
HAL Id: lirmm-01104167
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01104167

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Component-based meta-level architecture and
prototypical implementation of a reflective

Component-based Programming and Modeling language
Petr Spacek, Christophe Dony, Chouki Tibermacine

To cite this version:
Petr Spacek, Christophe Dony, Chouki Tibermacine. A Component-based meta-level architecture
and prototypical implementation of a reflective Component-based Programming and Modeling lan-
guage. CBSE 2014 - 17th International ACM SIGSOFT Symposium on Component-Based Software
Engineering, Jun 2014, Lille, France. pp.13-22, �10.1145/2602458.2602476�. �lirmm-01104167�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01104167
https://hal.archives-ouvertes.fr

A Component-based meta-level architecture and
prototypical implementation of a reflective

Component-based Programming and Modeling language

Petr Spacek
LIRMM, CNRS and Montpellier II University

161, rue Ada, 34392 Montpellier Cedex 5 France
co-affiliation

Faculty of Information Technology
Czech Technical University in Prague

Thakurova 9 16000 Prague 6 Czech Republic
spacepe2@fit.cvut.cz

Christophe Dony and Chouki
Tibermacine

LIRMM, CNRS and Montpellier II University
161, rue Ada

34392 Montpellier Cedex 5 France
{dony,tibermacin}@lirmm.fr

ABSTRACT
Component-based Software Engineering studies the design,
development and maintenance of software constructed upon
sets of connected components. Using existing standard
solutions, component-based models are frequently trans-
formed into non-component-based programs, most of the
time object-oriented, for run-time execution. As a conse-
quence many component-level descriptions (part of code),
e.g. explicit architectures or ports declarations, vanish at
the implementation stage, making debugging, transforma-
tions or reverse-engineering difficult. It has been shown
that component-based programming languages contribute to
bridge this gap between design and implementation and to
provide a conceptual and practical continuum to fully de-
velop applications with components. In this paper we go
one step further in this direction by making a component-
oriented programming and modeling language truly reflec-
tive, thus making verification, evolution or transformation
stages of software development part of this new continuum.
The gained reflection capabilities indeed make it possible
to perform architecture checking, code refactoring, model
transformations or even to implement new languages con-
structs with and for components. The paper presents an
original executable meta-level architecture achieving the vi-
sion that“everything is a component”and an operational im-
plementation demonstrating its feasibility and effectiveness.
Our system revisits some standard solutions for reification
in the component’s context and also handles new cases, such
as ports reification, to allow for runtime introspection and
intercession on components and on their descriptors. We
validate these ideas in the context of an executable pro-
totypical and minimal component-based language, named
Compo, whose first goal is to help imagining the future.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CBSE’14, June 30–July 4, 2014, Marcq-en-Baroeul, France.
Copyright 2014 ACM 978-1-4503-2577-6/14/06 ...$15.00.
http://dx.doi.org/10.1145/2602458.2602476 .

1. INTRODUCTION
Component-based software engineering studies the pro-

duction of reusable components and their combination
into connection architectures. It appears that component-
orientation has been more studied from the design stage
point of view, with modeling languages and ADLs [18, 10]
than from the implementation stage one. As stated in [10]
“most component models use standard programming lan-
guages ... for the implementation stage”; and most of to-
day’s solutions [13] use object-oriented languages. Such a
choice is somehow natural because object-oriented languages
provide means to capture quite easily some of component-
based concepts (encapsulation or provisions) and has prac-
tical advantages related to the availability and maturity of
object-oriented programming languages, tools and practices.
However this choice raises the issue that there is no concep-
tual continuum between models and their implementation
(at least it is incomplete). Many concepts used during design
(component descriptors, required services, ports, architec-
tures, components themselves) vanish (are not represented
as such, i.e. are not explicit) in the implementation.

This is a source of various issues. It makes debugging or
reverse-engineering (e.g. from implementations to models)
complex. It can entail some loss of information or some
inconsistencies when implementing a model, such as the vi-
olation of the communication integrity [13, 1]. Different lan-
guages have to be learned and mastered to write an applica-
tion e.g. an ADL for the architecture, a programming lan-
guage for the implementation (model transformations only
generate skeleton implementations), a language for express-
ing architecture constraints (such as OCL) and possibly a
language for model transformations. Some pieces of code,
working at the meta level such as a constraint checking [32],
may have to be written twice; once using elements of the de-
sign world meta-model and once using the implementation
world meta-model. Dynamic (runtime) constraints check-
ing is only possible if the implementation language has an
executable meta-model that allows for introspection (for ex-
ample if the implementation language is Java, constraints-
checking expressions can be written using the Reflect pack-
age). Runtime model transformations, are only possible if
the implementation language has an executable meta-model
that allows for intercession; furthermore, after such a trans-

formation, a reverse-engineering is needed to update the
model.

Facing these issues, component-based programming lan-
guages [1, 27, 13] propose a first global solution towards
a continuum for component-based development. Modeling
and programming languages [30, 31] extend the idea by mak-
ing it possible to describe as well components, their con-
nection architectures and their implementations in a unified
component-based context. We aim at going further in this
new work by suggesting that this continuum principle can
also encompass all kinds of model-driven activities. This
globally means to allow software engineers to define, using
the same language described by a unique meta-model M, not
only standard applications (architectures and code) having
the same description of architecture at design-time and at
run-time, but also all those meta-programs, e.g. constraint-
checking or model transformation or program transforma-
tion programs, that use or manipulate M constitutive ele-
ments and their instances, either statically or at runtime1.

We can rephrase this as defining a reflective modeling
and programming component-based language (only struc-
tural reflection is considered). Two global approaches can
be considered to achieve this goal : to extend a reflective
modeling language with programming support (as done for
example with KerMeta [21]), or to extend a reflective pro-
gramming language with modeling support [12]. Both are
interesting, the former provides a richer modeling context
while the latter benefits from the efficiency of existing vir-
tual machines. This paper describes a language named
Compo, that applies the second approach in the component-
based context, proposing an original “everything is a com-
ponent” solution to build up an executable meta-model, al-
lowing introspection and intercession. It can be used at all
stages of component development to manipulate standard
and “meta”-components as first-class entities. Various alter-
native solutions do exist for component-based application
runtime adaptation (see the related works section) but we
do not know of such a reflective solution being at the same
time component-based, usable at all development stage and
allowing for full intercession.

