N

HAL

open science

Software Architecture: Architecture Constraints

Chouki Tibermacine

» To cite this version:

Chouki Tibermacine. Software Architecture: Architecture Constraints. Mourad Oussalah. Software
Architecture: principles, techniques and tools, Chapter 2, John Wiley & Sons 2014, pp.37-90, 2014,

9781848216884. lirmm-01104185

HAL Id: lirmm-01104185
https://hal-lirmm.ccsd.cnrs.fr /lirmm-01104185
Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01104185
https://hal.archives-ouvertes.fr

CHAPTER 2

SOFTWARE
ARCHITECTURE:
ARCHITECTURE
CONSTRAINTS

Preamble

In this chapter, we introduce an additional, yet essential, concept in describing software
architectures : architecture constraints. We explain the precise role of these entities and
their importance in object-oriented, component-based or service-oriented software engi-
neering. We then describe the way in which they are specified and interpreted. An architect
can define architecture constraints and then associate them to architectural descriptions to
limit their structure, and for ultimately making persistent a certain level of quality. These
constraints enable us to enforce adherence to a particular architecture pattern or style so
as to ensure a certain level of maintainability. By interpreting these constraints, we are
able to check whether these patterns/styles are respected, after the evolution of architecture
descriptions. We present a state of the art on the current techniques and languages for ex-
pressing these constraints. We then introduce our recent research, where we have developed
languages for expressing these constraints on architectures of object-oriented, component-
based and service-oriented applications. We will use different examples of architecture
constraints representing known patterns and styles, like the Pipe and Filter architecture
style and the Service Facade or Model-View-Controller architecture patterns, to illustrate
these works. We conclude this chapter with a summary of some of the open questions
which have given rise to ongoing research about this concept of architecture constraints.

Software architecture : Principles, techniques and tools. 1
By Mourad Oussalah Copyright (©) 2013 John Wiley & Sons, Inc.

2 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

2.1 Introduction

Since several years, software systems have been ceaselessly evolving, growing in size
and complexity. Software architectures therefore play a leading role and have become a
central artifact in the life cycle of computer systems, because they provide the various
stakeholders with an overview of the organization of those systems. Software architecture
is defined in [3] as “the set of structures of a software system, necessary for reasoning about
it. It is composed of software entities, the relations between them as well as properties of
these entities and relations”. This definition brings to the forefront the fact that this artifact
makes the components of a software system explicit, as well as the dependencies between
these components . This enables us to give a general overview of the organization of this
system and reason on it to verify certain properties, like quality attributes.

The activities surrounding software architectures are many and varied. They include,
among others, documentation [11], evaluation [12] and reasoning [48]. Of these, the activ-
ity which has held the attention of software engineering practitioners considerably these
last few years, is architecture documentation. Indeed, in the literature and in practice, a
plethora of models, languages and tools have been proposed to document software archi-
tectures. This documentation may concern the architecture itself and in this case, we speak
of architecture description, as it may concern architecture decisions [23, 26, 28, 54] or the
(rationale) behind these decisions [47].

Documenting architecture decisions is an important activity in software development
processes [28]. Indeed, this type of documentation allows for, among other things, limiting
the evaporation [6] of architectural knowledge [13]. A multitude of models for defining this
type of documentation exists [17]. These models include both textual and (more or less)
formal specifications (which can be automatically interpreted by programs). These models
include, among other things, the description of the decision itself, its state and its alternative
decisions. Among the most important descriptions encountered in the documentation of an
architecture decision, we find the architecture constraints.

An architecture constraint represents the specification of a condition which an archi-
tecture description must adhere to in order to satisfy an architecture decision. This speci-
fication must be defined using a language that facilitates its automated interpretation. For
example, an architect may make the decision to use the MVC (Model-View-Controller
pattern [42]). An architecture constraint allowing the verification of the adherence to this
pattern in an architecture description would then consists of checking, among other things,
that there are no dependencies between the components representing the model and those
representing the view.

This type of constraint does not necessarily have to be expressed in the design phase,
accompanying (for example) UML class diagrams. It is quite possible to define them in
the implementation phase. Indeed, we can envisage writing and verifying this type of con-
straint in code, in which we can easily identify the architecture descriptions, as in some
object-oriented, component-based or service-oriented applications. Specification of con-
straints in the implementation phase allows them to be dynamically interpreted, beyond
their static verification. It then becomes possible to verify whether they are violated, if the
application’s architecture evolves during runtime.

1. The term “component” is used in the broadest sense, i.e. an element in the architecture which constitutes a
system. They are not components in the sense of component-based software engineering (CBSE).

STATE OF THE ART 3

If we take the case of the architecture constraint verifying a part of the MVC pattern
and expressed on an object-oriented application, for example, we can specify a condition
stipulating that the objects marked (the classes which have been stereotyped, if we are in
UML in the design phase, or annotated, if we are in Java in the implementation phase,
for example) as entities of the model must not contain references to the objects marked as
entities of the view.

Various languages have been developed to specify this type of constraint. They are
mainly used in the design phase and are often associated with architecture description
languages [31]. There are, however, some languages which are used in the implementation
phase. A state of the art on these different languages is given in the next section of this
chapter.

In sections 2.3 to 2.5, we present a language that we have developed, called ACL :
Architecture Constraint Language [52]. We explore the use of this language in contexts
different to that for which it was originally developed, which is that of component-based
applications > We show how this language could be used for writing architecture constraints
on object-oriented applications, described in UML in the design phase, then in Java in the
implementation phase. We also explain the use of this language with service-oriented ap-
plications, described in the implementation phase with BPEL (Business Process Execution
Language). All of this is presented in sections 2.3 to 2.5.

We conclude this chapter with a summary of the contribution of this work. We then
end the discussion with a presentation of our ongoing research study about this concept of
architecture constraints.

2.2 State of the art

In this state of the art, we distinguish two kinds of languages : languages used to specify
architecture constraints in the design phase, and which have been jointly proposed with,
or directly integrated into, architecture description languages, and languages used in the
implementation phase.

2.2.1 Expression of architecture constraints in the design phase

We present architecture constraint expression in the design phase in two steps. First of
all, we present the languages and methods for expressing these constraints in architecture
description languages (ADLs). Secondly, we show different uses of the OCL language, for
specifying this particular type of constraints.

2.2.1.1 Expression of architecture constraints in ADLs In [31], Medvidovic and
Taylor propose a classification framework of the architecture description languages de-
veloped till 1998-2000. Among the classification criteria, we find architecture constraints.
In this article, the authors introduce architecture constraints, introduced in this chapter,
as “programmable invariants” specified during architecture configuration modeling. Only
certain languages offer this option. These languages are : Aesop [20], SADL [36, 37] and
Wright [2].

Aesop allows the writing of “style” or “topology” constraints (also called “configura-
tion rules” by these authors) to force a particular organization of the architecture, so as to

2. Here, the meaning of the term “Component” is that used in component-based software engineering (CBSE).

4 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

adhere to an architecture style [44], such as Pipe and Filter or “client/server”’. These con-
straints are specified in the form of implementations of methods in C++ abstract classes ?
representing the architecture types (Filter, Server, etc.).

These classes all inherit a programming interface (set of functions), called FAM (Fable
Abstract Machine). This makes it possible, among other things, to add or remove ports
to the components, or to put connectors in place. These classes must be specialized (by
sub-typing) to create components, connectors or configurations adhering to the style intro-
duced by these classes. Every description of a new architecture (adding components, ports,
connectors, etc.) adhering to a style will pass through the checking of these constraints by
invoking the methods which implement them. An example of a constraint in Aesop, taken
from [20], is given in the listing below :

| fam_bool pf_source::attach(fam_port p) {

2 if (!fam_is_subtype(p.fam_type () ,PF_ZWRITE_.TYPE))
3

4 return false ;

5

6 else

A

8 return fam_port::attach(p);

9 1

101}

In this constraint, the port received as a parameter of the at tach function is verified.
If its type is a sub-type of a specific type introduced by the Pipe and Filter style, then the
connector is established.

SADL is an ADL allowing the specification of constraints (called Well-formedness
Rules by its authors) enabling adherence to architecture styles. It introduces a syntax for
expressing predicates in the first-order logic restricting the types of elements composing an
architecture description or style (component, connector, port, etc.). As in Aesop, in SADL,
basic types are defined for representing the architecture elements without any constraint.
Every new architecture description or architecture style will have to introduce sub-types
(by inheritance) with possible constraints. These are verified during interpretation of the
instantiation primitives of components and connectors or of their interconnection. A con-
straint concerning the connectors of the Dataflow style, taken from [37], is presented be-
low :

connects_argtype_1: CONSTRAINT =

(/\ x)(/\ y)(/\ z) [Connects(x, y, z) => Dataflow_Channel(x)]
connects\ _argtype_2: CONSTRAINT =

(/\ x)(/\ y)(/\ z) [Connects(x, y, z) = Outport(y)]
connects\ _argtype_3: CONSTRAINT =

(/\ x)(/\ y)(/\ z) [Connects(x, y, z) => Inport(z)]

N LN =

(@)

This constraint stipulates that a connection between components in this architecture
style involves three architecture elements : a channel (x), which must be of the type Data-
flow_Channel, aport(y) of the type Out port and another port (z) of the type Inport.

Wright follows on from the Aesop language, which was developed by the same research
team. It enables the formal description of architectures - especially connectors between
components in these architecture descriptions. It relies on a process algebra notation, a
variant of CSP [24], for modeling the behavior of ports and connectors. This language
enables the specification of constraints for formalizing architecture styles. The following

3. Even if an architect writes code in this ADL, it is not considered in the implementation phase. As the
architect only writes architecture specifications, it is still considered in the design phase. The implementation of
the functionality offered by architecture components is thus not defined with this language.

STATE OF THE ART 5

constraint, for example, stipulates that the configuration must have a star topology :

Jeenter : Components o

Ve : Connectors @ 3r : Role;p : Port | ((center, p), (¢,r)) € Attachments
AVe : Components e den : Connectors;r : Role;p : Port

| ((¢,p), (cn, 1)) € Attachments

The first predicate indicates that there is a component ("center”), amongst all the
components of the architecture description (the key-word Components) which is at-
tached to all connectors of the description. The second predicate indicates that all the
components must be attached to a connector. Hence, this constraint guarantees that every
component is connected to the component representing the center of the star.

Besides these languages, the ADL Acme [21] offers a separate constraint language (not
cited alongside the others in the Medvidovic and Taylor classification [31]) named Ar-
mani [35]. This language allows the expression of what the authors call “design rules”,
which correspond to architecture constraints. Armani is a language allowing the writing of
predicates in first-order logic. It also introduces among others a number of functions for
the verification of the type of an architecture element (satisfiesType (e:Element,
t:Type) :boolean), or for testing the properties of graphs (for example,
attached (con:Connector, comp:Component) : boolean).Itenables two types
of predicates to be defined : “heuristics” and “invariants”. These two entities are defined in
the same way, except that heuristics are not intended for type verifications. The example
below shows an invariant and a heuristic specified in Armani :

Invariant Forall cl,c2 : component in sys.Components |
Exists conn : connector in sys.Connectors |
Attached(cl,conn) and Attached(c2,conn);
Heuristic Size(Ports) <= 5;

EENRUSH SR

The invariant specifies that all the system components must be connected to each other.
The configuration thus forms a strongly connected graph. The heuristic indicates that the
total number of ports must be less than or equal to five.

