
HAL Id: lirmm-01100683
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01100683

Submitted on 6 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximation of Greedy Algorithms for Max-ATSP,
Maximal Compression, Maximal Cycle Cover, and

Shortest Cyclic Cover of Strings
Bastien Cazaux, Eric Rivals

To cite this version:
Bastien Cazaux, Eric Rivals. Approximation of Greedy Algorithms for Max-ATSP, Maximal Com-
pression, Maximal Cycle Cover, and Shortest Cyclic Cover of Strings. PSC: Prague Stringology
Conference, Czech Technical University in Prague, Sep 2014, Prague, Czech Republic. pp.148-161.
�lirmm-01100683�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01100683
https://hal.archives-ouvertes.fr

Approximation of Greedy Algorithms for

Max-ATSP, Maximal Compression, Maximal

Cycle Cover, and Shortest Cyclic Cover of Strings

Bastien Cazaux and Eric Rivals⋆

L.I.R.M.M. Université Montpellier II, CNRS U.M.R. 5506
161 rue Ada, F-34392 Montpellier Cedex 5, France

{cazaux, rivals}@lirmm.fr

Abstract. Covering a directed graph by a Hamiltonian path or a set of words by a
superstring belong to well studied optimisation problems that prove difficult to approx-
imate. Indeed, the Maximum Asymmetric Travelling Salesman Problem (Max-ATSP),
which asks for a Hamiltonian path of maximum weight covering a digraph, and the
Shortest Superstring Problem (SSP), which, for a finite language P := {s1, . . . , sp},
searches for a string of minimal length having each input word as a substring, are
both Max-SNP hard. Finding a short superstring requires to choose a permutation of
words and the associated overlaps to minimise the superstring length or to maximise
the compression of P . Hence, a strong relation exists between Max-ATSP and SSP

since solving Max-ATSP on the Overlap Graph for P gives a shortest superstring.
Numerous works have designed algorithms that improve the approximation ratio but
are increasingly complex. Often, these rely on solving the pendant problems where the
cover is made of cycles instead of single path (Max-CC and SCCS). Finally, the greedy
algorithm remains an attractive solution for its simplicity and ease of implementation.
Its approximation ratios have been obtained by different approaches. In a seminal but
complex proof, Tarhio and Ukkonen showed that it achieves 1/2 compression ratio for
Max-CC. Here, using the full power of subset systems, we provide a unified approach
for proving simply the approximation ratio of a greedy algorithm for these four prob-
lems. Especially, our proof for Maximal Compression shows that the Monge property
suffices to derive the 1/2 tight bound.

1 Introduction

Given a set of words P = {s1, . . . , sp} over a finite alphabet, the Shortest Superstring
Problem (SSP) or Maximal Compression (MC) problems ask for a shortest string
u that contains each of the given words as a substring. It is a key problem in data
compression and in bioinformatics, where it models the question of sequence assem-
bly. Indeed, sequencing machines yield only short reads that need to be aggregated
according to their overlaps to obtain the whole sequence of the target molecule [4].
Recent progress in sequencing technologies have permitted an exponential increase in
throughput, making acute the need for simple and efficient assembly algorithms. Two
measures can be optimised for SSP : either the length of the superstring is minimised,
or the compression is maximised (i.e., ‖S‖ − |u| :=

∑
si∈S
|si| − |u|). Unfortunately,

even for a binary alphabet, SSP is NP-hard [3] and MAX-SNP-hard relative to both
measures [2]. Among many approximation algorithms, the best known fixed ratios
are 211

23
for the superstring [10] and 3/4 for the compression [11]. A famous conjecture

⋆ This work is supported by ANR Colib’read (ANR-12-BS02-0008) and Défi
MASTODONS SePhHaDe from CNRS.

Bastien Cazaux and Eric Rivals: Approximation of Greedy Algorithms for Max-ATSP, Maximal Compression, Maximal Cycle Cover, and Shortest Cyclic

Cover of Strings, pp. 148–161.

Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

http://colibread.inria.fr
http://www.lirmm.fr/mastodons

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 149

states that a simple, greedy agglomeration algorithm achieves a ratio 2 for the super-
string measure, while it is known to approximate tightly MC with ratio 1/2, but the
later proofs are quite complex involving many cases of overlaps [13,14]. Figure 2 and
Example 7 on page 153 illustrate the difference between two optimisation measures.
The best approximation algorithms use the Shortest Cyclic Cover of Strings (SCCS)
as a procedure, which asks for a set of cyclic strings of total minimum length that
collectively contain the input words as substrings. The SCCS problem can be solved
in polynomial time in ‖S‖ [12,2].

These problems on strings can be viewed as problems on the Overlap Graph, in
which the input words are the nodes, and an arc represents the asymmetric maximum
overlap between two words. Figure 1 on p.150 displays an example of overlap graph.
Covering the Overlap Graph with either a maximum weight Hamiltonian path or
a maximum weight cyclic cover gives a solution for the problems of Maximal Com-
pression or of Shortest Cyclic Cover of Strings, respectively. This expresses the rela-
tion between the Maximum Asymmetric Travelling Salesman Problem (Max-ATSP)
and Maximal Compression on one hand, as well as between Maximum Cyclic Cover
(Max-CC) and Shortest Cyclic Cover of Strings on the other. Both Max-ATSP and
Max-CC have been extensively studied as essential computer science problems. Table
1 presents all these problems and their greedy approximation ratios.