The paper is organized as follows. Section 2 presents
Compo’s standard syntax, constructs and use, necessary to
the understanding of later examples. Section 3 presents sev-
eral examples of Compo’s reflection capabilities including
constraints checking and model transformation. Section 4
presents the meta-model and how potential infinite regres-
sions while interpreting it are solved. Section 5 describes
Compo’s prototype implementation in Smalltalk. Compar-
ison with related works is presented in Section 6 and we
conclude in Section 7 by discussing future work.

2. COMPO’S BASIC CONSTRUCTS
Our solution for reflection can be adapted to any

component-based language. We present it in the context
of our experimental solution Compo, a component-based

1Using such a solution of course does not imply to aban-
don those ideas brought by the component approach (e.g.
the separation of development of architectures and imple-
mentations or transformation-based automatic deployment
of components, etc). It simply opens the possibility that
architectures, implementations and transformations can all
be written at the component level and possibly (but not
mandatorily) using a unique language.

Figure 1: a component, instance of the HTTPServer descrip-
tor

language making services, provisions, requirements and in-
ternal architectures explicit. Thanks to this last point it is
an ADL. As described in this section it is somehow a mini-
mal ADL, but it is to be considered that the base presented
here firstly is a partial view (see [29] for a complete presen-
tation) and secondly should be augmented with newer so-
lutions provided by advanced ADLs [18]. Before discussing
and describing Compo’s reflective version, it is needed that
we give an overview of its basic constructs and syntax.

Descriptor HTTPServer {
provides {

default : { run(); status () }
}
internally requires {

fE : FrontEnd;
bE : BackEnd;

}
architecture {

connect fE to default@(FrontEnd.new ());
connect bE to default@(BackEnd.new ());
delegate default@self to default@fE;
connect backEnd@fE to default@bE;

}
service status () {

if(fE.isListening ())
{ [return name.asstr() + ’ is running ’] }

else { [return name.asstr() + ’ is stopped ’] };
}
service run() { ... }

}

Listing 1: An example of a component Descriptor :
HTTPServer.

An excerpt of Compo component’s model is described
by the MOF meta-model in Figure 2 (only those concepts
attributes and operations useful for this paper are shown
in the figure and presented in the section). The language
is based on a descriptor/instance dichotomy; components
are instances of descriptors. Listing 1 shows an example of
a descriptor named HTTPServer and Figure 1 an informal
graphical representation of a component, instance of the
HTTPServer descriptor. A descriptor describes the struc-
ture (ports and internal architecture descriptions) and be-
havior (service definitions) of its instances. For example,
an HTTPServer’s behavior is defined with the status and
run service definitions. External provided (vs. required)
ports descriptions define the external contract (vs. require-
ments) of components. An HTTPServer’s external contract

«e nume ratio n»
PortKind

 Re quire dSing lePo rt
 Pro vide dPort
 Re quire dColl ectio nPort

Descriptor

+ na me :String

PortDescripton

+ kin d :Po rtKin d

ConnectionDescription

Serv ice
Serv iceSignatureInterface

+ na me :String

Port

+ na me :String
+ visibil ity :Po rtVisib il ity

Component
Se rv iceSignatureList

«a bstract»
SinglePort

RequiredPort

Prov idedPort

Se lfPort

SuperPort

«a bstract»
CollectionPort

RequiredCollectionPort

«d ataType,p rimiti ve»
Serv ice Invocation

«e nume ratio ...
PortVis ibility

 internal
 external

rea lizes

+p ort 1

+in terfa ce

1

+in terna lCom pone nts 0 ..*

+o wner 0..1

rea lizes

+destPortDesc +srcPortDesc

+d escrip tor

0..1

owns

+a rchite cture
0..*

+o wner 1

+ports 1..*

+d escrip tor

1 owns
+services

0..*

+d escrip tor1

owns +portDesc

0..*

+service1
+si gnatu re

1

+sub-desc 0..*
inh erits

+su per-d esc 0 ..1

1
+items 0..*

Figure 2: Compo’s meta-model, before the integration of reflection

is to provide, as defined by its default provided port, the
services run and status; and it has no external require-
ment2. A composite component has “internal” components,
i.e. components to which it is connected via its internal
required ports and unaccessible to the outside world. An
HTTPServer is a composite with two internals, one instance
of FrontEnd accessible via the internal required port fE and
an instance of BackEnd accessible via bE. The architecture
description of a composite define its internal architecture i.e.
the way its internal components are accessible and how they
are interconnected. The architecture of an HTTPServer is
thus composed of an instance of FrontEnd connected to an
instance of BackEnd via their ports as explained below.

Ports realize port descriptions (similarly to slots realiz-
ing classes’ attributes in UML [23]). A port has a role
(provided or required), a visibility (external or internal), a
name and an interface. An interface is a list of service sig-
natures which can be given either in extension (as for the
default port of an HTTPServer) or via a descriptor name
as a shortcut for the list of service signatures of its default
provided port. Any component has at least 3 ports named:
default, self and super (the semantics of these is explained
in paragraph First-Class Component of Section 4.) Ports
are connection points; components are connected through
their ports (to say that components are connected is an ad-
mitted shortcut to say that one port of the former is con-
nected to one port of the later). A connection establishes a
communication channel between two ports. A regular con-
nection connects a required port to a provided one, allowing
for standard service invocation. An example of an expres-
sion establishing a regular connection is: connect backEnd@fE

to default@bE; in HTTPServer’s architecture3. A delegation
connection connects two ports having the same role and is
used to delegate (or redirect) information from the outside to
the inside of a component (or the opposite). An example of
a “provided to provided” delegation connection is delegate

default@self to default@fE; in HTTPServer’s architecture.
Ports also are communication channels; any service invoca-
tion (e.g. fE.isListening() in service status in listing 1)
is made via a required port and transmitted to the port it
is connected to.