FScript 4 is a scripting language for the reconfiguration of architectures based on Fractal
components [8]. It is based on a navigation language in Fractal architecture descriptions,
called FPath. This has a syntax inspired by the xPath language, a navigation language
for XML documents. This language enables parameterizable architecture constraints to be
expressed. An example taken from the tutorial for this language is given below :

— Tests whether the client interface $itf is bound to
— (an interface of) component $comp.
function bound—to (itf , comp) {

servers = $itf/binding::*%/component::*;

return size($servers & $comp) > 0;

DN W —

(@)}

The constraint takes the form of a function, i.e. in FScript, the script has no side effects
on the architecture description ; the script uses only introspection >. This function accepts
two parameters : a required interface (client in the terminology of the Fractal component
model) and a component. The constraint makes it possible to test if the required interface

4. A tutorial for this language is available at the following SVN repository
svn ://forge.objectweb.org/svnroot/fractal/tags/fscript-2.0.

5. There is another version of the scripts in FScript called “Action”, which allows the modification of the
architecture description (realization of the intercession), FScript being an architectural reconfiguration language
rather than a constraint language

6 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

received in the first parameter ($ it f) is connected to the component received in the second
parameter ($comp).

The expression in line 4 makes it possible to get the set of components (stored in a
variable servers) which have a provided interface (server in the Fractal terminology)
connected to the required interface $it f. The expression in the following line makes the
intersection (operator &) between this set of components (servers) and the component
$comp received in the parameter. If the intersection is not empty, the function returns the
value “true”. Otherwise, it returns “false”.

More generally, this language relies on an FPath navigation language to achieve intro-
spection. It provides a number of set operators : intersection (&), union (—), size (size),
etc. The richness of this language resides in the use of a syntax similar to xPath for writ-
ing complex requests, and the possibility of calling functions already previously specified
within these requests.

The AADL language [18] (Architecture Analysis and Design Language) is an ADL en-
abling the description of (software and hardware) component-based architectures for em-
bedded and real-time systems. A language named REAL [22] (Requirements and Enforce-
ments Analysis Language) was suggested as a constraint language for AADL. REAL makes
it possible to express constraints in the form of theorems applying to a collection of archi-
tecture elements (components or connections, for example). In the following listing [22],
the constraint applies to instances of Thread-type components and verifies their periodic-
ity. Their property, the name of which is Dispatch_Protocol, must have periodic
or sporadic as a value.

theorem task_periodicity

1

2| foreach t in Thread_Set do

3 check ((Get_Property_Value(t,”Dispatch_Protocol”) = "periodic”)
4 or

5 (Get-Property_Value(t,”Dispatch_Protocol”) = "sporadic”));

(@)

end task_periodicity

The constraints in this language use an introspection mechanism to, among other things,
obtain the set of component instances of type Thread, Data , etc., to obtain the val-
ues of their properties, to test access or connections between instances of components
(Is.Accessing.To(...),IsBound.-To(...), Is_Subcomponent Of (...),
etc.). This language proposes iterators (foreach) and set operations (Cardinal, Max,
etc.) and Boolean and comparison operators.

2.2.1.2 Expression of architecture constraints with OCL The OCL (Object Con-
straint Language) language [41] is the OMG (Object Management Group) standard for
expressing constraints on UML models. The goal of this language is to provide develop-
ers with a means of specifying conditions for refining the semantics of their models. This
constraint language was initially suggested for specifying conditions on functional, not ar-
chitectural, aspects. For example, in a class diagram, where we find a class Employee,
having an attribute age of type integer, an OCL constraint representing an invariant on
this class can force the values of this attribute so that they always fall in the interval 16 to
70. This constraint will be verified on all instances of the UML model, and therefore on all
instances of the class Employee.

There are, however, other uses of the OCL language, which are at the meta-model level
and not at the model one. This allows the expression of architectural constraints like those
discussed in this chapter. Below, we list some examples of specifications in which the OCL
language is used to express architecture constraints.

STATE OF THE ART 7

1. Specification of the UML language [40] : in this specification, the meta-model of the
UML language is introduced, and OCL constraints are associated with it, in order to
refine the semantics of this meta-model. These constraints navigate through this meta-
model and impose their conditions on meta-classes in the meta-model, the values of
their attributes, the number of their instances, their interconnections, etc. In Figure 2.1,
taken from [40], we show a small excerpt from the UML meta-model, in which the
associations between classes are partially specified.

] Property 2 1

g 299regation : AggregationKind £ Association

+memberEnd

«enumeration»
AggregationKind

= non

= shared
= composite

FIGURE 2.1 Excerpt from the UML meta-model

This figure shows that an association has two or several member ends, which are in-
stances of the Property meta-class. A property has an attribute aggregation,
which can take the following three values : none (no aggregation), shared (ag-
gregation in UML) and composite (composite in the sense of UML). Here is an
example of a constraint [40] written in OCL on this fragment of the meta-model.

Only binary associations can be aggregations

1

2| context Association inv:

3| self .memberEnd—>exists (aggregation <> Aggregation ::none)
4| implies self.memberEnd—>size () = 2

The first line is a comment indicating the role of the constraint. The line 2 denotes
the constraint context. This represents the meta-class in the meta-model on which
the constraint is applied. Hence, the constraint will be evaluated on all instances of
this meta-class. In the example, we are indicating at the Association meta-class
shown in Figure 2.1. In line 3, the constraint navigates across the association between
the Association and Property meta-classes in the meta-model to obtain the
Property instances linked to the Association instance on which the constraint
is evaluated. The constraint then checks if there is at least one instance among these
Property instances whose aggregation attribute value differs from none (to
check if there is at least one association which is an aggregation or composition). In
the next line, the constraint checks that, in this case, the number of member ends of
the association is equal to two (binary association).

2. UML profiles : a UML profile is a standard extension to the UML language for han-
dling a particular domain - real-time systems, telecommunications, systems on a chip,
system tests, etc. ©.

Let us take the example of the UML profile for CORBA and CORBA components
(CCCMP [39]). An excerpt from the meta-model implemented by this profile is given
in Figure 2.2.

6. See a complete list of UML profiles adopted by the OMG on the following website
www.omg.org/technology/documents/profile_catalog.htm.

SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

* | +derived
* =] InterfaceDef

+base | [cg isAbstract: Boolean |
= isLocal: Boolean

+ providesItf

+usesitf
+usesDef | *

+receptacles E UsesDef
[=] sourceDef *sourcess 5 §
% ‘ . 1 gI= multiple : Boolean
P —
— || componentDef +facets
[sinkDef & = isBasic: Boolean

+sinkss 1
J . , 1 ’ 1
¥ y +emitss I " +publish * +C
[streamPortDef (] Emi f =] Publi f Hec
[J |

| EventPortDef

L] ProvidesDef
* + providesDef

FIGURE 2.2 Excerpt from the meta-model of the UML profile for CORBA and CCM

In this meta-model, it is specified that a component definition declares a certain num-
ber of ports, which can be receptacles (required ports of type UsesDe£), facets (pro-
vided ports of type ProvidesDef), event ports (EmitsDef, PublishesDef and
ConsumesDef) or flow ports (SourceDef and SinkDef).

The following constraint stipulates that a basic component definition does not have to
declare ports or inherit other component definitions :

context ComponentDef inv:

self.isBasic implies

facets —>isEmpty and receptacles —isEmpty and

emitss —>isEmpty and publishess —>isEmpty and consumess—>isEmpty and
sinkss —isEmpty and sourcess —>isEmpty and

base—>isEmpty

QNN B W —

Lines 3 to 5 indicate that ports should not have as a type one of the types cited
above. The last line specifies that the component definition does not have to be de-
rived from another component definition (the base role being inherited from the
InterfaceDef meta-class). In this case, the basic Corba component definition can
only have a HomeDe £ interface being able to declare operations of type FactoryDef
or FinderDef (which are not shown in the meta-model in Figure 2.2 for simplicity’s
sake.)

. Software architecture description in UML is proposed by Medvidovic et al. in [32] :
the authors introduce three different methods for using UML as an architecture de-
scription language in this article. The first method consists of using UML as it is. The
second recommends the establishment of architecture constraints in OCL on UML
meta-classes. The third method suggests extending the UML language. The second
method is the most interesting for us to present here. The authors present a set of
OCL constraints applicable on the UML meta-model, to adhere to the restrictions
imposed by some ADLs in component-based architecture description. The authors
have chosen three ADLs that they have considered suitably representative, which are
C2 [30], Rapide [29] and Wright. More specifically, they have presented the UML
profiles of these ADLSs, because they have simultaneously introduced the constraints,
stereotypes and tagged values which correspond to these ADLs. For the C2 language,
for example, the authors introduce a stereotype named C2Component as an exten-
sion of the Class meta-class. An architecture constraint attached to this stereotype

STATE OF THE ART 9

indicates that the C2 components must implement exactly two interfaces, which must
be stereotyped C2Interface, one of them positioned above the component and the
other below. This constraint is expressed in OCL as follows : [32] :

I| self.interface —>size = 2 and

2| self.interface =—>forAll(i | i.stereotype = C2Interface) and
3| self.interface —>exists(i | i.c2pos = top) and

4| self.interface —>exists (i | i.c2pos = bottom)

The authors introduced an enumeration beforehand (used in lines 3 and 4) for the po-
sition of interfaces (top and bottom), and the stereotypes C2Component, which
is the context of this constraint, and C2Interface used in line 2.

It should be noted here that the constraints defined in this way, at the meta-model level,
apply to all instances of that meta-model, and therefore on all models (architecture de-
scriptions) defined using this meta-model. These constraints thus represent quite strong
conditions, being a part of the architecture description specification of the language. They
will apply to every architecture description defined with this language. Therefore, these are
not architecture constraints which will be verified on a particular architecture description
(that of a specific application).

2.2.2 Expression of architecture constraints in the implementation phase

In the implementation phase, the developer is faced with two scenarios : i) manually
writing the code (programs) corresponding to the architecture described in the design
phase, or ii) automatically generating code skeletons from the architecture descriptions
and then filling in the missing parts. Everything depends on the language used in the design
phase and the tools associated therewith. In an ideal scenario, the constraints accompany-
ing the architecture description are themselves transformed into code, or into constraints
which can be verified on the code. Unfortunately, to the best of our knowledge, no work in
the literature has been developed on this subject. Recently, we were inclined to answer this
question (see the conclusion in section 2.6), but the work that we undertook does not fall
within the subject matter of this chapter and therefore will not be detailed here.