Input
Type of cover directed graph set of strings

name ratio ref. name ratio ref.

Hamiltonian path
Maximum Asymmet-

ric Travelling Sales-

man

1/3 y [5,14]
Maximal Compres-

sion
1/2 y [13,14]

Shortest Superstring 7/2 [7]

Set of cycles
Maximum Cyclic

Cover

Poly
1/2 y

[12]
here

Shortest Cyclic Cover

of Strings
Poly 1 [4]

Table 1: The approximation performance of the greedy algorithm on the five optimisa-
tion problems considered here. The input is either a directed graph or a set of strings
(in columns), while the type of cover can be a Hamiltonian path or a set of cycles (in
lines). For each problem, the best greedy approximation ratio, its tightness, and the
bibliographic reference are shown. Highlighted in blue: the approximation bounds for
which we provide a proof relying on subset systems. The bound for Maximum Cyclic
Cover was open. “Poly” means that the problem is solvable in polynomial time. A “y”
after the bound means that it is tight.

Our contributions: Subset systems were introduced recently to investigate the
approximation performances of greedy algorithms in a unified framework [8]. As men-
tioned earlier, the ratio of greedy for the five problems considered (except Max-CC)
have been shown with different proofs and using distinct combinatorial properties.
With subset systems, we investigate the approximation achieved by greedy algorithms
on four of these problems in a unified manner, and provide new and simple proofs
the results mentioned in Table 1. After introducing the required notation and con-
cepts, we study the case of the Max-ATSP and Max-CC problems in Section 2, then
we focus on the Maximal Compression problem in Section 3, and state the results
regarding Shortest Cyclic Cover of Strings in Section 3.1, before concluding.

150 Proceedings of the Prague Stringology Conference 2014

aabab

baaba

babaa

babba

0

4

2

1

2

1

3

20

3

2

2

2

3

2

0

Figure 1: Example of an Overlap Graph for the input words P :=
{baaba, babaa, aabab, babba}.

1.1 Sets, strings, and overlaps.

We denote by #(Λ) the cardinality of any finite set Λ.

An alphabet Σ is a finite set of letters. A linear word or string over Σ is a finite
sequence of elements of Σ. The set of all finite words over Σ is denoted by Σ⋆, and ǫ
denotes the empty word. For a word x, |x| denotes the length of x. Given two words
x and y, we denote by xy the concatenation of x and y. For every 1 ≤ i ≤ j ≤ |x|,
x[i] denotes the i-th letter of x, and x[i ; j] denotes the substring x[i]x[i+ 1] · · · x[j].

A cyclic string or necklace is a finite string in which the last symbol precedes the
first one. It can be viewed as a linear string written on a torus with both ends joined.

Overlaps and agglomeration Let s, t, u be three strings of Σ⋆. We denote by ov(s, t)
the maximum overlap from s over t; let pr(s, t) be the prefix of s such that s =
pr(s, t) . ov(s, t), then we denote the agglomeration of s over t by s ⊕ t := pr(s, t)t.
Note that neither the overlap nor the agglomeration are symmetrical. Clearly, one
has (s ⊕ t) ⊕ (t ⊕ u) = (s ⊕ t) ⊕ u.

Example 1. Let P := {abbaa, baabb, aabba}. One has ov(abbaa, baabb) = baa and
abbaa ⊕ baabb = abbaabb. Considering possible agglomerations of these words, we
get w1 = abbaa ⊕ baabb ⊕ aabba = abbaabb ⊕ aabba = abbaabba, w2 = aabba ⊕
abbaa ⊕ baabb = aabbaa ⊕ baabb = aabbaabb and w3 = baabb ⊕ abbaa ⊕ aabba =
baabbaa ⊕ aabba = baabbaabba. Thus, |w1| = |pr(abbaa, baabb)|+ |pr(baabb, aabba)|+
|aabba| = |ab| + |b| + |aabba| = 2 + 1 + 5 = 8, ‖P‖ − |w1| = 15 − 8 = 7 and
|ov(abbaa, baabb)|+ |ov(baabb, aabba)| = |baa|+ |aabb| = 3 + 4 = 7

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 151

1.2 Notation on graphs

We consider directed graphs with weighted arcs. A directed graph G is a pair (VG, EG)
comprising a set of nodes VG, and a set EG of directed edges called arcs. An arc is
an ordered pair of nodes.

Let w be a mapping from EG onto the set of non negative integers (denoted N).
The weighted directed graph G := (VG, EG, w) is a directed graph with the weights on
its arcs given by w.

A route of G is an oriented path of G, that is a subset of VG forming a chain
between two nodes at its extremities. A cycle of G is a route of G where the same
node is at both extremities. The weight of a route r equals the sum of the weights
of its arcs. For simplicity, we extend the mapping w and let w(r) denote the weight
of r.

We investigate the performances of greedy algorithms for different types of covers
of a graph, either by a route or by a set of cycles. Let X be a subset of arcs of VG.
X covers G if and only if each vertex v of G is the extremity of an arc of X.

1.3 Subset systems, extension, and greedy algorithms

A greedy algorithm builds a solution set by adding selected elements from a finite
universe to maximise a given measure. In other words, the solution is iteratively
extended. Subset systems are useful concepts to investigate how greedy algorithms
can iteratively extend a current solution to a problem. A subset system is a pair (E,L)
comprising a finite set of elements E, and L a family of subsets of E satisfying two
conditions:

(HS1) L 6= ∅,
(HS2) If A′ ⊆ A and A ∈ L, then A′ ∈ L. i.e., L is close by taking a subset.