Finally Compo has an inheritance system [30] making it
possible to define a descriptor as an extension of an exist-

2An example with an external requirement is given later.
3The expression backEnd@fE should be read: “the port back-
End of the component that will be connected to fE internal
port of the current instance of HTTPServer (self)”

ing one (extends keyword), to extend requirements and to
extend or specialize architectures which has proven useful
to our integration of reflection as it will be explained in the
following sections (see the “inherits” reflexive association of
Descriptor in Figure 2).

3. COMPO’S REFLECTION CAPABILI-
TIES

In this section we present reflection capabilities of Compo.
The MOF meta-model presented in Figure 3 shows Compo
elements, representing the main component-level concepts,
on which we apply the component-oriented reification4.
Reification can be seen as a process that makes meta-model
elements accessible (read access in the case of introspection
or read/write in the case of intercession) at the model level
(or programming level). The component-oriented reification
means that for each element we create a descriptor, i.e. we
define component-oriented representation of the elements,
to turn these elements into first-class entities accessible in
Compo’s programs. Component-oriented reification sup-
poses to solve various potential infinite regressions related to
the definition of descriptors representing descriptors, ports
and connectors (or connections). We detail these issues in
the “Integrating reflection” section (Section 4.) In the fol-
lowing we present how these component-oriented represen-
tations can be used to achieve meta-programming, i.e. to
design new kinds of descriptors and ports; to design and per-
form transformations and to verify architecture constraints.

An introspection example.
The following code snippet shows a basic use of intro-

spection. The expression returns the descriptions of ports
named default, self and super, which are defined by the
descriptor Component, see Listing 4.

Component.getPortNamed(’default ’). getDescribedPorts ();

An intercession example.
The following code snippet shows the descriptor (named

ServiceMover) of a refactoring component, which combines
get, remove and add services to move a service from one
descriptor to another.

4This is an excerpt of the complete meta-model that only
presents its central “interesting” parts.

«e nume ratio n»
PortKind

 Re quire dSing lePo rt
 Pro vide dPort
 Re quire dColl ectio nPort

Descriptor

+ na me :String

+ ad dCon necti onDe script i...
+ ad dPortDescriptio n(Port...
+ ad dService(Service)() : ...
+ ge tDescribed Conn ectio ...
+ ge tDescribed Ports() :vo id
+ ge tServices() :voi d
+ ne w() :void
+ ne wNam ed(S tring , Desc...
+ rem oveConn ectio nDesc...
+ rem ovePortDescrip tion(...
+ rem oveService(Se rvice)... PortDescripton

+ kin d :Po rtKin d

ConnectionDescription

Serv ice

+ cod e :S tring
+ con text :Com pon ent
+ pa ramsV :Co mpo nent [*]
+ tem psN :Com pon ent [*]
+ tem psV :Stri ng [*]

+ exe cute () :vo id

Serv iceSignature

Interface

+ na me :String

Port

+ na me :String
+ visibil ity :Po rtVisi bil ity

+ con ectT o(String)() :voi d
+ disconn ect(In tege r)() :void
+ invoke(ServiceInvo catio n)() :void
+ isConne cted() :vo id

Component

+ de fault :Port
+ sel f :Po rt
+ sup er :Port

+ ge tDescriptor() :Port [*]
+ ge tOwn er() :Comp onen t
+ ge tPortName d(String)() :Port
+ getPorts() :Descriptor

Serv iceSignatureList

«a bstract»
SinglePort

RequiredPort

Prov idedPort Se lfPort SuperPort

«a bstract»
CollectionPort

RequiredCollectionPort

«d ataType,p rimiti ve»
Serv ice Invocation «e nume ratio ...

PortVis ibility

 internal
 external

«a bstract»
AbsractPort

Primitiv ePort

rea lizes

+p ort 1

+in terfa ce

1

+in terna lCom pone nts 0 ..*

+o wner 0..1

instance Of

+destPortDesc +srcPortDesc+d escrip tor

0..1 owns

+a rchite cture
0..*

+o wner

1

hasPorts

+n orma lPorts
1..*
{subset ports}

+d escrip tor

1 owns

+services
0..*

+d escrip tor1

owns
+portDesc

0..*

+service

1

+si gnatu re
1

+sub-desc 0..*

inh erits

+su per-d esc 0 ..1

1

+items 0..*

+o wner hasPorts

+p rimiti vePo rts
1..*
{subset ports}

instaceOf

+o wner

hasPorts

+/ports

1..*
{un ion}

Figure 3: An Excerpt of the meta-model of Compo showing the integration of reflection

Descriptor ServiceMover {
requires {

srcDesc : Descriptor;
destDesc : Descriptor

}
service move(serviceName) {

|srv|
srv := srcDesc.getService(serviceName);
destDesc.addService(srv);
srcDesc.removeService(serviceName);

}
}

An example of defining a meta-descriptor.
Descriptor is a meta-descriptor, i.e. an entity whose in-

stances are standard descriptors. A new meta-descriptor
can be defined by extending it. As an example, consider the
following issue. Having an inheritance system, it is possible
for a sub-descriptor SD to define new required ports, thus
adding requirements to the contract defined by its super-
descriptor D. In such a case, the substitution of an instance
of D by an instance of SD needs specific checking (child-
parent incompatibility problem of inheritance systems in
CBSE [30]). It may be wanted to define some descriptors
that do not allow their sub-descriptors to add new require-
ments. Such a semantic restriction is achieved by the De-

scriptorForSafeSubstitution definition shown in the fol-
lowing code snippet. The meta-descriptor extends the meta-
descriptor Descriptor and specializes its service addPort-

Description, which implements the capability to add a port
description. The service is redefined in a way that it signals
an exception each time it is tried to add a description of an
external required port.

Descriptor DescriptorForSafeSubstitution
extends Descriptor

{
service addPortDescription(portDesc) {

| req ext |
req := portDesc.isRequired ();
ext := portDesc.isExternal ();
if (reg & ext)
{ [self.error(’no new reqs. allowed ’)] }
else { [super.addPortDescription(portDesc)] };

}
...

