rule
applications will generate it). We can thus defineC-stable-
finite as the class of sets of nonmonotonic existential rules
R for which theC-chase-tree halts on any (F,R). Our first
intuition was to assert “ifpos(R) ∈ C-finite, thenR ∈ C-
stable-finite”. However, this property is not true in general,
as shown by the following example :

Example 14 Let R = {R1,R2} where R1 = h(x) →
p(x, y), h(y) and R2 = p(x, y), not h(x) → p(x, x). See that
pos(R) ∈ core-finite (as soon as R1 is applied, R2 is also ap-
plied and the loop p(x, x) makes any other rule application
redundant) ; however the only core-stable set of({h(a)},R)
is infinite (because all applications of R2 are blocked).

The following property shows that the desired property is
true for local chases.

Proposition 10 Let R be a set of NME rules and C be a
local chase. Ifpos(R) ∈ C-finite, thenR ∈ C-stable-finite.

We have previously argued that the only two interes-
ting chase variants w.r.t. the desired semantic propertiesare
skolem and core. However, the core-finiteness of the posi-
tive part of a set of NME rules does not ensure the core-
stable-finiteness of these rules. We should point out now
that if C ≥ C′, thenC′-stable-finiteness impliesC-stable-
finiteness. We can thus ensure core-stable-finiteness when
C-finiteness of the positive part of rules is ensured for a lo-
calC-chase.

Proposition 11 Let R be a set of NME rules and C be a
local chase. Ifpos(R) ∈ C-finite, thenR ∈ core-stable-finite.

We can rely upon all acyclicity results in this paper to
ensure that the core-chase tree halts.

Improving finiteness results with negative bodies We
now explain how negation can be exploited to enhance
preceding acyclicity notions. We first define the notion of
self-blocking rule, which is a rule that will never be ap-
plied in any derivation. A ruleB+, not B−1 , . . . , not B−k is self-
blocking if there is a negative bodyB−i such thatB−i ⊆
(B+ ∪ H). Such a rule will never be applied in a sound way,
so will never produce any atom. It follows that :

Proposition 12 LetR′ be the non-self-blocking rules ofR.
If pos(R′) ∈C-finite and C is local, thenR ∈C-stable-finite.

This idea can be further extended. We have seen for exis-
tential rules that ifR′ depends onR, then there is a uni-
fier µ of body(R′) with head(R), and we can build a rule
R′′ = R⋄µ R′ that captures the sequence of applications en-
coded by the unifier. We extend Def. 6 to take into account
negative bodies : ifB− is a negative body ofR or R′, then
µ(B−) is a negative body ofR′′. We also extend the notion
of dependency in a natural way, and say that a unifierµ of
head(R) with body(R′) is self-blocking whenR⋄µ R′ is self-
blocking, andR′ dependsonRwhen there exists a unifier of
head(R) with body(R′) that is not self-blocking. This exten-
ded notion of dependency exactly corresponds to thepositive
reliancein (Magka, Krötzsch, and Horrocks 2013).

Example 15 Let R = q(x), not p(x) → r(x, y) and R′ =
r(x, y) → p(x), q(y). Their associated positive rules are not
core-finite. There is a single unifierµ of R′ with R, and
R⋄µ R′ : q(x), not p(x) → r(x, y), p(x), q(y) is self-blocking.
Then the skolem-chase-tree halts on(F, {R,R′}) for any F.

Results obtained from positive rules can thus be generali-
zed by considering this extended notion of dependency (for
PGU we only encode non self-blocking unifiers). Note that
it does not change the complexity of the acyclicity tests.

We can further generalize this and check if a unifier se-
quence is self-blocking, thus extend theYU+ classes to take
into account negative bodies. Let us consider a compatible
cycleC going through<a, i> that has not been proven safe.
LetCµ be the set of all compatible unifier sequences induced
by C. We say that a sequenceµ1 . . . µk ∈ Cµ is self-blocking
when the ruleR1⋄µ1 R2 . . .Rk⋄µk Rk+1 obtained by combining
these unifiers is self-blocking. When all sequences inCµ are
self-blocking, we say thatC is also self-blocking. This test
comes again at no additional computational cost.