Let A,B ∈ L. One says that B is an extension of A if A ⊆ B and B ∈ L. A
subset system (E,L) is said to be k-extendible if for all C ∈ L and x /∈ C such that
C ∪ {x} ∈ L, and for any extension D of C, there exists a subset Y ⊆ D \ C with
#(Y) ≤ k satisfying D \ Y ∪ {x} ∈ L.

The greedy algorithm associated with (E,L) and a weight function w is presented
in Algorithm 1. Checking whether F ∪ {ei} ∈ L consists in verifying the system’s
conditions. In the sequel of this paper, we will simply use ”the greedy algorithm” to
mean the greedy algorithm associated to a subset system, if the system is clear from
the context. Mestre has shown that a matroid is a 1-extendible subset system, thereby
demonstrating that a subset system is a generalisation of a matroid [8, Theorem 1].
In addition, a theorem from Mestre links k-extendibility and the approximation ratio
of the associated greedy algorithm.

Theorem 2 (Mestre [8]). Let (E,L) be a k-extendible subset system. The as-
sociated greedy algorithm defined for the problem (E,L) with weights w gives a 1

k

approximation ratio.

1.4 Definitions of problems and related work

Graph covers Let G := (VG, EG, w) be a weighted directed graph.
The well known Hamiltonian path problem on G requires that the cover is a single

path, while the Cyclic Cover problem searches for a cover made of cycles. We consider

152 Proceedings of the Prague Stringology Conference 2014

Algorithm 1: The greedy algorithm associated with the subset system (E,L)
and weight function w.
Input : (E,L)

1 The elements ei of E sorted by increasing weight: w(e1) ≤ w(e2) ≤ . . . ≤ w(en)
2 F ← ∅
3 for i = 1 to n do

4 if F ∪ {ei} ∈ L then F ← F ∪ {ei};
5 ;

6 return F

the weighted versions of these two problems, where the solution must maximise the
weight of the path or the sum of the weights of the cycles, respectively. In a general
case, the graph is not symmetrical, and the weight function does not satisfy the
Triangle inequality. When a Hamiltonian path is searched for, the problem is known
as the Maximum Asymmetric Travelling Salesman Problem or Max-ATSP for short.

Definition 3 (Max-ATSP). Let G be a weighted directed graph. Max-ATSP
searches for a maximum weight Hamiltonian path on G.

Max-ATSP is an important and well studied problem. It is known to be NP-hard
and hard to approximate (precisely, Max-SNP hard). The best known approximation
ratio of 2/3 is achieved by using a rounding technique on a Linear Programming
relaxation of the problem [6]. However, the approximation ratio obtained by a sim-
ple greedy algorithm remains an interesting question, especially since other approx-
imation algorithms are usually less efficient than a greedy one. In fact, Turner has
shown a 1/3 approximation ratio for Max-ATSP [14, Thm 2.4]. As later explained,
Max-ATSP is strongly related to the Shortest Superstring Problem and the Maximal
Compression problems on strings.

If a set of cycles is needed as a cover the graph, the problem is called Maximum
Cyclic Cover . In the general setup, cycles made of singletons are allowed in a solution.

Definition 4 (Max Cyclic Cover). Let G be a weighted directed graph. Maximum
Cyclic Cover searches for a set of cycles of maximum weight that collectively cover
G.

To our knowledge, the performance of a greedy algorithm for Maximum Cyclic Cover
(Max-CC) has not yet been established, although variants of Max-CC with binary
weights or with cycles of predefined lengths have been studied [1].

Superstring and Maximal Compression

Definition 5 (Superstring). Let P = {s1, s2, . . . , sp} be a set of p strings of Σ⋆.
A superstring of P is a string s′ such that si is a substring of s′ for any i in [1, p].

Let us denote the sum of the lengths of the input strings by ‖S‖ :=
∑

si∈S
|si|.

For any superstring s′, there exists a set {i1, . . . , ip} = {1, . . . , p} such that s′ =

si1 ⊕ si2 ⊕ · · · ⊕ sip , and then ‖S‖ − |s′| =
∑p−1

j=1
|ov(sij , sij+1

)|.

Definition 6 (Shortest Superstring Problem (SSP)). Let p be a positive in-
teger and P := {s1, s2, . . . , sp} be a set of p strings over Σ. Find s′ a superstring of
P of minimal length.

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 153

Two approximation measures can be optimised:

– the length of the obtained superstring, that is |s′|, or
– the compression of the input strings achieved by the superstring: ‖P‖ − |s′|.

The corresponding approximation problems are termed Shortest Superstring Problem
in the first case, or Maximal Compression in the second.

aabababba

abbababaa

9
(a)

aabababba

abbababaa

3 4 4+ + =11
(b)

Figure 2: Consider the P := {abba, bbabab, ababa, babaa}. (a) The string abbababaa
is a superstring of P of length 9, the figure shows the order of the word of P in the
superstring. (b): the sum of the overlaps between adjacent words in abbababaa equals
‖P‖ − |abbababaa| = 11.

Figure 2 shows an input for Max-CC or SSP , with a superstring of length 9, which
achieves a compression of 11.

Example 7. Let P := {akb, bk+1, bck} be a set of words; wg = akbckbk+1 is a super-
string found by the greedy algorithm and wopt = akbk+1ck is an optimal superstring.