}

An instance (a new descriptor) of the DescriptorFor-

SafeSubstitution meta-descriptor named TestDescriptor

extending descriptor Component could then be created by
the following expressions:

• Run-time creation:

DescriptorForSafeSubstitution
.newNamed(‘TestDescriptor ’, Component);

• Static creation:

DescriptorForSafeSubstitution TestDescriptor
extends Component

{ ... }

An Example of a new kind of port: a read-only
port.

The following code snippet shows the ReadOnlyProvid-

edPort descriptor realizing a new kind of provided ports
through which only services without side effect, i.e. services
not affecting the state of the component, could be invoked.
It redefines the standard service invocation to check when-
ever it is correct or not to invoke the requested service and it
also redefines the standard connecting service in a way, that
a provided port of kind read-only can be delegated only to
another read-only provided port.

Descriptor ReadOnlyProvidedPort
extends ProvidedPort

{
service invoke(service) {

|bool1 bool2|
bool1 := owner.implements(service);
bool2 := owner.isConstantService(service);
if(bool1.and([bool2]))
{ super.invoke(service); }
else { ... }

}
service connectTo(port) {

if(port.getDescriptor (). isKindOf(ReadOnlyPort))
{ super.connectTo(port); }

}
}

To conclude this part on ports, we can say that their ex-
plicit status is a way to further control references between
entities. For example, the read-only example illustrates the
fact that using different kinds of provided ports can facili-
tate different view-points on a component, in this case the
read-only view-point.

An Example of a transformation design and con-
straint verification.

Examples of introspection, intercession and meta-
modeling applications have already been given in previous
paragraphs. Here we present two larger applications5 of
these features, which were our main motivation to develop
this work: a runtime component-based model transforma-
tion, and an architecture constraint checking.

The first application deals with a transformation scenario
performed on Compo’s implementation of the simple HTTP
server, described in Section 2. This transformation mi-
grates this component-based application from classic front-
end/back-end architecture into a bus-oriented architecture.
The transformation (sketched in Fig. 4) was motivated by a
use-case when a customer (already running the server) needs
to turn the server with multiple fronts-ends and back-ends.

HTTPServer

fE : FrontEnd

reqHa

bE : BackEnd

HTTPServer-v2

fE : FrontEnd
bE : BackEnd

bus : CommunicationBUS

Figure 4: Simplified diagram illustrating the transforma-
tion from classic front-end back-end architecture into bus-
oriented architecture.

A bus-oriented architecture reduces the number of point-
to-point connections between communicating components.
This, in turn, makes impact analysis for major software
changes simpler and more straightforward. This makes eas-
ier monitoring for failure and misbehavior in highly complex
systems, and allows easier modifications on components.

Descriptor ToBusTransformer {
requires { context : IDescriptor }
service stepOne -AddBus () {
|pd cd|
pd := PortDescription.new(’bus ’,’required ’

,’internal ’,IBus);
context.addPortDescription(pd);
cd := ConnectionDescription

.new(’bus ’
,’default@(Bus.new())’);

context.addConnectionDescription(cd);
}
service stepTwo -ConnectAllToBus () {...}
service stepThree -RemOldConns () {...}

}

Listing 2: A code-snippet of the ToBusTransformer descrip-
tor.

The results of the transformation are checked using ar-
chitecture constraints also implemented as Compo compo-
nents [32].

The transformation is modeled as a descriptor named
ToBusTransformer. An instance was connected to the
HTTPServer descriptor (Compo’s code in Listing 1) and it
performs the following transformation steps: (i) introduce a
new internal required port named bus to which an instance
of a Bus descriptor (not specified here) will be connected; (ii)
extends the original architecture with new connections from
front-end and back-end to bus; (iii) removes the original

5Actually we present code snippets because of the space
limit.

Descriptor VerifyBusArch extends Constraint
{
service verify () {...}
service stepOne -IsBusPresent () {...}
service stepTwo -HasBusIOPorts(busPD){...}
service stepThree -AreAllConnsToBus(busPD){
|conns|
conns := context.getConnsDescs ();
conns.remove ([:cd|cd.getSrcPort ()

.getInterface ()== IBus]);

if((conns.remove ([:cd|
cd.isDelegation ()]))

{} else { return false };

if(conns.forEach ([:cd|
(cd.srcPortDesc ()== busPD)
.or([cd.destPortDesc ()== busPD])

]) {return true } else { return false };
}

}

Listing 3: A code-snippet of the VerifyBusArch descriptor.

connection from front-end to back-end. Finally, a constraint
component, an instance of the VerifyBusArch descriptor will
be connected to the server to perform post-transformation
verification. The constraint component executes a service
verify which does the following steps: (i) verifies the pres-
ence of the bus component; (ii) verifies that the bus compo-
nent has one input and one output port; (iii) verifies that
all the other components are connected to the bus only and
the original delegation connection is preserved.

Listings 2 and 3 show snippets of Compo code of the
ToBusTransformer descriptor and the VerifyBusArch de-
scriptor. The following code snippet shows the use of the
transformation and verification components:

transformer := ToBusTransformer.new();
constraint := VerifyBusArch.new();

connect context@transformer to default@HTTPServer;
connect context@constraint to default@HTTPServer;

transformer.transform ();
constraint.verify ();

4. INTEGRATING REFLECTION
This section describes the integration of structural reflec-

tion6 capabilities into Compo, i.e. “to provide a complete
reification of both a program currently executed as well as
a complete reification of its abstract data types.” [11]. The
integration is based on the new version of the meta-model
presented in Figure 3. The following sub-sections explain it,
present the Compo’s reflective description of its essential el-
ements, discuss the issues it eventually raises and give clues
on how the associated interpretation processes, that makes
the meta-model executable, cope, when necessary, with in-
finite regressions potentially induced by cycles it contains.

First-Class Components.
6Our solution makes it possible to define new kind of ports
(e.g. aspect ports, see [29]) in which service invocation can
be altered, this is a very limited form of behavioral reflection;
we offer no way to control or modify basic services invocation
and execution.