In this section, we focus on the works which have suggested languages and tools for
expressing constraints on programs. It should be noted here that architecture constraints
sometimes involve quite a fine granularity in the architecture description, like attributes’
access modifiers or method parameters. This is related to the architecture style underlying
the programming language. For example, object-oriented programming languages offer an
architecture style for applications constituted of concepts such as classes, prototypes, at-
tributes, methods, etc. Architecture constraints on object-oriented applications must there-
fore necessarily involve this level of granularity (on these concepts and their properties).
These constraints do not arise at the functional level (constraints on attribute values, for
example). They arise rather at the structural, and therefore architectural, level of these ap-
plications.

Boris Bokowski in [5] suggested a framework called CoffeeStrainer. This framework
facilitates constraints specification in Java and their static verification in Java programs.
It enables condition expression in programs in order to implement good design practices,
such as encapsulation or systematic invocation of a superclass method when this method
is redefined in a sub-class. These constraints are defined in the form of particular com-
ments (surrounded by the set of symbols /+/) which can be placed anywhere in a class.
Within these comments, methods are defined for implementing the constraint using a re-

10 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

flexive layer (for meta-programming) provided by CoffeeStrainer. These methods are in-
voked whilst analyzing the syntactic tree representing the class in which the constraint has
been defined, and therefore on which it is going to be verified. For example, the following
constraint enables us to check that all the attributes of a class are private (data encapsulation
principle in object-oriented programming).

interface PrivateFields {
/*/ public void checkField (Field f) {
if (! f.isPrivate ()) {
reportError(f, ”field is not declared private”);
1
S

N LN =

}
[*/
}

el Ho)

If a class implements the interface in the previous listing, the checkField (Field
£) (line 2) method will be invoked as many times as there are attributes in the class, by
passing it as an argument each time the Fie1ld object representing the attribute. This con-
straint reports an error by calling an inherited method known as reportError (...),
if one of the attributes is not private.

CoffeeStrainer can allow quite a fine level of detail to be considered when express-
ing constraints , e.g. in checking the type of instructions which are in methods (is it a
method invocation, an assignment, etc. ?). This level of detail is not useful for express-
ing architecture constraints which involve aspects of a coarser granularity (declared at-
tributes and methods, extended classes, implemented interfaces, etc.). To achieve this,
java.reflect is quite sufficient. We will return to this point later in this chapter.

An older language, called CCEL (C++ Constraint Expression Language), is suggested
in [10] for constraint specification involving the structure of C++ programs. Constraints ex-
pressible with this language only involve declarations in programs (declarations of classes,
functions and variables), corresponding to the type of constraints that we would like to
express. However, this language introduces a new syntax, inspired by C++, but which re-
quires specific learning.

In [27], the authors suggest a language called CDL (Category Description Language),
which enables to express architecture constraints in first-order logic as formulas involving
trees representing program syntax (parse trees). This language allows constraint specifi-
cation independently of all languages. However, in order to integrate this language into a
concrete programming language, this language must be extended to enable the annotation
(with the names of constraints) of the programs written with the target language on which
the constraints must be verified.

DCL (Dependency Constraint Language [49]) is an architecture constraint specification
language for object-oriented applications. This language enables the expression of con-
straints which are statically verified - i.e. checked, on the source code of object-oriented
applications, before their execution. dclchek is the tool provided by the authors of this
language for checking DCL constraints on Java code.

Firstly, this language allows to indicate the parts of the object-oriented application
which represent modules (a module = a set of classes and of interfaces). Next, the con-
straints specify conditions that these modules must adhere to. The authors of this language
indicate that two categories of constraints can be specified : “divergences” and “absences”.
By “divergence”, the authors mean that the source code of an object-oriented application
contains a dependency which does not adhere to the constraint. By “absence”, the authors
mean that the source code does not contain a dependency. “Divergences” can be of two
kinds :

STATE OF THE ART 11

1. constraints such as : “Only classes in module A can depend on the types in module
B”. By the word “depend”, the authors mean, access (a class of module A can access
the public members of a class of module B), declare, create, implement, inherit, etc. ;

2. constraints such as : “Classes of module A cannot depend on the types in module B”.

Some examples of constraints are given below :

only A can—access B

only A can—declare B

only A can—useannotation B
A cannot—create B

A cannot—implement B

A cannot—throw B

AW =

[)}

The constraint in line 2 indicates that only classes in module A can declare variables of
types defined in module B. By contrast, the constraint in line 6 stipulates that the classes
in module A cannot throw exceptions of the types defined in module B.

“Absences” are constraints such as : “Classes declared in module A must depend on
types declared in module B”. Some examples of this category of constraints are shown
below :

I|A must—extend B
2| A must—throw B
3| A must—useannotation B

The first constraint shows that classes declared in module A must extend a class declared
in module B. The second constraint specifies that all the methods of the classes in module
A must throw exceptions, the types of which are declared in module B . The last constraint
imposes the use of at least one annotation declared in module B in all classes in module A.

Expressing architecture constraints is quite limited in DCL. Indeed, with this language
we can impose conditions on the dependencies between types, but it is ,for example, im-
possible to write constraints limiting the number of architecture elements (e.g. number
of instances, attributes or operations). This necessitates complex logical compositions or
even requires a dynamic program analysis (e.g. to check if the value of an attribute does
not correspond to a reference to an object of a certain “forbidden” type).

A number of works in the literature refer to architecture constraints as conditions on
the structural dependencies between program elements. SCL (Structural Constraint Lan-
guage [25]) is a constraint language for predicate specification in first-order logic. This
language enables the analysis of the syntax of programs, which is represented as a graph,
via a number of operations. For example, the operation subclasses (class ("X"))
returns the set of sub-classes of class “A”. The following example, taken from [25], in-
troduces a constraint checking that the equals methods in Java classes have a correct
signature :

def Object as class(”java.lang.Object”)
for p: packages, c: classes(p), m: methods(c)
(
(name (m)="equals” & isPublic(m) & sizeof(params(m))=1)
=
(returnType (m) = boolean & type(ith(params(m),0))=Object)
)

NN R W —

This constraint iterates on all packages, and for each of the methods in the classes of
these packages (the for loop in line 2), if the method is public, is called equals (.. .)
and accepts an argument (line 4), it must have boolean as the return type and its param-
eter must be of type Ob ject (line 6).

12 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

The designers of this language suggested a sort of simplification of the OCL language,
but given as a new language having its own syntax. For example, the for loop in line 2 of
the above listing is written more verbosely in OCL by nesting forAl1l operations. They
also suggested a direct adaptation of this language to the procedural and statically-typed
object-oriented programming languages. To analyze the source code of programs, opera-
tions are directly integrated into the language, like i sPublic (...) ormethods (...).
These operations could have been introduced as navigation in the meta-model of the pro-
gramming language that the analysis concerns, as we introduced them in the previous sec-
tion on OCL language, or as will be introduced in the next section of this chapter. This has
the benefit of rendering the constraint language independent of a particular programming
language, and parameterizable by the latter. The OCL language provides this possibility
and has the benefit of being a standardized language, well-known, having a strong tool
support and easy to learn and to use [7].

Other languages proposed in the literature can be grouped together into one family ; that
of the languages stemming from Prolog. For example, LogEn [14] (Logical Ensembles) is a
language for expressing ensembles of elements, components of programs, and constraints
on the dependencies between these sets. This language is based on a formalism a la Pro-
log, called DatalL.og [9], allowing programs to be represented in the form of relations as
follows :

1| type(tl, ’bat.type.ObjectType)
2| type(t2, ’bat.type.IType’)
3| interface (tl1, t2)

In line 1, we have a type declaration whose identifier is t 1 and which is called
bat.type.ObjectType. In line 3, the relation shows that t1 declares to implement the
interface whose identifier is t 2 (declared in the line above).

Typically, constraints imposed by design patterns [19] are expressible using this lan-
guage. This is done first by indicating the different roles in a pattern by sets, then specifying
the constraints of belonging (or not) to these sets, relying on logic operators of conjunc-
tion or disjunction. For example, for the pattern Factory, the authors specify three sets
representing :

— all the program elements of a certain application ;

— the Factory class (this set has the following identifier in the listing below :

TypesFlyweightFactory);
— the class constructors whose objects will have to be created with the Factory class
(this set has the following identifier : TypesFlyweightCreation).

This is done by using part_of (.. .)relations, as shown above. Next, the Factory
pattern constraint imposes the creation of objects of a certain type, defined as follows
through the Factory class :

violations (S, T, ’TypesFlyweight’): —
part_of (T, ’TypesFlyweightCreation’),
tnot (part_of (S, 'TypesFlyweightFactory’)).

LW —

This constraint checks that all the S and T pairs are in uses (S, T) relation (i.e. depen-
dent on one another), T belongs to the constructor set and S is not the Factory class. In
other words, T (a constructor) must be used exclusively through T (the Factory class).

An interpreter of this language has been integrated into the incremental compilation/build
process in Eclipse, to permanently check the constraints whenever the developers modify
the source code of their programs.

The main benefits of this work are the interesting performances obtained during con-
straint interpretation (efficiency of set creation and verification of dependencies) and the

STATE OF THE ART 13

incremental nature of the approach (its integration into Eclipse within its incremental com-
pilation/build process). On the other hand, the authors focus exclusively on the structural
dependencies between program elements (methods, attributes, super-classes, etc.). Con-
straints focus on the verification of the presence or absence of a dependency between these
program elements. Nonetheless, this language suffers from a lack of expressiveness. In-
deed, complex constraints involving complex navigations are expressed with difficulty in
LogEn. Law Governed Architecture [33, 34] is a similar approach, based on Prolog, for
expressing and checking constraints of dependencies between programs written in Eiffel.

In [4], the authors present an approach which proposes a separate language based on
Prolog, called Spine, for writing design patterns in the form of constraints. As in LogEn,
a constraint uses relations like constructorsOf (...) or isStatic(...). The
following example [4] shows the Public Singleton design pattern :

realizes (’PublicSingleton’” , [C]) :—
exists (constructorsOf (C),true),
forAll (constructorsOf(C),
Cn.isPrivate (Cn)),
exists (fieldsOf (C) ,F.and ([
isStatic (F),
isPublic (F),
isFinal (F),
typeOf(F,C),
nonNull (F)
)

OO WN B W —

In this constraint, we check that the C class has at least one constructor (line 2), that
all its constructors are private (lines 3 and 4), and that it has at least one final attribute
which is static and public whose type is class C, and its value is not null (lines 5 to 10).

This language exclusively focused on design patterns. Based on a formalism in Prolog,
it has the same limitations as the LogEn language.