Thus, the ratio of approximation is |wg |

|wopt|
= 3k+2

3k+1
−−−→
k→∞

1 and the ratio of compression

is 1/2. In other words, a greedy superstring may be almost optimal in length, but its
compression is only 1/2.

Both Maximal Compression and Shortest Superstring Problem are NP-hard [3]
and Max-SNP hard [2]. Numerous, complex algorithms have been designed for them,
or their variants. Many are quite similar and use a procedure to find a Maximum
Cyclic Cover of the input strings . The best known approximation ratio for the
Shortest Superstring Problem was obtained in 2012 and equals 211

13
[10], although an

optimal ratio of 2 has been conjectured in the 80’s [13,2].
For theMaximal Compression problem, a recent algorithm gives a ratio of 3/4 [11].

A seminal work gave a proof of an approximation ratio of 1/2 by an algorithm that
iteratively updates the input set by agglomerating two maximally overlapping strings
until one string is left [13]. This algorithm was termed greedy but does not corre-
spond to a greedy algorithm for it modifies the original input set. We demonstrate in
Appendix that this algorithm yields the same result than a greedy algorithm defined
for an appropriate subset system. Another proof of this ratio was given in [14]. Both
proofs are quite intricate and include many subcases [13]. Thanks to subset systems,
we provide a much simpler proof of this approximation ratio forMaximal Compression
by a greedy algorithm, as well as an optimal and polynomial time greedy algorithm
for the problem of Max Cyclic Covers on Strings.

Definition 8 (Shortest Cyclic Cover of Strings (SCCS)). Let p ∈ N and let
P be a set of p linear strings over Σ: P := {s1, s2, . . . , sp}. Find a set of cyclic strings
of minimal cumulated length such that any input si, with 1 ≤ i ≤ p, is a substring of
at least one cyclic string.

154 Proceedings of the Prague Stringology Conference 2014

Several approximation algorithms for the Shortest Superstring Problem problem
uses a procedure to solve SCCS on the instance, which is based on a modification of a
polynomial time algorithm for the assignment problem [12,2,4]. This further indicates
the importance of SCCS.

Both theMaximal Compression and the Shortest Cyclic Cover of Strings problems
can be expressed as a cover of the Overlap Graph. In the Overlap Graph, the vertices
represent the input strings, and an arc links si to sj with weight |ov(si, sj)|. Hence,
the overlap graph is a complete graph with null or positive weights. A Hamiltonian
path of this graph provides a permutation of the input strings; by agglomerating these
strings in the order given by the permutation one obtains a superstring of P . Hence,
the maximum weight Hamiltonian path induces a superstring that accumulates an
optimal set of maximal overlaps, in other words a superstring that achieves maximal
compression on P . Thus, a ρ approximation for Max-ATSP gives the same ratio for
Maximal Compression. The same relation exists between the Shortest Cyclic Cover
of Strings and Maximum Cyclic Cover on graphs. Indeed, SCCS optimises ‖P‖ −∑

j |cj|, where each cj is a cyclic string in the solution, and Max-CC optimises the
cumulated weight of the cycles of G. With the Overlap Graph, a minimal cyclic string
is associated to each graph cycle by agglomerating the input strings in this cycle. Thus,
the cumulated weight of a set of graph cycles corresponds to compression achieved
by the set of induced cyclic strings. In other words, Shortest Cyclic Cover of Strings
could also be called the Maximal Compression Cyclic Cover of Strings problem (and
seen as a maximisation problem). The performance of a greedy algorithm for the
Shortest Cyclic Cover of Strings problem is declared to be open in [15], while a claim
saying that greedy is an exact algorithm for this problem appears in [4].

2 Maximum Asymmetric Travelling Salesman and
Maximum Cyclic Cover Problems

Let w be a mapping from EG onto the set of non negative integers and let G :=
(VG, EG, w) be a directed graph with the weights on its arcs given by w. We first
define a subset system for Max-ATSP and its accompanying greedy algorithm.

Definition 9. Let LS be the powerset of EG. We define the pair (EG,LS) such that
any F in LS satisfies

(L1) ∀x, y and z ∈ VG, (x, z) and (y, z) ∈ F implies x = y,
(L2) ∀x, y and z ∈ VG, (z, x) and (z, y) ∈ F implies x = y,
(L3) for any r ∈ N⋆, there does not exist any cycle ((x1, x2), . . . , (xr−1, xr), (xr, x1))

in F , where ∀k ∈ {1, . . . , r}, xk ∈ VG.

Remark 10.
– In other words, for a subset F of EG, Condition (L1) (resp. (L2)) allows only one
ingoing (resp. outgoing) arc for each vertex of G.

– For all F ∈ LS and for any v ∈ VG, the arc (v, v) cannot belong to F , by Condi-
tion (L3) for r = 1.

– If in condition (L3), one changes the set of forbidden values for r, the subset
system addresses a different problem. As the proofs in this section do not depend
of r, all results remain valid for these problems as well. For instance, with r ∈ {1},
only cycles of length one are forbidden; the solution is either a maximal path or

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 155

cyclic cover with cycles of length larger than one. The 1/3 approximation ratio
obtained in Theorem 13 remains valid. We will consider later the case where all
cycles are allowed (i.e., r ∈ ∅).

Proposition 11. (EG,LS) is a subset system.

Proof. For (HS1), it suffices to note that ∅ ∈ LS.For (HS2), we must show that each
subset of an element of LS is an element of LS. This is true since Conditions (L1),
(L2), and (L3) are inherited by any subset of an element of LS.