Our “everything is a component” requirement is achieved
via the transposition of the Smalltalk [14] original solu-
tion (also re-introduced for the same purpose in MOF
reflection [22]) that any entity is an instance of a de-
scriptor and that Component (conceptually conforming to
MOF::Reflection::Object) is the root of the descriptor in-
heritance hierarchy; this makes, together with the classical
set theoretic interpretation of inheritance, any instance of
any descriptor a component.

The Component descriptor then defines the basic structure
and behavior shared by all components. Its reflective defini-
tion in Compo (cf. Listing 4) shows that any component has
at least one provided port named default through which all
public services it defines (* notation) can be invoked. Any
component also has two internal provided ports named self

and super7 allowing a component to send service invocations
to itself via these ports. Component also defines different ser-
vices of global interest, like getDescriptor() which returns
the receiver’s descriptor.

Descriptor Component {
provides { default : * }
internally requires {

super : * ofKind SuperPort;
self : * ofKind SelfPort;

}
service getPorts () {...}
service getPortNamed(name) {...}
service getDescriptor () {...}
service getOwner () {...}

}

Listing 4: The Component descriptor.

First-class descriptors.
Components as we see and propose them with Compo

differ from objects mainly by their explicit requirements,
explicit architectures, their connections and their commu-
nication via ports8. Concerning the question of seeing and
manipulating descriptors as components, these differences
do not prevent from reusing standard meta-classes solutions
to manipulate classes as objects. Among existing solutions,
we have chosen the ObjVlisp one [8], because (i) it solves in
the simplest way the problem that each component, includ-
ing descriptors, should be an instance of a descriptor, and
(ii) it is perfectly adapted to our requirements of allowing
for new explicit meta-descriptors (e.g. independent from the
descriptors inheritance hierarchy.

Translated in our context, it leads to the Compo’s re-
cursive definition given in Listing 5 where Descriptor is
instance of itself and extends Component. Of course it needs
a bootstrapped implementation to become executable. This
is presented in Section 5. It defines the new service to cre-

7The statement ofKind in the definition states that the self
and super ports are created as instances of specific descrip-
tors SelfPort and SuperPort respectively.
8This vision is compatible with other components models,
including those that consider components as packaging en-
tities. If it were to be considered how to pack one Compo
component and put it on a shelves, as for javabeans, we
would consider putting in the pack its descriptor, or its de-
scriptor with this particular instance, or its descriptor to-
gether with all the descriptors of its internal components,
etc.

ate instances and newNamed(name, super-desc) to create
new descriptors and some base services for using introspec-
tion (various read-accessors such as getDescribedPorts())
and for intercession (such as addService(service)). These
services, together with those inherited from Component, set
the basis for creating more complex reflective operations.
In addition to what is defined in Component, a descriptor
has four internal required ports: name, ports (a collection
of instances of PortDescription according to which ports
of its instances are), architecture (a collection of instances
of ConnectionDescription9 representing its instances archi-
tecture description), and services (its services dictionary).

Descriptor Descriptor extends Component {
internally requires {

name : IString;
ports[] : { getName (); getRole ();...};
architecture[] : { getSrc (); getDest ();...};
services [] : { execute ();...};

}
service new() {...}
service newNamed(name , super -desc) {...}
service getDescribedPorts () {...}
service getDescribedConnections () {...}
service addService(service) {...}
...

}

Listing 5: The Descriptor descriptor.

First-class ports.
Unlike the case for descriptors, seeing and manipulat-

ing ports as components raises an interesting open issue.
Ports are high-level abstractions to represent connections
and the capacity for architects to disconnect and reconnect
other components, whatever form they can take, either pos-
sibly physical connections of physical devices or references
to addresses in memory. Reifying ports resembles to han-
dling first-class references [2], but looks at them at a higher
abstraction level. This also allows do deal with the prob-
lem in a simple way (and obviously without handling effi-
ciency considerations). Ports abstract connection points and
communication channels. Reifying them opens the door to
the creation of various kinds of connections or to various
ways to send, transmit, interpret or control services invoca-
tions (read-only ports described in section 3 is one example,
aspect-ports would be another one (see [29]).

The problem that we should tackle in this case is the fol-
lowing: Reified ports should have ports: i) internal required
ports to hold some internal data, for example their name or
the name of the interface that describe them, ii) one external
provided ports to which other components could connect to
invoke their services. Using the base level, it should be possi-
ble to use ports in a standard way as a communication chan-
nel to transmit services invocations as for example with the
expression printer.print(’hello’) (see Figure 5), where
printer is a port of a component c, will invoke the service

9PortDescriptions and ConnectionDescriptions are used
at instantiation time and also during static or runtime archi-
tecture checking or transformation. In the case of a runtime
transformation implementation it should be ensured that
descriptor level descriptions and instances internal repre-
sentations are still causally connected, when the description
changes.

print of the component connected to c via printer. Using
the meta-level, it should be possible to use ports as stan-
dard components, i.e. for example to invoke, in a way that
conforms to Compo’s meta-model and semantics, the is-

Connected() service (see Listing 6) for port printer, which
should return true. The above requirements induce an in-
finite regression as soon as it is tried to invoke a service of
a port seen as a component. To build a usable system, we
have altered them by denying the component status to ports
of ports. This alters in a very marginal way the reflective
possibilities of the system. All examples presented in the
previous section, and all applications we can think of, stay
achievable.

Our complete solution comes as follows. All standard
ports can be used as components on demand. All Stan-
dard ports conform to the Compo reflective definition of
the Port descriptor shown in listing 6. A primitive port is
not a component and cannot be used as such. Any port of
any standard port is automatically created as a primitive
port by the virtual machine. The attachment of a primitive
port to its port is primitive and done by the virtual machine.
The special & operator (the Semantics of which bears some
resemblance with the C & operator’s one) is introduced such
that, for any port p, &p is, and behaves as such, a primitive
internal required port automatically connected to the de-

fault port (all components have it), itself a primitive port,
of p. Used in the context of our previous example, it is then
possible to write &printer.isConnected(), where &printer
is a port of the current component connected to a primi-
tive port of printer. The invocation is then transmitted
to printer seen as a component thus invoking the isCon-

nected() service of Port descriptor. Because primitive ports
are not components, they cannot be used as such and the&
operator is made idempotent, &printer == &&printer, etc.