In practice, there are several static code analysis tools enabling the verification of ar-
chitecture constraints. A non-exhaustive list of these tools includes : Sonar, Checkstyle,
Lattix, Macker, Classycle, Architexa and JArchitect. These tools vary considerably in the
functionalities that they implement. Some provide developers with the means to write con-
straints representing architecture styles or design patterns, by relying on a syntactic tree
of programs (like Checkstyle). Others are limited to the specification of restrictions of de-
pendencies between modules (like Lattix). They propose different notations, from program
writing (as in Checkstyle) to the definition of specifications in a declarative (in XML, as in
Macker) and/or graphic (as in Sonar) fashion. These tools allow constraints to be checked at
different levels of the development process, for example, during programming (and there-
fore relying on just-in-time compilation in Eclipse among others), during commit in SVN
version management systems (like Checkstyle), or during project building with tools like
Ant and Maven (like Macker).

The last, but not least, family of languages is composed of languages which offer
the possibility of writing meta-programs (also called reflexive languages). In these meta-
programs, the developer has the possibility to access (introspection or intercession) the
structure of programs which are reified in the form of objects (in reflexive object-oriented
languages) or components in component-based languages, like Compo [46]). Java is an
example of an object-oriented programming language which mainly offers the capability
of introspection and Smalltalk is an example of an object-oriented programming language
which offers introspection and intercession. For architecture constraint specification, we
only need introspection, as architecture constraints analyze only the structure of programs,
and have no side effects. Sometimes, architecture constraints should be dynamically eval-

14 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

uated, i.e. at the execution of programs on which the constraints are verified. This is un-
necessary for some categories of architecture constraints, in which a static analysis of the
architecture is enough. In some cases, e.g. the MVC pattern, shown in the next section),
the constraint must verify the types of instances created at execution and their interconnec-
tions. It must therefore be dynamically evaluated.

In the next sections, we will present some studies that we have conducted in the last
few years, on architecture constraint specification. We will show how we are able to ex-
ploit current languages, well-known by developers, such as OCL and Java, to express this
type of constraints on applications written in various paradigms. We have chosen the three
paradigms which are the most well-known in the software industry : the object, Compo-
nentcomponent and service paradigms.

2.3 Architecture constraints on object-oriented applications

Architecture constraints expressed on object-oriented applications enable the specifica-
tion of (among other things) conditions imposed by architecture styles, design patterns,
dependencies between types, or any kind of invariant involving the checking of the archi-
tecture of an application and not its state. In the rest of this section, we firstly show the
specification of these architecture constraints on object-oriented applications in the design
phase, then in the implementation phase.

2.3.1 Architecture constraints in the design phase

We have here chosen to show constraints expressed using the ACL language [52], on
design models of object-oriented applications written in UML. ACL is a simplification of
the OCL language. In ACL, only invariants can be expressed, i.e. it is not possible to define
the other kinds of constraints pre, post-conditions, init, derive or body, which are
possible in OCL. Moreover, in the context of the constraint, the used identifier represents
the architecture description on which the constraint is applied. The identified element type
is a meta-class in a meta-model. The navigation starts from this meta-class to analyze an
architecture description in order to specify the constraint. We give some examples below
to better illustrate our discussion.

Figure 2.3 shows an excerpt from the UML meta-model, obtained from the UMLIanguage
superstructure specification, version 2.4.1 [40].

This meta-model focuses on describing classes, and more particularly packages, at-
tributes, dependencies and profiles. A package is composed of a number of types (see in the
center of Figure 2.3). By means of the PackageableElement and NamedElement
meta-classes, classes inherit the ability to participate in dependencies (top-right of the fig-
ure). On the bottom-right of the figure, it is shown that a class can declare attributes which
are Property instances. A class also inherits from Classifier the fact that it can have
inherited or imported attributes (association between Classifier and Property). The
left-most part of the figure illustrates the fact that we can apply a profile to a package, and
that a profile is composed of a number of stereotypes.

We take the example of a constraint representing the MVC pattern. The dependencies
between the different entities composing this pattern are illustrated in the diagram in Fig-
ure 2.4. To simplify, we have used UML packages to represent groupes of classes that play
the three roles in this pattern (the model, the view and the controller). However, this does
not necessarily have to reflect the application design (the classes of the view and those of

ARCHITECTURE CONSTRAINTS ON OBJECT-ORIENTED APPLICATIONS 15

. = stereotype |* L] Dependency
+stereotype + fownedStereotype
+supplierDependency | * * | + clientDependency
1§+ owningPackage +supplier [1.* 1.* | +client
=] ProfileApplication |, applyingPackage | [Package ‘ L] NamedElement
isStrict : Bool < ~Stri St
=) + profileApplication 1) URI: String s name Stm?g, o
— fé\ﬂslbllltyi‘/ISIbllltyKlnd
+profileApplication| * N 0.1 0,\ package 5 /aualifiedName:: String
+appliedProfile | 1 * | + fownedType
+/profile | [Profile | =] Type > K] PackageableElement

_*tbpe I
1 \
— i] e—
T] *
«enumeration»] Classifier
Mera an =
[=] VisibilityKind =3 isAbstract: Boolean = Typ“‘"

= public =) isFinalSpecialization : Boolean T
= private | [=] StructuralFeature
A 0.1 Al

= protected L\ +classifier AN
= package T | + [attribute T
] Class .| ElPproperty
>
- +class .
-

0.1 +ownedAttribute

FIGURE 2.3 (Package, Property, Dependency and Profile) from the UML meta-model

the controller can be grouped in one package, or distributed over more than two packages).
We assume thus that we have three stereotypes, allowing us to mark the classes in an appli-
cation which represent the view (View), the model (Model) and the controller (Controller).

4.Publish changes
—-._on the model

£ Model

e
¢

5. Take an interest in changes mode
on the model to refresh thg view | :3' Change the !

- =

C
)) he vi : .
—1[1. Perform actions on the view N View - 2.Manage useractions . S Controller
6. Noticing changes on the view < 3.Changeview |

User

FIGURE 24 MVC pattern illustration

This constraint is composed of three sub-constraints, which will check that :

— the classes stereotyped Model do not have to declare dependencies with the classes
stereotyped View. This makes it possible to have, among other things, several views
for the same model, and thus to uncouple them. In most MVC implementations, the
model classes do not depend directly on the view classes, but rather declare an at-
tribute having as a value a collection of objects that listen to model changes. The
view can perform the role of listener for modifications which have been performed
on the model, so that it can update itself (be refreshed) ;

16 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

— the classes stereotyped Model should not have dependencies with the classes stereo-
typed Controller. This makes it possible to have several possible controllers for the
model ;

— the classes stereotyped View should not have dependencies with the classes stereo-
typed Model. The controllers will play the role of “intermediate” between the view
and the model.

Using ACL, we obtain the following constraints :

I| context MonApplication:Package inv:

2| let model:Set(Type) = self.ownedType—>select(t:Type |
3 t.getAppliedStereotypes ()—>exists (name="Model "))

4 in

5| let view:Set(Type) = self.ownedType—>select(t:Type |
6 t.getAppliedStereotypes ()—>exists (name="View’))

7| in

8| let controller:Set(Type) = self.ownedType—>select(t:Type |
9 t.getAppliedStereotypes ()—>exists (name="Controller’))
10| in

11| self.ownedType—>forAll(t : Type |

12 (model—>includes (t)

13 implies

14 t.clientDependency.supplier—>forAll(tt |

15 view—>excludes (tt) and controller —>excludes(tt)
IS

17 and

18 (view—>includes (t)

19 implies

20 t.clientDependency .supplier—>forAll(tt |

21 model—>excludes (tt)

220)

231)

The first line in the listing declares the context of the constraint. It indicates that the
constraint is applied to the whole application package ; the meta-class Package (see fig-
ure 2.3) is then the starting point for all navigations in the rest of the constraint. Lines 2
to 9 serve to collect together the sets of classes representing the model, the view and the
controller’. For example, in lines 2 and 3, we move on from the package to looking for the
types defined in it. Next, we select only those which have Mode1 as an applied stereotype,
thanks to the operation getAppliedStereotypes () (notspecified in UML/OCL, but
implemented in IBM’s RSA : Rational Software Architect).

Sub-constraints 1 and 2, textually specified in the previous enumeration, are formal-
ized using ACL in the previous listing, between lines 11 and 16. In these constraints,
we ensure that if a class is stereotyped as Model, then it must not have dependencies
(by navigating to the Dependency meta-class) with classes stereotyped View or Con-
troller. To test if a class is stereotyped as Model, we simply check its presence, thanks to
the includes (...)) operation at line 12 in the set of objects of type Class, named
model, defined in lines 2 and 3 of the listing. The last sub-constraint is formalized in
lines 18 to 22.

Often, a dependency between two classes is translated as : 1) the declaration in the first
class of at least one attribute having as a type the second class; ii) some parameters in
operations of the first class, which have as a type the second class ; iii) in an operation of
the first class, the return type is the second class. To simplify, we will take into account
the first case : “at least one attribute in the first class has as a type the second class”. It is,

7. We simplify the constraint here by assuming that the classes are found in one single package. If the classes
are defined in sub-packages or sub-sub-packages, it will then be necessary to navigate recursively in these sub-
or sub-sub- packages.

ARCHITECTURE CONSTRAINTS ON OBJECT-ORIENTED APPLICATIONS 17

moreover, most often the case during the development of an application in accordance with
the MVC pattern. The constraint previously given can be refined as follows, by supposing
that the part from line 1 to 10 in the previous listing does not change :

...

2| self .ownedType—>forAll (t : Type |

3 (model—>includes (t)

4 implies

5 if t.ocllsKindOf(Classifier)

6 then

7 t.oclAsType(Classifier).attribute —>forAll(a |
8 view—>excludes (a.type) and controller —>excludes(a.type))
9 else true

10 endif

11)

12 and

13 (view—>includes (t)

14 implies

15 if t.oclIsKindOf(Classifier)

16 then

17 t.oclAsType(Classifier).attribute =>forAll(a |
18 model—>excludes (a.type))

19 else true

20 endif

21)

221)

In this constraint, the dependency is verified on all attributes defined in classes. Note the
use of the oc1AsType (Classifier) operation in this constraint to allow navigation
by going through specialization relations between Type and Classifier (static type
conversion of Type objects) for navigating then to Property.

We have not yet finished with the MVC pattern, which can only be partially verified in
the design phase. Indeed, other checks will have to be run at execution. These are explained
in the next section.

2.3.2 Architecture constraints in the implementation phase

In order to be able to check the previous architecture constraints in the implementation
phase, and thus to check that the code produced in this phase always conforms to the
constraints defined before, we will explain how to express these constraints in Java.

At first, we will show these constraints expressed in ACL, but this time on the Java
meta-model, to ensure a smooth transition from the previous section. Next, we show how
to specify these same constraints, by using the introspection mechanism provided by Java.