Example 16 Let R1 = q(x1), notp(x1) → r(x1, y1), R2 =

r(x2, y2) → s(x2, y2), R3 = s(x3, y3) → p(x3), q(y3).
PGU+({R1,R2,R3}) has a unique cycle, with a unique indu-
ced compatible unifier sequence. The rule R1 ⋄ R2 ⋄ R3 =

q(x1), notp(x1) → r(x1, y1), s(x1, y1), p(x1), q(y1) is self-
blocking, hence R1 ⋄ R2 ⋄ R3 ⋄ R1 also is. Thus, there is no
“dangerous” cycle.

Proposition 13 If, for each existential position<a, i>, all
compatible cycles for<a, i> in PGU are self-blocking, then
the stable computation based on the skolem chase halts.

Conclusion
We have revisited chase termination with several re-

sults. First, a new tool that allows to unify and ex-
tend most existing acyclicity conditions, while keeping
good computational properties. Second, a chase-like me-
chanism for nonmonotonic existential rules under stable
model semantics, as well the extension of acyclicity
conditions to take negation into account. This latter
contribution extends the notion of negative reliance of
(Magka, Krötzsch, and Horrocks 2013) ; and does not rely
upon stratification (and thus does not enforce the existence
of a single stable model).

This work will be pursued on the theoretical side by a
complexity study ofentailment for the new acyclic classes
and by a deeper study of logical foundations for NME rules,
since it remains to relate our core-stable sets to an existing
first-order semantics for general NME rules.

Acknowledgements
We thank the reviewers for their comments. This work is

part of the ASPIQ and Pagoda projects and was partly fun-
ded by the frenchAgence Nationale de la Recherche(ANR)
grants ANR-12-BS02-0003 and ANR-12-JS02-0007.

References
[Baader, Brandt, and Lutz 2005] Baader, F. ; Brandt, S. ; and
Lutz, C. 2005. Pushing the el envelope. InIJCAI’05, 364–
369.

[Baget and Mugnier 2002] Baget, J.-F., and Mugnier, M.-L.
2002. The Complexity of Rules and Constraints.J. Artif.
Intell. Res. (JAIR)16 :425–465.

[Baget et al. 2009] Baget, J.-F. ; Leclère, M. ; Mugnier, M.-
L. ; and Salvat, E. 2009. Extending decidable cases for rules
with existential variables. InIJCAI’09, 677–682.

[Baget et al. 2011] Baget, J.-F. ; Leclère, M. ; Mugnier, M.-
L. ; and Salvat, E. 2011. On rules with existential variables:
Walking the decidability line.Artificial Intelligence175(9-
10) :1620–1654.

[Baget 2004] Baget, J.-F. 2004. Improving the forward chai-
ning algorithm for conceptual graphs rules. InKR’04, 407–
414. AAAI Press.

[Beeri and Vardi 1981] Beeri, C., and Vardi, M. 1981. The
implication problem for data dependencies. InICALP’81,
volume 115 ofLNCS, 73–85.

[Calı̀, Gottlob, and Kifer 2008] Calı̀, A. ; Gottlob, G. ; and
Kifer, M. 2008. Taming the infinite chase : Query answering
under expressive relational constraints. InKR’08, 70–80.

[Calı̀, Gottlob, and Lukasiewicz 2009a] Calı̀, A. ; Gottlob,
G. ; and Lukasiewicz, T. 2009a. A general datalog-based
framework for tractable query answering over ontologies. In
PODS’09, 77–86.

[Calı, Gottlob, and Lukasiewicz 2009b] Calı, A. ; Gottlob,
G. ; and Lukasiewicz, T. 2009b. Tractable query answering
over ontologies with datalog±. In Proceedings of the DL
Home 22nd International Workshop on Description Logics
(DL 2009).

[Calimeri et al. 2008] Calimeri, F. ; Cozza, S. ; Ianni, G. ; and
Leone, N. 2008. Computable functions in asp : Theory and
implementation. InLogic Programming. Springer. 407–424.

[Calvanese et al. 2007] Calvanese, D. ; Giacomo, G. D. ;
Lembo, D. ; Lenzerini, M. ; and Rosati, R. 2007. Tractable
reasoning and efficient query answering in description lo-
gics : The DL-Lite family.J. Autom. Reasoning39(3) :385–
429.