It is to be noted that to have ports made explicit is a
way to abstract connections between components. Having
first class ports also opens the door to introspection and ex-
perimentation with various kinds of connections [19]. The
read-only ports defined in section 3 can also be seen as imple-
menting read-only connectors. Together with this capability
our model makes it possible to define adapter components
and interconnect them between any components.

Descriptor Port extends Component {
requires {

owner : IComponent
connectedPorts [] : IPort

}
internally requires {

name : IString;
interface : IInterface

}
service getName (){...}
service getIterface (){...}
service invoke(service){...}
service isConnected (){...}
service connectTo(port){...}
service disconnect(index){...}

}

Listing 6: The Port descriptor.

First-class services.
Reifying services as components does not raise new issues

compared to their reification as objects, and it is shortly

default

owner

printer : Port

&printer : PrimitivePort&printer

&&printer
==

&printer
: TextEditor

printer
default

reified-as

reified-as

connectedPorts

Figure 5: The & operator for accessing the component-
oriented reification of the printer port of component TextE-
ditor

given to complete the presentation. Listing 7 shows the
Compo implementation of the Service descriptor. Each ser-
vice has a signature (port serviceSign) to which an instance
of ServiceSignature10 descriptor will be connected), tem-
porary variables names and values (collection ports tempsN

and tempsV), a program text (port code), actual parame-
ters (collection port paramsV), an execution context (port
context, to be connected at run-time to a component rep-
resenting an execution context). To shorten, the architec-
ture section and implementation of the execute() service
are omitted.

Descriptor Service extends Component {
requires {

context : IComponent;
paramsV [] : *;

}
internally requires {

serviceSign : ServiceSignature;
tempsN [] : IString;
tempsV [] : *;
code : IString;

}
...
service execute () {...}

}

Listing 7: The Service descriptor.

Next section gives insights into the implementation that
makes this meta-model and these Compo definitions of
Compo descriptors executable.

5. BOOTSTRAP IMPLEMENTATION
Compo could be implemented from scratch, e.g. with a

new virtual machine, but our first solution to validate our
ideas more rapidly has been to implement it on top of an
existing language having objects and a reflective level of-
fering intercession on structures. Among various possible
alternatives (CLOS could have been used), we have chosen
Smalltalk, because it has been shown that its meta-model
is extensible enough [4, 12] to support another meta-class
system.

Our meta-model is based on the two core concepts (cap-
tured in Figure 3): Component and Descriptor. Both are
implemented as sub-classes of Smalltalk-classes: Object and
Class, respectively. Figure 7 shows their integration into the
Smalltalk meta-model. This integration makes Compo com-
ponents and descriptors manageable inside Pharo Smalltalk
environment. For example, one can use basic inspecting tool,
the Inspector. Descriptor being defined as a sub-class of

10Due to space reasons we omit the ServiceSignature de-
scriptor definition. To give a hint, it provides a service to
store and access names and parameters names of services.

Smalltalk-class Class enables us to benefit from class man-
agement and maintenance capabilities provided by the envi-
ronment. For example, all descriptors are “browsable” with
the standard SystemBrowser tool. We benefit from such a
deep integration and provide Compo also its own tool to
support descriptors’ design process, see Figure 6. By the
way, the tool is also an example of reflection usage.

Figure 6: Screenshot of the Compo’s HTTPServer imple-
mentation in the descriptor’s development tool.

One of the problems we challenged during the implemen-
tation is the fact that Smalltalk supports single-inheritance
only. The meta-model shown in Figure 3 says that Descrip-
tor inherits from Component, but as it is said above, we
implement Descriptor as a sub-class of Smalltalk-classes
(Class). Consequently Descriptor should have two par-
ents and multiple-inheritance is needed11. Concretely, there
are two critical points, where multiple-inheritance is needed,
marked with red ellipses in Figure 7: (i) Descriptor should
inherit from Smalltalk-class Class and from Compo-class
Component (ii) the automatically created Smalltalk-meta-
class Component class should inherit from Smalltalk-meta-
class Object class and from Compo-class Descriptor. To
solve this we simulate the multiple inheritance by auto-
mated copying attributes and methods from Component to
Descriptor and from Object class to Component class,
when one of the parents evolves.

Another problem we encountered is the implementation
of Descriptor as an instance of itself. Smalltalk-class De-

scriptor is a unique instance of Smalltalk-meta-class De-

scriptor class, which is automatically created as a sub-
class of Smalltalk-meta-class Class class (parallel hierar-
chy rule of Smalltalk) and therefore it does not have the
same structure as Descriptor class. To solve this problem
we have extended Smalltalk-meta-class Descriptor class

in a way that it has the same attributes and provides the
same methods as Smalltalk-class Descriptor.

Additionally, we have extented Object to behave as a
primitive component providing all methods defined by Ob-

ject (seen as compo services) through a unique provided
port. Thus Smalltalk-objects can be seen as primitive
Compo-components and they are usable in Compo. This

11Although there is a solution based on single-inheritance,
the solution introduces a unsuitable issue when distinguish-
ing components/descriptors from objects/classes in the im-
plementation level.

Figure 7: Integration of basic Compo classes into Smalltalk
meta-model

makes it possible to reuse Smalltalk class library. For ex-
ample, the PrimitivePort Smalltalk-class can be used as
rock-bottom primitive component used to implement prim-
itive ports.

6. RELATED WORK
In this section we compare reflection capabilities and so-

lutions offered by Compo with those provided by other
component-based systems. For that purpose we classify ex-
isting systems into three categories: Modeling languages,
Middleware component models and Component-oriented
programming languages.

Modeling languages.
UML 2 provides support for component-based software

modeling. Although UML itself is not a reflective language,
its meta-model (defined with MOF [22]) is. Reflection capa-
bilities (manipulation of properties, instance creation, etc.)
provided by MOF are specifications only, i.e. there is no
support for run-time reflection capabilities as we introduced
in Compo.