Figure 2.5 shows a simplified meta-model of the Java language. By simplified, we mean
to say that this meta-model only shows entities in the Java language serving to write ar-
chitecture constraints. We thus find classes, which have attributes (Field in Java termi-
nology), methods and constructors. A class belongs to a package. This meta-association
is navigable in only one direction. That is to say that from one package, we cannot know
which types are defined there. All these elements can be annotated (a property inherited
among others from the meta-class AccessibleObject). Except packages, the other
meta-classes have modi fiers, which can have different values listed in the enumeration
named Modifier. An attribute can have a reference towards another object as its value for
a particular object. It should be noted that the semantics of the meta-model are not precise
enough on this point. Indeed, the association between Field and ObjectReference
only has to be navigable when we go, in a constraint, from an object (instance of the
meta-class Ob ject), then towards its class (instance of Class), and finally towards the
attribute (instance of Field). If the navigation starts from Class, then the access to

18 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

Field must not allow access to Ob jectReference. This meta-model was constructed
on the basis of classes defined in the java.reflect API whose methods enable the
introspection of Java objects. The lack of semantics raised above is linked to the fact that
on the one had, in Java there is no equivalent of UML’s S1ot. On the other hand, the
get (...) method of the Field class returns the value of the attribute, but we have to
pass it, as an argument, the object for which the value of the “attribute” (slot) must be
returned. In reality, this is a more general problem. It is due to the fact that in Java, there is
no true coupling between the objects and their meta-objects (instances de Class). Once
we invoke getClass () on an object, we obtain the meta-object, but in this meta-object,
there is no reference back to the object (we therefore lose access to the values of its “at-

b ka
tributes”).
[-enumera_tionn . — .
Modifier)] Meth ation | [=] MemberDeclaration
= static [Eg name: String
= public . =) modifier : Modifier
= protected : T
= private +constructor] Constructor JAN _:_ T‘_
interface I =
E final +declaredConstructor
+pargmeterType (N
= abstract y 1.x
+exceptionType!
* . * retou_l.'r;fype ‘ ‘4» declaringClass * l
. \/ ./ |
’ 1 +method Method
\» +declaringCla E Class | . E
0*1,1 ic modifierModifier +declaringClass '
) & ty* declaredMethod i
. +type .
‘ +enclosingClass isAnnotation) _ £ Field :
+declaredClass | 4 isinterface () * I Ea i i
*interface | g isPrimitive () +declaredField
—_— _— ~ |
‘ * +declaringClass * '
* +field | *
impl tingCl
+implementing .355 k+ superclass +value,|, 0.1
7 I jectReference
+type * +subclass | E Object
1 +reference [1..*
1, *« | [£] object
=] Package +object
‘ 6 Name: String +parameterAnnotation
[= = *
- 21 B f—
. &'parameterAnnotation
/N = /] *

FIGURE 2.5 Excerpt from the Java meta-model

The sub-constraints of the MVC pattern introduced in the previous sub-section can be

expressed on this meta-model in the following manner :

O 0T U AW —

10
11

context Class inv:
self.annotation—>exists (a: Annotation | a.type.name="Model”)
implies
self . field =>forAll(f : Field |
not (f.type.annotation—>exists (type.name="View’)
or f.type.annotation—>exists (type.name="Controller’)))
and
self.annotation—>exists (type.name=’View’)
implies
self . field >forAll(not (type.annotation
—>exists (type.name="Model’)))

Here we assume the existence of three annotations, applicable on types (classes) and

present at execution (Retention (RetentionPolicy.RUNTIME)), corresponding

ARCHITECTURE CONSTRAINTS ON OBJECT-ORIENTED APPLICATIONS 19

to the three stereotypes previously presented. The context of the constraint cannot be the
package of the entire application. As we specified previously, we unfortunately cannot
navigate to the types which are defined in a package. We have therefore specified Class
as the context of the constraint. The constraint must therefore be verified on all classes of
the application. The navigation in the Java meta-model, shown in figure 2.5, is quite simple.
We analyze the attributes here (objects of type Field) of the class, then their types and
the annotations applied to them.
The constraint expressed in ACL above can be implemented in Java as follows :

1| // We assume here that the classes of the application
2| // have been already loaded in a certain manner
3| public boolean invariant(Class <?>[] classesMyApplication) {
4 for (Class<?> aClass : classesMyApplication) {
5 if (aClass.isAnnotationPresent (Model. class)) {
6 Field[] attributes = aClass.getDeclaredFields () ;
7 for (Field anAttribute : attributes) {
8 if (anAttribute . getType().isAnnotationPresent(View. class) ||
9 anAttribute . getType () .isAnnotationPresent(Controller.class))
10 return false;
11 }
12
13 if (aClass.isAnnotationPresent(View. class)) {
14 Field [] attributes = aClass.getDeclaredFields();
15 for (Field aAttribute : attributes) {
16 if (anAttribute.getType().isAnnotationPresent(Model. class))
17 return false;
18 }
19 }
20 }
21 return true;
220}
The method invariant (...) accepts as parameters objects of type Class, repre-

senting each of the application classes ®. Unfortunately, we will be unable to start naviga-
tion from the Package object representing the application package, because in java.reflect,
this object does not enable to obtain references to the classes which are declared inside it.
The Package object relates to a simple object containing information about the package
(e.g. its name).

It should be noted here that unlike approaches for static code analysis, constraint ver-
ification and thus execution of this method, necessitates loading of the entire application
by the class loader, in order to obtain the Class objects representing the different appli-
cation classes, before putting them into an array which is passed as an argument during
the invocation. In this chapter, we focus on architecture constraint specification and not on
constraint verification.

Let us now return to a point raised during the introduction of the different sub-constraints,
which formalize the restrictions on dependencies imposed by the MVC pattern. In the first
sub-constraint, we have shown that the model classes do not have to declare dependencies
with the view classes ; which makes it a constraint on the static types. However, accord-
ing to the implementations of this pattern, we may find ourselves with a reference to a
view object in a model object at execution. Indeed, what was illustrated by a cloud in
Figure 2.4 can be implemented by the Observer pattern. In this case, a model object
stores a collection of objects listening to changes on the model (the collection can be stat-
ically typed by an interface named, for example, ModelModificationListener).
At execution, however, this collection will include view objects, whose classes implement

8. By “application classes”, we mean the classes which compose the application’ business domain. This
excludes classes of the libraries used by the application.

20 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

ModelModificationListener, the previous interface. Therefore, dynamically we
find ourselves with dependencies between the model classes and the view classes, whereas
statically this dependency is not noticeable. This only needs to be accepted for the first sub-
constraint. On the other hand, it does not need to be true for the other two sub-constraints,
which do not have to declare dependencies, statically and dynamically. This is translated
by the following Java code, which comes to complement the previous constraint :

1| // We assume here the reception as an argument of an array
2| // constituted of different objects which compose the application
3| public boolean invariant(Object[] objectsMyApplication) {
4 for (Object anObject : objectsMyApplication) {
5 Class <?> aClass = anObject. getClass () ;
6 Field[] attributes = aClass.getDeclaredFields ()
7 for (Field anAttribute : attributes) {
8 /! Verification of the previous listing
9 boolean accessAttrModify = false;
10 if (! anAttribute.getType () .isPrimitive ()) {
11 try {
12 if (! anAttribute.isAccessible ()) {
13 anAttribute . setAccessible (true);
14 accessAttrModify = true;
16 Class<?> cl = anAttribute.get(anObject).getClass () ;
17 if (cl.isAnnotationPresent(Controller.class)) return false;
19 catch(IllegalAccessException e) {
20 e.printStackTrace ();
}
22 finally {
23 if (accessAttrModify) anAttribute.setAccessible (false);
24 }
25 }
26 }
28 return true;
291}

This time in this constraint, we rely on the objects composing the application and not on
Class objects representing the application classes. Here, we go further in the execution
to obtain the objects making up the application and to seek the values of their slots (defined
by the attributes declared in the classes of these objects), because we are assuming that the
application has been loaded as well as launched. Obtaining these object slot values occurs
in line 16. This is preceded by several checks to ensure that the object class attribute is not
of a primitive type and is accessible (it has a public accessibility). It is the slot value type in
question which is checked, to ensure that it does not relate to an annotated Controller
class. The last sub-constraint formalizing the MVC pattern can be refined in the same way.
This is not shown in the previous listing for reasons of simplicity and brevity.

The specification of this constraint at the design level is also possible, assuming that
we have a model representing the instances making up the application. This constraint ex-
pressed in ACL will relate to the UML meta-model about instances. An excerpt from this
is given in Figure 2.6. In this meta-model, an instance specification has a Classifier
which defines it. It includes a number of slots, which have a St ructuralFeature (e.g.
aProperty) that defines them. They have values designated by ValueSpecification.
These can be of different types : InstanceValue (areference to an instance), Literal—
Specification (aninteger, real number, etc.), etc. The meta-class which interests us is
InstanceValue (shown in the meta-model in Figure 2.6). This is linked to Instance-
Specification to designate the instance specification referenced in the slot.

The ACL constraint applied on this UML meta-model could be defined as follows :

ARCHITECTURE CONSTRAINTS ON OBJECT-ORIENTED APPLICATIONS 21

| cification |+ owni e .| Elslt |+owningslot +value|] ValueSpecification
o
1 +slot! 0.1 *
: 1| +instance *
* s classi_ﬁer 1 +definingFeature

] Classifier (=] structuralFeature =] InstanceValue

* | +instanceValue

FIGURE 2.6 Excerpt from the UML meta-model (Instances)

I| context InstanceSpecification inv:

2|— We assume here that we have already obtained

3 the model, view and controller sets of classes

4 as this had been done previously

5| if model—>includes (self.classifier)

6| then

7 self.slot—>forAll(s : Slot |

8 Same verifications as previously

9 — using s.definingFeature to access

10 — the attribute (StructuralFeature) which defines the slot
11 if s.value.isOclKindOf(InstanceValue)

12 then

13 controller =>excludes (s.value.oclAsType(InstanceValue)
14 .instance.classifier)

15 else true

16 endif

17)

18] else true

19| endif

In this constraint, InstanceSpecification is the constraint context. We therefore
assume that the constraint must be verified on all instance specifications making up the
application. In the constraint, we specified the fact that if the classifier of the instance
specification is stereotyped Model, then we test if one of its slots contains a reference
to an instance (line 11), i.e. the slot does not contain a primitive type value. In this case,
we access the Classifier of the value stored in the slot. This does not have to be
stereotyped Controller.

Here also, for reasons of simplicity and brevity, the last sub-constraint formalizing the
MVC pattern is not refined.

The same constraint on the Java meta-model can be defined as follows :

1| context Object inv:

21 if self.class.annotation—>exists (name="Model’)
3| then

4 self.class.field >forAll(f:Field |

5 Same verifications as previously

6 — using f.type to access

7 — the attribute type

8 if f.value <> null

9 then f.value.object.class.annotation = ’Controller’
10 else true
11 endif
12)

13] else true

14] endif

In this constraint, the context is an object (Ob ject instance) making up the application.
We next navigate to its class, then to its attribute values (see lines 8 and 9). This ACL
expression does not formalize the last MVC pattern sub-constraint.

22 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

We have in this section shown how architecture constraints can be written simply in
Java during the implementation phase, without any extension of the language (apart from
annotations, which must be defined, if necessary, for the formalized architecture patterns
or styles. They can be simply defined as standard Java code, as shown in the example). We
have not, however, explained how, and at what moment, these constraints are evaluated.
Different solutions are possible, e.g. the automatic injection of verification code for these
constraints at the end of the concerned class constructors. This is a work to which we
will be turning our attention in the future. Moreover, we are in the process of developing a
method, and a tool, for Java code generation (as in the listings above), from the architecture
constraints expressed in ACL on the UML meta-model (like those given previously).