Proposition 12 shows that the defined subset system is 3-extendible.

Proposition 12. (EG,LS) is 3-extendible.

Proof. Let C ∈ LS and e /∈ C such that C ∪ {e} ∈ LS. Let D be an extension of
C. One must show that there exists a subset Y ⊆ D \ C with #(Y) ≤ 3 such that
D \ Y ∪ {e} belongs to LS.

As e ∈ EG, there exists x and y such that e = (x, y). Let Y be the set of elements
of D \ C of the form (x, z), (z, y), and (z, x) for any z ∈ VG where (z, x) belongs
to a cycle in D ∪ {x}. As D is an extension of C, D belongs to LS and satisfies
conditions (L1) and (L2). Hence, #(Y) ≤ 3.

It remains to show that D \ Y ∪ {e} ∈ LS. As C ∪ {e} ∈ LS, C ∪ {e} satisfies
conditions (L1) and (L2), we know that for each z ∈ VG \ {x, y}, the arcs (x, z) and
(z, y) are not in C.

By the definition of Y , for each z ∈ VG, we have that (x, z) and (z, y) /∈ D \ C.
Therefore, for all z ∈ VG, (x, z) and (z, y) /∈ D \ Y . Hence, D \ Y ∪ {e} satisfies
conditions (L1) and (L2).

Now assume that D \ Y ∪ {e} violates Condition (L3). As D ∈ LS, D satisfies
condition (L3) and D \ Y too. The only element who can generate a cycle is e. As
C ∪ {e} ∈ LS, e does not generate a cycle in C ∪ {e}, which implies that it generates
a cycle in D \ (C ∪ Y). Hence, there exists z ∈ VG such that (z, x) ∈ D \ (C ∪ Y),
which contradicts the definition of Y .

Now we derive the approximation ratio of the greedy algorithm for Max-ATSP.
Another proof for this result originally published by [5] is given in [8, Theorem 6].

Theorem 13. The greedy algorithm of (EG,LS) yields a 1/3 approximation ratio for
Max-ATSP.

Proof. By Proposition 12, (EG,LS) is 3-extendible. A direct application of Mestre’s
theorem (Theorem 2) yields the 1/3 approximation ratio for Max-ATSP.

Case of the Maximum Cyclic Cover problem If in condition (L3) we ask that r ∈ ∅,
(L3) is not a constraint anymore and all cycles are allowed. This defines a new subset
system, denoted by (EG,LC). As in the proof of Proposition 12, it suffices now to set
Y := {(x, z), (z, y)} (one does not need to remove an element of a cycle), and thus
#(Y) ≤ 2. It follows that (EG,LC) is 2-extendible and that the greedy algorithm
achieves a 1/2 approximation ratio for the Maximum Cyclic Cover problem.

156 Proceedings of the Prague Stringology Conference 2014

3 Maximal Compression and Shortest Cyclic Cover of
Strings

Blum and colleagues [2] have designed an algorithm called greedy that iteratively
constructs a superstring for both the Shortest Superstring Problem and Maximal
Compression problems. As mentioned in introduction, this algorithm is not a greedy
algorithm per se. Below, we define a subset system corresponding to that of Max
ATSP for the Overlap Graph, and study the approximation of the associated greedy
algorithm. Before being able to conclude on the approximation ratio of the greedy

algorithm of [2], we need to prove that greedy computes exactly the same superstring
as the greedy algorithm of the subset system of Definition 14. This proof is given in
Appendix. Knowing that these two algorithms are equivalent in terms of output, the
approximation ratio of Theorem 18 is valid for both of them.

From now on, let P := {s1, s2, . . . , sp} be a set of p strings of Σ⋆.
The subset system for Maximal Compression is similar to that of Max-ATSP.

For any two strings s, t, s ⊙ t represents the maximum overlap of s over t1. We set
EP = {si ⊙ sj | si and sj ∈ P}. Hence, EP is the set of maximum overlaps between
any two words of S.

Definition 14 (Subset system for Maximal Compression). Let LP as the
set of F ⊆ EP such that:

(L1) ∀si, sj and sk ∈ S, si ⊙ sk and sj ⊙ sk ∈ F ⇒ i = j, i.e. for each string, there
is only one overlap to the left

(L2) ∀si, sj and sk ∈ S, sk ⊙ si and sk ⊙ si ∈ F ⇒ i = j, and only one overlap to
the right

(L3) for any r ∈ N⋆, there exists no cycle (si1 ⊙ si2 , . . . , sir−1
⊙ sir , sir ⊙ si1) in F ,

such that ∀k ∈ {1, . . . , r}, sik ∈ S.

For each set F := {si1 ⊙ si2 , . . . , sip−1
⊙ sip} that is an inclusion-wise maximal

element of LP , we denote by l(F) the superstring of S obtained by agglomerating the
input strings of P according to the order induced by F :

l(F) := si1 ⊕ si2 ⊕ · · · ⊕ sip .

First, knowing that Maximal Compression is equivalent to Max-ATSP on the
Overlap Graph (see Section 1.4), we get a 1/3 approximation ratio for Maximal
Compression as a corollary of Theorem 13. Another way to obtain this ratio is to
show that the subset system is 3-extendible (the proof is identical to that of Propo-
sition 12) and then use Theorem 2. However, the following example shows that the
system (EP ,LP) is not 2-extendible.