[Chandra, Lewis, and Makowsky 1981] Chandra, A. K. ; Le-
wis, H. R. ; and Makowsky, J. A. 1981. Embedded im-
plicational dependencies and their inference problem. In
STOC’81, 342–354. ACM.

[Cuenca Grau et al. 2012] Cuenca Grau, B. ; Horrocks, I. ;
Krötzsch, M. ; Kupke, C. ; Magka, D. ; Motik, B. ; and Wang,
Z. 2012. Acyclicity conditions and their application to query
answering in description logics. InKR.

[Cuenca Grau et al. 2013] Cuenca Grau, B. ; Horrocks, I. ;
Krötzsch, M. ; Kupke, C. ; Magka, D. ; Motik, B. ; and Wang,
Z. 2013. Acyclicity notions for existential rules and their
application to query answering in ontologies.Journal of Ar-
tificial Intelligence Research47 :741–808.

[Dao-Tran et al. 2012] Dao-Tran, M. ; Eiter, T. ; Fink, M. ;
Weidinger, G. ; and Weinzierl, A. 2012. Omiga : an open
minded grounding on-the-fly answer set solver. InLogics in
Artificial Intelligence. Springer. 480–483.

[Deutsch, Nash, and Remmel 2008] Deutsch, A. ; Nash, A. ;
and Remmel, J. 2008. The chase revisited. InPODS’08,
149–158.

[Fagin et al. 2003] Fagin, R. ; Kolaitis, P. G. ; Miller, R. J. ;
and Popa, L. 2003. Data exchange : Semantics and query
answering. InICDT’03, 207–224.

[Fagin et al. 2005] Fagin, R. ; Kolaitis, P. G. ; Miller, R. J. ;
and Popa, L. 2005. Data exchange : semantics and query
answering.Theor. Comput. Sci.336(1) :89–124.

[Ferraris, Lee, and Lifschitz 2011] Ferraris, P. ; Lee, J. ; and
Lifschitz, V. 2011. Stable models and circumscription.Artif.
Intell. 175(1) :236–263.

[Gelfond 2007] Gelfond, M. 2007.In Handbook of Know-
ledge Representation. Elsevier Science. chapter Answer
Sets.

[Gottlob et al. 2012] Gottlob, G. ; Hernich, A. ; Kupke, C. ;
and Lukasiewicz, T. 2012. Equality-friendly well-founded
semantics and applications to description logics. InDescrip-
tion Logics.

[Krötzsch and Rudolph 2011] Krötzsch, M., and Rudolph, S.
2011. Extending decidable existential rules by joining acy-
clicity and guardedness. InIJCAI’11, 963–968.

[Lefèvre and Nicolas 2009] Lefèvre, C., and Nicolas, P.
2009. A first order forward chaining approach for answer
set computing. InLogic Programming and Nonmonotonic
Reasoning. Springer. 196–208.

[Lierler and Lifschitz 2009] Lierler, Y., and Lifschitz, V.
2009. One more decidable class of finitely ground programs.
In Logic Programming. Springer. 489–493.

[Liu et al. 2010] Liu, L. ; Pontelli, E. ; Son, T. C. ; and
Truszczyński, M. 2010. Logic programs with abstract
constraint atoms : The role of computations.Artificial In-
telligence174(3–4) :295 – 315.

[Magka, Krötzsch, and Horrocks 2013] Magka, D. ;
Krötzsch, M. ; and Horrocks, I. 2013. Computing
stable models for nonmonotonic existential rules. In
Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI 2013). AAAI Press.

[Marnette 2009] Marnette, B. 2009. Generalized schema-
mappings : from termination to tractability. InPODS, 13–
22.

[Mugnier 2011] Mugnier, M.-L. 2011. Ontological Query
Answering with Existential Rules. InRR’11, 2–23.

[You, Zhang, and Zhang 2013] You, J.-H. ; Zhang, H. ; and
Zhang, Y. 2013. Disjunctive logic programs with existential
quantification in rule heads.Theory and Practice of Logic
Programming13 :563–578.

	Introduction
	Preliminaries
	Chase Termination
	Known Acyclicity Notions
	Extending Acyclicity Notions
	Further Refinements
	Handling Nonmonotonic Negation
	Termination of the Chase Tree
	Conclusion
	 Acknowledgements