2.4 Architecture constraints on component-based applications

After having explored how architecture constraints can be specified on object-oriented
applications, in this section, we are going to show how to express these constraints in
component-based applications. Components are considered here as an evolution of the
concept of object (or class - we will go into more detail later) to bring greater modularity
to the architecture of these applications. Indeed, in component-based development, it is
recommended that the provided, as well as the required functionalities of an application,
should be explicitly declared. This allows an application’s components to be uncoupled and
gives their connection more flexibility. To construct a new application, instances of com-
ponents will have to be created and their required functionalities satisfied, by connecting
them to other instances which provide these functionalities.

We will proceed in two steps, as in the previous section. We will firstly present archi-
tecture constraint specification in the design phase, then show how this can be done in the
implementation phase.

2.4.1 Architecture constraints in the design phase

We have chosen the UML standard as our modeling language in the design phase. We
will explain how architecture constraints can be specified on component-based applications
modeled with this language, widely-used in academia, but also in industry.

Figure 2.7 shows an excerpt from the UML meta-model, specifying the modeling ele-
ments around software components. The UML component model shown encompasses the
specification of both components and composite structures in UML [40]. The Component
meta-class is a specialization of Class. That gives it all the abilities of a class (participat-
ing in an inheritance relation, for example). Moreover, the Class meta-class henceforth
(in such kinds of models) inherits from EncapsulatedClassifierand Structured-
Classifier. Thisis to say that a component (specialization of EncapsulatedClass—
ifier) may have ports, which can declare provided interfaces and required interfaces
(see on the bottom-left in Figure 2.7). This permits components to encapsulate (and thus
hide from their environment) the elements constituting them. They show their functionali-
ties via these ports, which are communication points with the environment (other compo-
nents). A component (specialization of St ructuredClassifier)candeclare parts,
which are properties that reference instances constituting its internal structure (we would
then say that the component has a composite structure). These instances can play roles in
connections (being attached to connector ends). A component can have connectors which
link “connectable” elements (ConnectableElement instances). That may be the port

ARCHITECTURE CONSTRAINTS ON COMPONENT-BASED APPLICATIONS 23

of a “part” in a component composite structure (association between ConnectorEnd and
Property in the meta-model in Figure 2.7), or the encompassing component port® (with

the

composite structure). Lastly, a component can have one or several Classifiers

(classes, for example), which “realize” it. By Realization of a component, the UML spec-
ification designates the set of classifiers that implement this component’s behavior. These
may be other components (Component is a specialization of Classifier). This makes

the

UML component model hierarchical.
*/role | [ConnectableElement «enumeration»
* ConnectorKind
- = assembly
+role [1 = delegation
. T +/end | *
[EncapsulatedClassifier £ structuredClassifier +part| [Property | 0.1 +| [l connectorEnd | Feature
: 0.1 4 < partwithPort
o..1T Fay T 0.1 ’ x ey Vi T
W [+ownedConnector, | * ‘ 1
/
:] port (] Class = Dcbendency] Association |, | .] Connector
&g isBehavior: Boolean Fay . =
€2 aSenvce Boslean " |] Abstraction ype | 5@ kind: Comnectorkind
5 isConjugated: Boolean K
[] Realization
+/provided l * *\|#/required T =
[Interface | +/required =] Component +abstraction * | [£ componentRealization | * 1.+ | K Classifier

+| (g isindirectlyinstantiated: Boolean g

£ 0.1 +realization + realizingClassifier
+/provided "

FIGURE 2.7 Excerpt from the UML meta-model (components and composite structures)

We introduce now informally (textually) the constraint that we would like to specify in
this section. It relates to a constraint which formalizes the structural conditions imposed by

the

Pipe & Filter architecture style [44]. In this style, the following conditions must

be formalized :
— there is only one component which defines one or more input ports (declaring pro-

vided interfaces only) connected to the encompassing component, or these ports are
not connected at all (this is the left-most component in Figure 2.8). This same com-
ponent must have at least one connected output port (declaring required interfaces
only). The output ports of this component must all be connected to other components
of the same hierarchical level as this component, or else not connected at all ;

— there is only one component which defines one or more output ports connected to the

encompassing component or not connected at all (this is the right-hand component
in figure 2.8). This component must have at least one connected input port. The in-
put ports of this component must all be connected to other components of the same
hierarchical level as this component, or else not connected at all ;

— the other components define input and output ports, of which at least one input and

one output port are connected ;

— the connectors between each pair of components must go in the same direction. This

means that there is no connector linking the input port of the first component to the
output port of the second one, and another connector which links the output port of
the first component to the input port of the second one ;

— connectors between all the components must go in the same direction. This means

to say that for each pair of connected components, there is no third component, con-

9. These characteristics do not relate exclusively to components. Classes also can have ports and composite
structures.

24 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

nected by its input ports to the first component and, by its output ports to the second
component.

These constraints are illustrated in Figure 2.8. The components in this style are named
filters and connectors are considered as pipes. In this chapter, we simplify the application
architecture by considering the fact that it has been designed exclusively according to this
style. Real-world applications are often constructed by combining various styles. In this
case, the constraint will have a different formalization, which could for example rely on
Pipe and Filter stereotypes applied on the components. The constraint must check that
the conditions enumerated above are applied only to the stereotyped components, which
participate thus in the implementation of the architecture style. Due to lack of space, we
are unfortunately unable to develop this case here.

«component»

pi3:pi3 |]HeaderManager | . .,

o—
r2:RI2
«components
. «omponents ecomponents | 4 o «components acomponents
:jouw" PI2:PI2_| . Decomposer 12 2:R2 =] BodyManager g o | Composer | ..o] Encrypter | o oo
— o . — =" oA

—< 0— pl6: PI§ <
pla:PI4

12 3:RI . «component»
23 2\ pIS: PIS] FooterManager

o—

ri1:RI1 pIT:PI7

rl6: RIS

FIGURE 2.8 Pipe and Filter architecture style illustration

We will be able to write the different sub-constraints using ACL by relying on the meta-
model in Figure 2.7. The first sub-constraint can be specified as follows :

l1|— We assume here that the components forming the application
2|— are encapsulated in a component with a composite structure.
3 This is now shown in the figure illustrating the

4|— Pipe and Filter style

5| context MyApplication : Component inv:

6| let internalComps : Set(Component) =

7| self . realization.realizingClassifier =>select(c: Classifier |

8 c.oclIsKindOf (Component))—>oclAsType (Component)

9] in

10| internalComps—>one (¢ : Component |
11 self.ownedConnector—>exists (con: Connector |

12 con.end.role—>exists(rl,r2 | rl.oclIsKindOf(Port)
13 and (rl.oclAsType(Port) = c.ownedPort)

14 and rl.oclAsType(Port).provided—>notEmpty ()

15 and rl.oclAsType(Port).required—>isEmpty ()

16 and r2.oclIsKindOf(Port)

17 and self.ownedPort—includes (r2.oclAsType(Port))
18)

19)

20 and

21 self.ownedConnector—>exists (con: Connector |

22 con.end.role—>exists(rl,r2 | rl.oclIsKindOf(Port)
23 and (rl.oclAsType(Port) = c.ownedPort)

24 and rl.oclAsType(Port).required—>notEmpty ()

25 and r2.oclIsKindOf(Port)

26 and self.ownedPort—>excludes(r2.oclAsType(Port))
27)

28)

291

In this constraint, we firstly create a set constituted of components (internalComps)
forming the internal structure of the component representing the application. Next, we
check that there is only one component in this set, which has at least one connector
linking it with the encompassing component, through a port with only provided (and

ARCHITECTURE CONSTRAINTS ON COMPONENT-BASED APPLICATIONS 25

not required) interfaces. It should be noted here that the verification of the presence of
connectors between components undergoes the analysis of the application connector set
(self.ownedConnector). Indeed, we cannot obtain the connectors attached to the
port of a component by going from this component. This corresponds clearly to the uncou-
pling between components recommended in component-based development : a component
does not recognize other components which it is connected to ; all it does is invoke opera-
tions on its required port ; it does not depend on a particular component. In the second part
of the constraint (from line 20 onwards), we check that this single component is connected
to the other application components through its output ports (declaring required interfaces).

The second sub-constraint previously enumerated can be formalized the same way, by
inverting the required and provided interfaces.

The third sub-constraint is specified in ACL in the following listing :

and
internalComps—>select(c |
not self.ownedConnector—>exists (con:Connector |
con.end.role—>exists(rl,r2 | rl.oclIsKindOf(Port)
and (rl.oclAsType(Port) = c.ownedPort)
and r2.ocllsKindOf(Port)
and self.ownedPort—>excludes(r2.oclAsType(Port))
)
)
and c.ownedPort—>select (provided—>notEmpty ()
12 and required —>notEmpty ()))
—>size () = internalComps—>size () — 2

— OOV AW —

w

In this constraint, we count the number of components which participate in connections,
but are not connected to the encompassing component. This number must be equal to the
total number of application components minus the two components in the extremities.

Now, we see how the fourth sub-constraint can be defined in ACL :

...

2| and

3| internalComps—>forAll(cl,c2 : Component |

4 self.ownedConnector—>select (con: Connector |

5 con.end.role—>ocllsKindOf(Port) and

6 con.end.role—>oclAsType(Port)—>one(cl.ownedPort) and
7 con.end.role—>oclAsType(Port)—>one(c2.ownedPort))

8 —>forAll(con : Connector | con.end.role—>select(oclIsKindOf(Port))
9 —>oclAsType (Port)—>exists (pl,p2:Port |

0 (cl.provided—>includesAll (pl.provided)

1 and c2.required —>includesAll(p2.required))

2 xor (c2.provided—>includesAll(pl.provided)

3 and cl.required —includesAll(p2.required))))
41)

Here, we check that in the connector set of the application, if a connector links two
components cl and c2, all other connectors between c1 and c¢2 must always link input ports
(declaring required interfaces) from c1 to output ports (declaring provided interfaces) from
c2, or inversely. There should not be connectors oriented from c1 to c2 and from c2 to cl.

The last, and undoubtedly most complex, sub-constraint, is defined below :

...