Example 15. The subset system (EP ,LP) is not 2-extendible. Let P := {s1, s2, s3,
s4, s5}, C := ∅, x := s1 ⊙ s2. Then clearly C ∪ {x} belongs to LP and the set
D := {s1⊙s3, s4⊙s2, s5⊙s1, s2⊙s5} is an extension of C. However, when searching
for a set Y such that Y included in D \ C = D and such that (D \ Y) ∪ {x} ∈ LP

then s1 ⊙ s3, s4 ⊙ s2 must be removed to avoid violating (L1) or (L2), and at least
one among s5 ⊙ s1, s2 ⊙ s5 must be removed to avoid violating (L3). It follows that
#(Y) ≥ 3.

1 The notation s⊙ t represents the fact that s can be aggregated with t according to their maximal
overlap. ov(s, t) is a word representing a maximum overlap between s and t. Hence, s ⊙ t differs
ov(s, t).

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 157

To prove a better approximation ratio for the greedy algorithm, we will need the
Monge inequality [9] adapted to word overlaps.

Lemma 16. Let s1, s2, s3 and s4 be four different words satisfying |ov(s1, s2)| ≥
|ov(s1, s4)| and |ov(s1, s2)| ≥ |ov(s3, s2)|. So we have :

|ov(s1, s2)|+ |ov(s3, s4)| ≥ |ov(s1, s4)|+ |ov(s3, s2)|.

When for three sets A,B,C, we write A∪B \C, it means (A∪B)\C. Let A ∈ LP

and let opt(A) denote an extension of A of maximum weight. Thus, opt(∅) is an
element of LP of maximum weight. The next lemma follows from this definition.

Lemma 17. Let be F ∈ LP and x ∈ EP , w(opt(F ∪ {x})) ≤ w(opt(F)).

Now we can prove a better approximation ratio.

Theorem 18. The approximation ratio of the greedy algorithm for the Maximal
Compression problem is 1/2.

Proof. To prove this ratio, we revisit the proof of Theorem 2 in [8].

Let x1, x2, . . . , xl denote the elements in the order in which the greedy algorithm
includes them in its solution F , and let F0 := ∅, . . . , Fl denote the successive values
of the set F during the algorithm, in other words Fi := Fi−1 ∪ {xi} (see Algorithm 1
on p. 152). The structure of the proof is first to show for any element xi incorporated
by the greedy algorithm, the inequality w(opt(Fi−1)) ≤ w(opt(Fi)) + w(xi), and
second, to reason by induction on the sets Fi starting with F0.

One knows that opt(Fi−1) is an extension of Fi−1. By the greedy algorithm and
by the definitions of Fi−1 and xi, one gets Fi−1 ∪ {xi} ∈ LP . As xi ∈ EP , there exist
sp and so such that xi = sp⊙ so. Like in the proof of Proposition 12, let Yi denote the
subset of elements of opt(Fi−1) \ Fi−1 of the form sp ⊙ sk, sk ⊙ so, or sk ⊙ sp, where
sk⊙ sp belongs to a cycle in opt(Fi−1)∪{xi}. Thus, opt(Fi−1) \Yi ∪{xi} ∈ LP , and

w(opt(Fi−1)) = w(opt(Fi−1) \ Yi ∪ {xi}) + w(Yi)− w(xi)

≤ w(opt(Fi)) + w(Yi)− w(xi).

Indeed, w(opt(Fi−1) \ Yi ∪ {xi}) ≤ w(opt(Fi)) because opt(Fi−1) \ Yi ∪ {xi} is an
extension of Fi−1 ∪ {xi} and because opt(Fi) is an extension of maximum weight of
Fi−1 ∪ {xi}.

Now let us show by contraposition that for any element y ∈ Yi, w(y) ≤ w(xi).
Assume that there exists y ∈ Yi such that w(y) > w(xi). As y /∈ Fi−1, y has already
been considered by the greedy algorithm and not incorporated in the F . Hence, there
exists j ≤ i such that Fj ∪ {y} /∈ LP , but Fj ∪ {y} ⊆ opt(Fi−1) ∈ LP , which is a
contradiction. Thus, we obtain w(y) ≤ w(xi) for any y ∈ Yi.

Now we know that #(Yi) ≤ 3. Let us inspect two subcases.

Case 1 : #(Yi) ≤ 2.
We have w(Y) ≥ 2w(xi), hence w(opt(Fi−1)) ≤ w(opt(Fi)) + w(xi).

158 Proceedings of the Prague Stringology Conference 2014

Case 2 : #(Yi) = 3.
There exists sk and sk′ such that sp ⊙ sk′ and sk ⊙ so are in Yi. By Lemma 16, we
have w(xi) + w(sk ⊙ sk′) ≥ w(sp ⊙ sk′) + w(sk ⊙ so). As sp ⊙ sk′ and sk ⊙ so belong
to opt(Fi−1), one deduces sk ⊙ sk′ /∈ opt(Fi−1).

We get opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′} ∈ LP . Indeed, as Yi ⊆ opt(Fi−1), neither
a right overlap of sk, nor a left overlap of sk′ can belong to opt(Fi−1). Furthermore,
adding sk⊙ sk′ to opt(Fi−1) \ Yi ∪{xi} cannot create a cycle, since otherwise a cycle
would have already existed in opt(Fi−1). This situation is illustrated in Figure 3.