A specific category of modeling languages are Architecture
Description Languages (ADLs). The static nature of ADLs
also do not match well with reflection [18]. Reflection or at
least introspection capabilities depend on the code which is
generated from architectures that these ADLs describe. For
example, reflection is partially supported in C2 [17] through
context reflective interfaces. Each C2 connector is capable
of supporting arbitrary addition, removal, and reconnection
of any number of C2 components.

Middleware component models.
Existing middleware technologies and standards provide

limited support for platform openness, usually restricted to
high-level services, while the underlying platform is consid-
ered as a black box.

CORBA Component Model (CCM) [24], Enterprise Java
Beans (EJBs) [25] or Component Object Model (COM) [20]
do not provide support for explicit architecture definition.
The black-box approach they support does not fit with re-
flection very well. Introspection interfaces (like IUnknown

interface in COM), which can be used to discover the ca-
pabilities of components, are the only reflection capability
they offer.

Only few solutions consider reflection as a general ap-
proach which can be used as an overall framework that
encompasses platform customization and dynamic recon-

figuration. These models try to overcome the limitations
of the black-box approach by providing components with
meta-information about their internal structure. Projects
like OpenCOM [7] (a lightweight and efficient component
model based on COM), OpenCORBA [16] and Dynamic-
TAO [15] adopt reflection as a principled way to build flexi-
ble middleware platforms. In opposite to Compo, reflection
capabilities of these are usually limited to coarse-grained
components, without the possibility to control more detailed
structures of platforms.

Many reflection capabilities are supported in Fractal com-
ponent model [5], but the capabilities vary depending on
kinds of Controllers a Fractal component membrane con-
tains. Controllers can be combined and extended to yield
components with different introspection and intercession fea-
tures as shown by FRASCATI model [28] for the develop-
ment of highly configurable SCA solutions. In Compo, re-
flection capabilities are the same for all components (an or-
thogonal model). In addition, we go further in the reification
of component-level concepts: services, ports and descriptors
are components.

Furthermore, middleware component models are often
designed to be platform independent by providing tools
for generating code skeletons to be filled later. Conse-
quently, and in opposite to Compo, run-time transforma-
tions on components and their internal structure are per-
formed through objects and not components. as it is for ex-
ample in SOFA [26] and its reification of connectors which
has to be mapped by developers to some (object-oriented)
code.

Meta-ORB [9] as a representant of the Models@runtime
stream [3] pushes the idea of reflection one step further by
considering the reflection layer as a real model that can be
uncoupled from the running architecture (e.g. for reasoning,
validation, and simulation purposes) and later automatically
re-synchronized with its running instance. In contrast to
Compo’s orthogonal model where a change to a descriptor
is propagated to all its instances, Meta-ORB reflection is
based on per-object meta-objects, enabling to isolate the
effects of reflection.

Component-based programming languages, CB-
PLs.

The big advantage of CBPLs is that they do not separate
architectures from implementation and so they have poten-
tial to manipulate reified concepts. In opposite to Compo,
component-level concepts are often reified as objects, instead
of components. This leads to a mixed use of component and
object concepts. For example reflection package of Arch-
Java [1] specifies a class (not a component class) named Port

which represents a port instance. Often the representations
are not causally connected to concepts they represent. In
case of ArchJava, which relies on Java reflection, the reason
is that reflection in Java is mostly read-only, i.e. introspec-
tion support only.

Reflection is not explicitly advocated in ComponentJ [27].
It however appears that a running system certainly has a
partial representation of itself to allow for dynamic reconfig-
uration of internal architectures of components as described
in [27] but it seems to be a localized and ad-hoc capability,
the reification process being neither explicited nor general-
ized as in our proposal.

7. CONCLUSION
We have described an operational original reflective mod-

eling and programming component-based language allow-
ing for the development of component-based models (archi-
tectural part at this point), applications and of static or
runtime model and program transformations. It offers de-
velopers an effective conceptual continuum to use compo-
nents at all stages of software development with no con-
ceptual loss between stages. It opens the essential possibil-
ity that architectures, implementations and transformations
can all be written at the component level and using a unique
language. As a reflective language giving a model access
(via meta-components) to elements of a uniform component-
based meta-model, Compo also makes it possible to design
and implement new component-based construct (as exem-
plified with achieving a new kind of ports).

We have described a full component-based meta-model
and a reflective description in Compo of its main compo-
nent descriptors made executable via a concrete implementa-
tion. We have proposed some concrete, adapted from exist-
ing works (first-class descriptors) or new (first-class ports),
solutions for a component-based reification of concepts lead-
ing to a uniform “everything is a component” operational
development paradigm.

Compo in its today’s state is an operational prototype
mainly designed as a research laboratory to experiment new
ideas. Here are the main ones we intend to follow on. (1)
Compo does not yet embed all new capabilities offered by
existing ADLs and modeling languages, but its reflexive ar-
chitecture is especially designed to integrate them and to
rapidly experience the impact of their integration. (2) Us-
ing the same reflective capabilities, we aim at integrating
generalized bound properties (primarily exemplified by Jav-
aBeans), aspects components, an more powerful solutions
to express requirements and provisions. (3) The global idea
that objects plus explicit requirements and explicit architec-
tures are components is already largely present in this paper,
we aim at experiment its full generalization. (4) To improve
Compo’s program efficiency can be done in various ways;
firstly known optimization for reflexive language [6] but fol-
lowing previous point 3 we can imagine updating existing
virtual machines for reflective object-oriented languages to
components-based ones.

Acknowlegments.
The authors would like to thank Roland Ducournau, Luc

Fabresse and Marianne Huchard for fruitful discussions.

8. REFERENCES
[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava:

connecting software architecture to implementation. In
Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, pages 187–197, New
York, NY, USA, 2002. ACM.

[2] J.-B. Arnaud, M. Denker, S. Ducasse, D. Pollet,
A. Bergel, and M. Suen. Read-only execution for
dynamic languages. In Proceedings of the 48th
international conference on Objects, models,
components, patterns, TOOLS’10, pages 117–136,
Berlin, Heidelberg, 2010. Springer-Verlag.