2| and

3| internalComps—>forAll(cl,c2:Component |

4 let conns : Set(Connector) =

5 self.ownedConnector—>select (con: Connector |

6 con.end.role—>ocllsKindOf(Port) and

7 con.end.role—>oclAsType(Port)—>one(cl.ownedPort) and
8 con.end.role—>oclAsType (Port)—>one(c2.ownedPort))

9 in conns = {connectors between cl and c2}

0 conns—>notEmpty ()

26 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

11 and

12 internalComps—>excludes (¢3 : Component |

13 ¢3 <> ¢l and ¢3 < c2 and

14 if conns.end.role—>oclAsType(Port)

15 —>exists(p | cl.ownedPort.required—>includesAll(p.required))
16 then Connector(s) cl to c2

17 not (

18 self.ownedConnector.end.role—>select (ocllsKindOf(Port))
19 —>o0clAsType (Port)—>exists (pl,p2 |

20 c3.ownedPort.required —includesAll (pl.required) and
21 c2.ownedPort. provided—>includesAll (p2.provided))

22 or

23 self.ownedConnector.end.role—>select (ocllsKindOf(Port))
24 —>o0clAsType (Port)—>exists (pl,p2 |

25 cl.ownedPort.required —includesAll (pl.required) and
26 c3.ownedPort. provided—includesAll (p2.provided))

27)

28 else — Connector(s) c2 to cl

29 not (

30 self.ownedConnector.end.role—>select (oclIsKindOf(Port))
31 —>oclAsType (Port)—>exists (pl,p2 |

32 c2.ownedPort.required —>includesAll (pl.required) and
33 c3.ownedPort. provided—>includesAll (p2. provided))

34 or

35 self.ownedConnector.end.role—>select (oclIsKindOf(Port))
36 —>oclAsType (Port)—>exists (pl,p2 |

37 c3.ownedPort.required —>includesAll (pl.required) and
38 cl.ownedPort. provided—>includesAll (p2.provided))

39)

40 endif

41)

421

In this last part of the constraint, we check that for every pair of connected components
(cl1, c2) in the set of internal components, there is no third (c3) component connected via
its input ports to cl, and via its output ports, to c2, if the connectors go from cl to c2,
and inversely if the connectors go from c2 to c1. This guarantees that all connectors in the
application are oriented in the same direction.

We have simplified the use of the UML component model in this formalization. We are
assuming that the developer has not defined a port declaring at the same time required and
provided interfaces, which are attached to several connectors (input and output).

2.4.2 Architecture constraints in the implementation phase

In the literature, there are several component-based programming languages (such as
ArchJava [1], ComponentJ [43] or SCL [16]), or frameworks (like Spring, OSGi or Frac-
tal/Julia [8]). To write constraints we would need a language or framework offering the
ability to realize introspection. Here too, we have several languages at our disposal. We
have chosen a language developed in the thesis of Petr Spacek [45]. This language is called
Compo. It was developed as part of a larger context than architecture constraint specifica-
tion. The choice of this language was made for the following reasons :

1. it explicitly provides support for architecture constraint specification ;

2. itis reflexive, at almost all levels (everything is reified, except the service implemen-
tations) ;

3. the reification of entities of this language is realized using components, and not using
objects, unlike in other component-based programming languages.

Thanks to this last point, we propose a homogeneous environment for developers, where
they only define component descriptors ; they will never have to choose between objects or
components to define this or that business domain entity in their applications.

ARCHITECTURE CONSTRAINTS ON COMPONENT-BASED APPLICATIONS 27

An excerpt from the Compo meta-model is given in Figure 2.9. In this meta-model, there
is a clear distinction between a component descriptor and a component instance (simply
called : Component). In UML, Component inherits from Class, making it a compo-
nent descriptor. The fact of inheriting from the C1ass meta-class gives it the ability to be
instantiated (see the meta-association between Classifier and InstanceSpecif—
ication in the meta-model in Figure 2.6). In UML, a component instance has nothing
particular comparatively with a class instance.

Q Component + ownerComponent

f @
5@ default: Port |7
| g self:port (<

. ‘ 3 super: Port
+architecture . =) M
BindDescription
B — :
1. |+ port
i T Port
] Descriptor =]
n destination,
(g Name: String +source|, + \ : }
& new()] PortDescription] service) Eservicesignatare & invoke i)T (
i +portic— et = code: String +signature Serv 42 connectTo ()
42 addPortDescription () \@—/ (g PortName:: String = & disconnect ()
§ addBindDescription () *| g portvisibility: Portvisibility [cg Params: Component |« F {égisConnected()
. 42 addSenvice () 53 PortKind: PortKind 5 Context: Component Titems a [el
+super-descriptor) g isinterna
super PEOT| g2 remove... () 42 execute) !
>7e ——| g isExternal ()
1 +sub-descriptor| * ’ i [
‘ ? ‘ *semice +connectedPort ‘| *
+interface|] ServiceSignatureList @
1
e «enumeration»
[PortVisibility PortKind e
= internal = RequiredSinglePort)
= external = RequiredCollectionPort =Y name : String

= ProvidedPort

FIGURE 2.9 Excerpt from the Compo meta-model

In Compo, there is a generalized dichotomy between descriptors and their instances :
component descriptor and component, port descriptor and port, etc. In a Compo compo-
nent descriptor (meta-class Descriptor), the programmer can declare a number of port
descriptors. The latter must show the list of service signatures (a service is the equiva-
lent to an operation in UML), which can be grouped in a named or anonymous interface
(ServiceSignaturelList). These services have a signature. A connector (BindDesc—
ription)) links a source port descriptor to a destination port descriptor. A port realizes
a port descriptor, and may be of kind Collection or Single. A port can, moreover, be pro-
vided or required. It can be internal or external. For example, an internal required port
serves to connect component instances to their encompassing component. Lastly, we have
integrated the inheritance in this language [46]. A component descriptor can inherit from
another descriptor (its super-descriptor '°).

Constraints imposed by the Pipe and Filter style can be programmed in Compo as
follows :

Descriptor PipeAndFilter extends Constraint
{
internally requires {
scOne <: SubConstraintOne;
scTwo <: SubConstraintTwo;
scThree <: SubConstraintThree;
scFour <: SubConstraintFour;
scFive <: SubConstraintFive;

O B W —

10 architecture {
11 delegate contextscOne to contextself ;

10. This inheritance mechanism between component descriptors extends the classic inheritance between
classes, especially by offering the option to extend the required ports [46]

28 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

12 delegate contextscTwo tocontextself ;

13 delegate contextscThree oneDelegReq to contextself ;
14 delegate contextscFour to contextself ;

15 delegate contextscFive to contextself ;

16 }

17 service verify () {

18 el ¢2 ¢3 c4 c5 |

19 cl := scOne.verify ();

20 c2 := scTwo.verify ();

21 c¢3 := scThree.verify ();

22 c4 := scFour.verify ();

23 ¢S5 := scFive.verify();

24

25 return (((cl.and([c2])).and([c3])).and([c4])).and([c5]);
26 }

271}

In this listing, we rely on an architecture constraint specification model in the form of
components initially introduced in [53]. Different sub-constraints imposed by the Pipe and
Filter style are then defined by several component descriptors. In this listing, we declare
the component descriptor, called PipeAndFilter, which contains the set of component
instances verifying the five sub-constraints (declared in lines 4 to 8). These components
are connected to their encompassing component (lines 11 to 15). Next, we start checks
by invoking the verify () service on each port of the different internal components in
the PipeAndFilter component verify service. The final result must correspond to
the conjunction of different (Boolean) results returned by the internal component services
(line 25).

For simplicity’s sake, we give the listings of two component descriptors here. They
involve the descriptors formalizing the first and fourth sub-constraints :

|| Descriptor SubConstraintOne extends Constraint

B

3 service verify () {

4 |retval |

5 retval := true;

6 intComps := context.getPorts().select([:p |

7 &p.isRequired () .and([&p.isInternal ()]);

8 1)

9 intComps.each ([:ic |

10 ic.getPorts () .each([:x |

11 if(&x.isProvided ().and([&p.isExternal ()])) {

12 | count |

13 &x . getConnectedPorts () .each ([:cp |

14 if(&cp.isProvided ().and([&p.isExternal ()])) {
15 if(&cp.getOwner() == context.yourself())
16 { retVal := retVal.and([true]); }

17 else

18 { retVal := retVal.and([false]); }

19

20 Ds

21

22 }

23 if(&x.isRequired () .and([&p.isExternal ()])) {

24 &x.getConnectedPorts () .each ([:cp |

25 if(&cp.isProvided ().and([&p.isExternal ()])) {
26 if(&cp.getOwner () .getOwner() == context.yourself())
27 { retVal := retVal.and([true]); }

28 else

29 { retVal := retVal.and([false]); }

30 }

31 1)

32 }

33 s

34 s

35 return retVal;

36 }

370}

ARCHITECTURE CONSTRAINTS ON SERVICE-ORIENTED APPLICATIONS 29

In this listing, we have a component descriptor implementing the verify () service,
which tests the first Pipe and Filter style sub-constraint. This service firstly identifies ref-
erences to the internal components (rather than their ports), by relying on the internal re-
quired ports of the composite. Access to the meta-level is gained using the “&” operator
(see line 7, for example). This makes it possible to know if a port is required or provided,
or if it is internal or external. This also allows access to the connectors linking one port
to the port of another component (line 13). The rest of the constraint corresponds to the
ACL constraint defined in the first listing in this section, where we verify the presence of
a single component connected to its encompassing component (providing the context
port in the listing above) via its provided port(s) ; the other required ports of this internal
component must be connected to the other internal components.

I| Descriptor SubConstraintFour extends Constraint

5

3 service verify () {

4 conns := context.getDescriptor().getDescribedConnections () ;
5 conns.each ([:conn |

6 |dest source |

7 source := conn.getSourcePortComponent();

8 dest := conn.getDestinationPortComponent () ;

9 conns.each ([:conn2 |

10 if ((conn2.getSourcePortComponent () == dest).and ([
11 conn2. getDestinationPortComponent () == source]))
12 { return false; }

13 s

14 1)

15 return true;

16 }

171}

The fourth sub-constraint programmed in Compo above checks the absence of the fol-
lowing scenario : if we have conn and conn?2 connectors between components, if conn
has as its destination a component identical to the component representing the conn?2
source (see line 10), then conn has as its source the destination of conn?2 (line 11). This
reflects the presence of connectors between a pair of components going in different direc-
tions, which is forbidden by the Pipe and Filter style.

We note here that architecture constraints expressed in Compo as components aim at im-
proving reuse. These different “constraint-components” can be assembled to form a single
constraint-component formalizing the Pipe & Filter style. Some amongst these constraint-
components can be reused in the formalization of other styles, such as Pipeline or layered
styles. These enable architects to avoid having to re-write parts of sub-constraints.

2.5 Architecture constraints on service-oriented applications

A service is a grouping of operations into one single “black box” entity, implemented in
any language and deployed on any platform. By default, this entity does not maintain a state
between the invocations of its different operations, coming from a given client program.
When a service is accessible via the HTTP protocol (with SOAP or not), we have what is
called a web service.

There is a profile with a number of standard stereotypes in the UML specification.
Among these stereotypes, we find an extension of the Component meta-class, called
service, which designates “functional stateless components” [40]. This corresponds to
the notion of service discussed in this section.

Among architecture constraints expressible on service-oriented applications, we find the
SOA patterns [15]. These patterns, such as Service Facade, impose restrictions at the struc-

30 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

tural level of an application. These restrictions must be formalized, in order to guarantee
the maintenance of quality attributes associated with the pattern during development.