We have w(opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′}) ≤ w(opt(Fi−1 ∪ {xi, sk ⊙ sk′})),
because opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′} is an extension of Fi−1 ∪ {xi, sk ⊙ sk′} and
opt(Fi−1 ∪ {xi, sk ⊙ sk′}) is a maximum weight extension of Fi−1 ∪ {xi, sk ⊙ sk′}.
As w(opt(Fi−1 ∪ {xi, sk ⊙ sk′})) ≤ w(opt(Fi−1 ∪ {xi})), by Lemma 17 one gets:

w(opt(Fi−1)) = w(opt(Fi−1) \ Yi ∪ {xi, sk ⊙ sk′}) + w(Yi)− w(xi)− w(sk ⊙ sk′)

≤ w(opt(Fi−1 ∪ {xi, sk ⊙ sk′})) + w(Yi)− w(xi)− w(sk ⊙ sk′)

≤ w(opt(Fi)) + w(Yi)− w(xi)− w(sk ⊙ sk′).

As Yi = {sp ⊙ sk′ , sk ⊙ so, sk′′ ⊙ sp}, one obtains

w(opt(Fi−1)) ≤ w(opt(Fi))− w(sk ⊙ sk′) + w(Yi)− w(xi)

≤ w(opt(Fi))− w(sk ⊙ sk′) + w(sp ⊙ s′k) + w(sk ⊙ so) + w(sk′′ ⊙ sp)− w(xi)

≤ w(opt(Fi)) + w(sk′′ ⊙ sp)

≤ w(opt(Fi)) + w(xi).

Remembering that opt(∅) is an optimum solution, by induction one gets

w(opt(F0)) ≤ w(opt(Fl)) +
l∑

i=1

w(xi)

≤ w(Fl) + w(Fl)

≤ 2w(Fl).

We can substitute w(opt(Fl)) by w(Fl) since Fl has a maximal weight by definition.
Let sopt be an optimal solution for Maximal Compression, ‖P‖− |sopt| = w(opt(∅)).
As Fl is maximum, l(Fl) is the superstring of P output by the greedy algorithm and
thus, ‖P‖ − |l(Fl)| = w(Fl). Therefore,

1

2
(‖P‖ − |sopt|) ≤ ‖P‖ − |l(Fl)| .

Finally, we obtain the desired ratio: the greedy algorithm of the subset system achieves
an approximation ratio of 1/2 for the Maximal Compression problem.

3.1 Shortest Cyclic Cover of Strings

A solution for MC must avoid overlaps forming cycles in the constructed superstring.
However, for the Shortest Cyclic Cover of Strings problem, cycles of any positive
length are allowed. As in Definition 14, we can define a subset system for SCCS as
the pair (EP ,LC), where LC is now the set of F ⊆ EP satisfying only condition (L1)
and (L2). A solution for this system with the weights defined as the length of maximal

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 159

xi
sp s0

sk′′

sk′

si1

sk

Figure 3: Impossibility to create a cycle by adding sk ⊙ sk′ to opt(Fi−1) \ Yi ∪ {xi},
without having an already existing cycle in opt(Fi−1). Since we are adding xi to
opt(Fi−1), we need to remove three elements in red: sk′′ ⊙ sp, sp ⊙ sk′ , sk ⊙ so.

overlaps is a set of cyclic strings containing the input words of P as substrings. One
can see that the proof of Theorem 18 giving the 1/2 ratio for MC can be simplified to
show that the greedy algorithm associated with the subset system (EP ,LC) achieves
a 1/1 approximation ratio, in other words exactly solves SCCS.

Theorem 19. The greedy algorithm of (EP ,LC) exactly solves Shortest Cyclic Cover
of Strings problem in polynomial time.

4 Conclusion

Greedy algorithms are algorithmically simpler, and usually easier to implement than
more complex approximation algorithms [7,2,6,10,11]. In this work, we investigated
the approximation ratio of greedy algorithms on several well known problems using
the power of subset systems. Our major result is to prove these ratios with a unified
and simple line of proof. Moreover, this approach can likely be reused for variants of
these problems [1]. For the cover of graphs with maximum weight Hamiltonian path
or set of cycles, the subset system and its associated greedy algorithm, provides an
approximation ratio for a variety of problems, since distinct kinds of cycles can be
forbidden in the third condition of the subset system (see Def. 9 on p. 154). For the
general Maximum Asymmetric Travelling Salesman Problem problem, it achieves a
1/3 ratio, and a 1/2 ratio for the Maximum Cyclic Cover problem.

Today, the upper and lower bounds of approximation are still being refined for the
Shortest Superstring Problem and Maximal Compression problems. It is important to
know how good greedy algorithms are. Here, we have shown that the greedy algorithm
solves the Shortest Cyclic Cover of Strings problem exactly, and gave an alternative
proof of the 1/2 approximation ratio for Maximal Compression(Theorem 18). The
latter is important for it shows that, beside the 3-extendibility, one only needs to
consider the Monge property, to achieve this bound. It also illustrates how a combi-
natorial property that is problem specific can help to extend the approach of Mestre,
while still using the theory of subset systems [8].

References

1. M. Bläser and B. Manthey: Approximating maximum weight cycle covers in directed graphs

with weights zero and one. Algorithmica, 42(2) 2005, pp. 121–139.

2. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis: Linear approximation of

shortest superstrings, in ACM Symposium on the Theory of Computing, 1991, pp. 328–336.

160 Proceedings of the Prague Stringology Conference 2014

3. J. Gallant, D. Maier, and J. A. Storer: On finding minimal length superstrings. Journal
of Computer and System Sciences, 20 1980, pp. 50–58.