[3] G. Blair, N. Bencomo, and R. France. Models@
run.time. Computer, 42(10):22–27, 2009.

[4] J.-P. Briot and P. Cointe. Programming with explicit
metaclasses in smalltalk-80. SIGPLAN Not.,
24(10):419–431, Sept. 1989.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma,
and J.-B. Stefani. The fractal component model and
its support in java: Experiences with auto-adaptive
and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, Sept. 2006.

[6] S. Chiba. Implementation techniques for efficient
reflective languages. Technical report, Departement of
Information Science, The University of Tokyo, 1997.

[7] M. Clarke, G. S. Blair, G. Coulson, and
N. Parlavantzas. An efficient component model for the
construction of adaptive middleware. In Proceedings of
the IFIP/ACM International Conference on
Distributed Systems Platforms Heidelberg, Middleware
’01, pages 160–178, London, UK, UK, 2001.
Springer-Verlag.

[8] P. Cointe. Metaclasses are first class: The objvlisp
model. SIGPLAN Not., 22(12):156–162, Dec. 1987.

[9] F. M. Costa, L. L. Provensi, and F. F. Vaz. Using
runtime models to unify and structure the handling of
meta-information in reflective middleware. In
Proceedings of the 2006 international conference on
Models in software engineering, MoDELS’06, pages
232–241, Berlin, Heidelberg, 2006. Springer-Verlag.

[10] I. Crnkovic, S. Sentilles, A. Vulgarakis, and
M. Chaudron. A classification framework for software
component models. Software Engineering, IEEE
Transactions on, 37(5):593 –615, sept.-oct. 2011.

[11] F.-N. Demers and J. Malenfant. Reflection in logic,
functional and object-oriented programming: a short
comparative study. In In IJCAI ’95 Workshop on
Reflection and Metalevel Architectures and their
Applications in AI, pages 29–38, 1995.

[12] S. Ducasse and T. Gı̂rba. Using smalltalk as a
reflective executable meta-language. In Proceedings of
the 9th international conference on Model Driven
Engineering Languages and Systems, MoDELS’06,
pages 604–618, Berlin, Heidelberg, 2006.
Springer-Verlag.

[13] L. Fabresse, N. Bouraqadi, C. Dony, and M. Huchard.
A language to bridge the gap between
component-based design and implementation.
COMLAN : Journal on Computer Languages, Systems
and Structures, 38(1):29–43, Apr. 2012.

[14] A. Goldberg and D. Robson. Smalltalk-80: The
Language and Its Implementation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1983.

[15] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane,
C. Magalhã, and R. H. Campbell. Monitoring,
security, and dynamic configuration with the
dynamictao reflective orb. In IFIP/ACM International
Conference on Distributed systems platforms,
Middleware ’00, pages 121–143, Secaucus, NJ, USA,
2000. Springer-Verlag New York, Inc.

[16] T. Ledoux. Opencorba: A reflective open broker. In
Proceedings of the Second International Conference on
Meta-Level Architectures and Reflection, Reflection
’99, pages 197–214, London, UK, UK, 1999.
Springer-Verlag.

[17] N. Medvidovic, P. Oreizy, J. E. Robbins, and R. N.
Taylor. Using object-oriented typing to support
architectural design in the c2 style. SIGSOFT Softw.
Eng. Notes, 21(6):24–32, Oct. 1996.

[18] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Trans. Softw. Eng.,
26(1):70–93, Jan. 2000.

[19] N. R. Mehta, N. Medvidovic, and S. Phadke. Towards
a taxonomy of software connectors. In Proceedings of
the 22nd international conference on Software
engineering, ICSE ’00, pages 178–187, New York, NY,
USA, 2000. ACM.

[20] Microsoft. COM: Component Object Model
Technologies. Microsoft, 2012.

[21] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
Proceedings of the 8th international conference on
Model Driven Engineering Languages and Systems,
MoDELS’05, Berlin, Heidelberg, 2005.
Springer-Verlag.

[22] OMG. Meta Object Facility (MOF) Core Specification
Version 2.4.1, 2011.

[23] OMG. Unified Modeling Language (UML), V2.4.1.
OMG, August 2011.

[24] OMG. CORBA Component Model (CCM). OMG,
2012.

[25] Oracle. Enterprise JavaBeans Specification Version 3.
Oracle, 2012.

[26] F. Plásil, D. Bálek, and R. Janecek. Sofa/dcup:
Architecture for component trading and dynamic
updating. In procs. of CDS, Washington, DC, USA,
1998. IEEE Computer Society.

[27] J. C. Seco, R. Silva, and M. Piriquito. Componentj: A
component-based programming language with
dynamic reconfiguration. Computer Science and
Information Systems, 05(02):65–86, 12 2008.

[28] L. Seinturier, P. Merle, R. Rouvoy, D. Romero,
V. Schiavoni, and J.-B. Stefani. A component-based
middleware platform for reconfigurable
service-oriented architectures. Softw. Pract. Exper.,
42(5):559–583, May 2012.

[29] P. Spacek. Design and Implementation of a Reflective
Component-Oriented Programming and Modeling
Language. PhD thesis, Montpellier II University,
Montpellier, France, December 2013.

[30] P. Spacek, C. Dony, C. Tibermacine, and L. Fabresse.
An inheritance system for structural & behavioral
reuse in component-based software programming. In
Proceedings of the 11th GPCE, pages 60–69. ACM,
2012.

[31] P. Spacek, C. Dony, C. Tibermacine, and L. Fabresse.
Wringing out objects for programming and modeling
component-based systems. In procs. of the 2nd Int.
Workshop on Combined Object-Oriented Modeling and
Programming Languages (COOMPL’13) - co-located
with ECOOP. ACM Digital Library, July 2013.

[32] C. Tibermacine, S. Sadou, C. Dony, and L. Fabresse.
Component-based specification of software
architecture constraints. In Proceedings of the 14th
CBSE, pages 31–40, New York, NY, USA, 2011. ACM.