4. D. Gusfield: Algorithms on Strings, Trees and Sequences, Cambridge University Press, 1997.
5. T. A. Jenkyns: The greedy travelling salesman’s problem. Networks, 9(4) 1979, pp. 363–373.
6. H. Kaplan, M. Lewenstein, N. Shafrir, and M. Sviridenko: Approximation algorithms

for asymmetric tsp by decomposing directed regular multigraphs. J. of Association for Computing
Machinery, 52(4) July 2005, pp. 602–626.

7. H. Kaplan and N. Shafrir: The greedy algorithm for shortest superstrings. Information
Processing Letters, 93(1) 2005, pp. 13–17.

8. J. Mestre: Greedy in Approximation Algorithms, in Proceedings of 14th Annual European
Symposium on Algorithms (ESA), vol. 4168 of Lecture Notes in Computer Science, Springer,
2006, pp. 528–539.

9. G. Monge: Mémoire sur la théorie des déblais et des remblais, in Mémoires de l’Académie
Royale des Sciences, 1781, pp. 666–704.

10. M. Mucha: Lyndon words and short superstrings, in Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, 2013, pp. 958–972.

11. K. E. Paluch: Better approximation algorithms for maximum asymmetric traveling salesman

and shortest superstring. CoRR, abs/1401.3670 2014.
12. C. H. Papadimitriou and K. Steiglitz: Combinatorial optimization : algorithms and com-

plexity, Dover Publications, Inc., 2nd ed., 1998, 496 p.
13. J. Tarhio and E. Ukkonen: A greedy approximation algorithm for constructing shortest

common superstrings. Theoretical Computer Sciences, 57 1988, pp. 131–145.
14. J. S. Turner: Approximation algorithms for the shortest common superstring problem. Infor-

mation and Computation, 83(1) Oct. 1989, pp. 1–20.
15. M. Weinard and G. Schnitger: On the greedy superstring conjecture. SIAM Journal on

Discrete Mathematics, 20(2) 2006, pp. 502–522.

Appendix

Here, we prove that the algorithm greedy defined by Tarhio and Ukkonen [13] and
studied by Blum and colleagues [2] for the Maximal Compression problem, computes
exactly the same superstring as the greedy algorithm of the subset system (EP ,LP)
(see Definition 14 on p. 156). This is to show that these two algorithms are equivalent
in terms of output and that the approximation ratio of 1/2 of Theorem 18 is valid
for both of them. Remind that the input, P := {s1, s2, . . . , sp}, is a set of p strings
of Σ⋆.

Proposition 20. Let F be an maximal element for inclusion of LP . Thus, there
exists a permutation of the input strings, that is a set {i1, . . . , ip} = {1, . . . , p} such
that

F = {si1 ⊙ si2 , si2 ⊙ si3 , . . . , sip−1
⊙ sip}.

Proof. By the condition (L3), cycles are forbidden in F . Hence there exist sd1 , sx ∈ S
such that sd1 ⊙ sx ∈ F , and for all sy ∈ S, sy ⊙ sd1 /∈ F .

Thus, let (ij)j∈I be the sequence of elements of P such that i1 = d1, for all j ∈ I
such that j +1 ∈ I, sij ⊙ sij+1

∈ F , and the size of I is maximum. As F has no cycle
(condition L3), I is finite; then let us denote by t1 its largest element. We have for
all sy ∈ P , st1 ⊙ sy /∈ F . Hence, ∪j∈Iij is the interval comprised between sd1 and st1 .

Assume that F \ {∪j∈Iij} 6= ∅. We iterate the reasoning by taking the interval
between sd2 and st2 and so on until F is exhausted. We obtain that F is the set
of intervals between sdi and sti . By the condition (L1) and (L2), st1 (resp. sd2) is
in the interval between sdj and stj ⇒ j = 1 (resp. j = 2). As st1 ⊙ sd2 ∈ E, and
F ∪ {st1 ⊙ sd2} ∈ LP , F is not maximum, which contradicts our hypothesis.

We obtain that F \ {∪j∈Iij} = ∅, hence the result.

Bastien Cazaux and Eric Rivals: Greedy Approximation for Superstring and Cyclic Covers 161

For each set F := {si1 ⊙ si2 , . . . , sip−1
⊙ sip} that is a maximal element of LP for

inclusion, remind that l(F) denotes the superstring of S obtained by agglomerating
the input strings of P according to the order induced by F :

l(F) := si1 ⊕ si2 ⊕ · · · ⊕ sip .

The algorithm greedy takes from set P two words u and v having the largest
maximum overlap, replaces u and v with a⊕ b in P , and iterates until P is a singleton.

Proposition 21. Let F be the output of the greedy algorithm of subset system
(EP ,LP), and S the output of Algorithm Greedy for the input P . Then S = {l(F)}.

Proof. First, see that for any i between 1 and p, there exists sj and sk such that
ei = sj ⊙ sk. If F ∪ {ei} ∈ LP , then by Conditions (L1) and (L2), one forbids any
other left overlap of sk or any other right overlap of sj are prohibited in the following.
As cycles are forbidden by condition (L3), one will finally obtain the same superstring
by exchanging the pair sj and sk with sj ⊕ sk in E.

The algorithm greedy from [13] can be seen as the greedy algorithm of the subset
system (EP ,LP). By the definition of the weight w, the later also answers to the
Maximal Compression problem. Both algorithms are thus equivalent.