In this section, we will show how we express architecture constraints on service-oriented
applications, designed and implemented using only one language, called BPEL (standard-
ized by Oasis under the name WSBPEL : Web Services Business Process Execution Lan-
guage [38]). Our choice of BPEL is driven by the fact that it is a standardized language,
widely used by information systems developers to model and execute their business pro-
cesses based on web services. Thus, in this chapter, a service-oriented application is assim-
ilated into a BPEL process with several web service partners.

+variable
* * 0.1

. +inputVariabls
« 1 +outputVariable | 0.1
* 0.1

+activity {ordered} | =] Activity |+ activity{ordered} + process =] Process svariable| = Variable
- * g hame: String 1‘ = name: String |——
S e * *
A *
T +process @ 1
+sequence{30..1 ‘
Sequence Invoke Receive +partnerLink |, * .
= = =)] PartnerLink * +type L] PartnerLinkType
partnerLink SN —_—
— Crri . g name: String
0.1 B name:String +partnerLink 1]
£ MyRole -
’ +partnerLinkType @1
[Part (=Y partnerRole
[cg name: String 1.* |+role
3 type
icg element _ cportlpe EJPortRe | ponrype +| Rl
0.1| Eg name: String 1 +role | E@ Name: String
*
+ part‘ TR
Q Meu:ge o1 +operati?r|_ 0.1 « |+operation{ordered} «enumeration»
+messageType T ot || Operation [7) OperationKind
f - ! 9 #output * =Y name: String =) one-way
g type 0.1 | g kind:Operationkind = request-response
*

= solicit-response
= notification

0.1 ‘ +fault I

FIGURE 2.10 Excerpt from the BPEL and WSDL (Process, Activity, PartnerLink and PortType)
meta-models

Figure 2.10 shows an excerpt from the meta-models of BPEL (upper part of the figure)
and WSDL ! (lower part). A process is composed of various ordered activities (ordered
qualifier on the role act ivity in the association between Process and Activity in
the figure). These activities can be of different kinds. We have listed only three of them
in the meta-model (for the purposes of the constraints defined above) : Invoke to invoke
the partner web service operations (providers), Receive to receive their responses or else
to receive the requests of the partner web services (clients), and Sequence which is a
composite activity (see composition with Act ivity in the meta-model). The latter serves
to implement sequences of activities. A process can define a number of variables, which can
contain request or response messages from web services. It declares links towards partner
web services, (PartnerLink) which indicate the client or provider web services used
by the process. Each PartnerLink designates roles for the process (myRole) and for the
partner service (partner role). A role indicates a PortType (Interface, since
WSDL 2.0) which represents the WSDL structure in which are described the provided or
required operations, as well as the exchanged messages.

11. WSDL (Web Service Description Language) is the W3C standard for Web service interface description :
www.w3.org/TR/wsdl20/.

ARCHITECTURE CONSTRAINTS ON SERVICE-ORIENTED APPLICATIONS 31

There is a plethora of architecture patterns for service-oriented applications in the lit-
erature and in practice, known as SOA patterns or Service-Oriented Architecture pat-
terns [15]). Of these patterns, we have chosen the Service Facade pattern [15]. This pattern
recommends defining a single service for publishing/providing operations, realized by a
BPEL process. The main objective of this pattern is to set aside the (sometimes complex)
details of the services presented by a number of suppliers, by proposing a single service.
A “toy” example of the BPEL process designed with this pattern is given in Figure 2.11.

@

= main ;;Process MonApplication

@ | Receive

> Sequence

<§> InvokeOrder

@ ReceiveOrder

@] Reply

©

FIGURE 2.11 Basic service facade pattern illustration

In this figure, the Serviceservice facade is realized using the partner link attached to the
first activity in the process (the Receive activity) and its corresponding Reply activity,
which is found at the end of the process. In the middle of the process, we find a number of
Invoke activities ' to invoke service operations provided by third parties.

The architecture constraint imposed by this pattern consists of several sub-constraints :

— the process has as its first activity a Receive activity, linked to a partner link rep-
resenting the client (of the process) ;

— the process has as its last activity a Reply activity, with the same partner link,
the same port type and the same operation as the Receive activity of the previous
sub-constraint ;

— the only Receive activities accepted in the middle of the process must be preceded
by the corresponding Invoke activities. These are used to invoke partner service
operations provided by third parties. The possible Receive activities here will then
serve to receive messages returned by the invoked service operations.

Due to lack of space, we have deliberately simplified the constraint on the BPEL pro-
cess. Indeed, if we want to be complete in the constraint specification imposed by the
service facade Patternpattern, we would have to add other types of activities, which could
interact with a process client, such as Pick and OnEvent activities. Here, we have only
dealt with activities of type Receive.

This constraint is formalized in ACL on the meta-model of Figure 2.10 in the listings
below. The first sub-constraint is specified as follows :

12. For simplicity’s sake, a single Invoke is shown in Figure 2.11.

32 SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

I| context MonApplication : Process inv

2| let fst : Activity =

3] if self.activity —=>first().activity = null — is not a composite activity
4| then self.activity —=>first ()

5| else if self.activity —=>first().oclIsTypeOf(Sequence)

6 then self.activity =>first ().oclAsType(Sequence).activity —=>first ()

7 else null

8 endif

9| endif

in

if fst < null

then fst.ocllsTypeOf(Receive)
else false

endif

EESAUSE S

In this first sub-constraint, we firstly identify what is the first activity declared in the
process '3. The different (1f) tests enable cases where the first activity is a composite
(Sequences for example), rather than a simple activity, to be handled. In this case, the
first activity within this sequence will have to be identified. The check undertaken in line 12
allows to ensure that this is a Receive activity.

Here also, we simplify the constraint specification by considering only Sequences as
possible composite activities within the process. In practice, other composite activities are
possible. In this case, it suffices simply to add tests in the constraint, in order to take them
into account (in the else part of the statement at line 7). In this constraint, we consider
only one level of depth in composite services. If we want to take several levels of depth into
account (for the first activity in the process, which is rare), a recursive navigation should
be performed (see below for an example).

With the second sub-constraint, as with the first, it is sufficient to replace first ()
with last () to access the last activity and check that the activity type corresponds to
Reply. What follows must be added, to check that the properties of this activity and the
first activity (Receive) have identical names :

if Ist < null — We assume that lst contains the last activity
then Ist.oclIsTypeOf(Reply)
and Ist.oclAsType(Reply).partnerLink .name
= fst.oclAsType(Receive).partnerLink .name
Ist.oclAsType(Reply).portType.name
= fst.oclAsType(Receive).portType.name
and Ist.oclAsType(Reply).operation.name
= fst.oclAsType(Receive).operation.name
else false
endif

SOOI W —
®
=
(=9

The third sub-constraint can be written in ACL as follows :

...
2| and

3] let activities : OrderedSet(Activity) =

4| self.activity =>excluding (fst)—>excluding (lst)—>closure (activity)
5] in

6| activities =>forAll(a : Activity |

7| if a.ocllsTypeOf(Receive)

8| then

9 activities =>exists(aa : Activity |

10 activities —>indexOf(aa) < activities —>indexOf(a)
11 and aa.ocllsTypeOf(Invoke)

12 and aa.oclAsType(Invoke).partnerLink .name

13. Given that the activities in the process are ordered (see the meta-model), navigation to Activity from
Process returns an OrderedSet, which allows operations like first () to be used to access the first activity
in the process.

CONCLUSION 33

13 = a.oclAsType(Receive).partnerLink .name

14 and ... (same thing for the portType and operation)
15)

16| else true

17| endif)

A BPEL process can be constituted of composite activities, which in their turn con-
tain other composite activities, and so on, up to a certain depth. In the sub-constraint de-
fined above, we thus recursively identify all activities in the process, by excluding the
first (£st) and last (1st) activities. This recursivity is undertaken thanks to the OCL
closure (...) operation in line 4. Next, we ensure that if there is a Receive activity
among these activities, it is preceded by an Invoke activity corresponding to it, i.e. with
the same partner link,port type and operation (lines 10 to 14).

We have shown in this section that simply combining OCL and a meta-model of BPEL
and WSDL languages has allowed us to formalize architecture constraints imposed by an
SOA pattern. We have done the same exercise on other patterns (results are in the process
of being published), and we suspect that the difficulty resides in identifying the correct
sub-constraints, which represent a given pattern (before their formalization). It relates to a
classic problem in formal specifications. It is necessary to check that the set of these sub-
constraints is complete and that each of these is rigorously defined. This guarantees that
we know, as a result of their simple verification, if a service-oriented application conforms
to an SOA pattern.

2.6 Conclusion

A software architecture defines the “coarse-grained” organization of a software sys-
tem. These software systems have been growing in complexity which has driven, for many
decades, the proposal of a multitude of works about software architecture documentation.
This documentation has involved not only architects’ product (the “what” : architecture
description), but also the decisions taken during the development of this product and the
reasons for these decisions (the “how” and the “why’’). We focus on this second aspect in
this chapter, where we argue that architecture description should be accompanied by a “for-
mal” specification (formal, in the sense of being able to be automatically interpreted and
verified), which describes the constraints imposed by architectural decisions. We have il-
lustrated our remarks with a number of constraints formalizing some architecture styles and
patterns (as examples of architectural decisions). We have shown how these constraints can
be expressed using simple languages, which are even sometimes used to describe the archi-
tecture itself (in the case of Java and Compo). The goal of these architecture constraints is
twofold. On the one hand, as supplementary documentation, they help in our understanding
of the architecture of an application. On the other hand, as specifications able to be auto-
matically verified, they enable reliable evolutions. This means we can know, among other
things, if the new architecture (after evolution) consistently adheres to previously-taken
decisions (work that we have conducted on component-based applications [50]).

Moreover, we have shown that the specification of these constraints is not limited to
the architectures of component-based applications (work undertaken some years ago [52]).
They have a use both in object- and service-oriented applications. Furthermore, we have
shown their use, not only in the design phase, but also in the implementation phase (ac-
companying code).

We have developed several interpreters for the different languages presented in this
chapter. All these interpreters perform static analysis of architecture descriptions (writ-

34

SOFTWARE ARCHITECTURE: ARCHITECTURE CONSTRAINTS

ten in most cases in XML dialects). Moreover, we have previously been interested in the
conversion of constraints written in ACL from one meta-model to another for component-
based applications [51]. We have shown, for example, how we can automatically convert
architecture constraints written with ACL on applications modeled with UML components
into constraints written with ACL on applications implemented with Fractal.

We can formulate the following ideas as future perspectives for this concept of archi-
tecture constraints :

constraint specification independently of a given paradigm, by using a meta-model
of graphs (an architecture description being considered as a graph with nodes and
edges), then their conversion to different paradigms ;

proposal of a high-level language for the re-use of constraints by specialization (e.g.
Pipeline style constraints are a specialization of Pipe and Filter style constraints) ;
code generation from architecture constraints ;

application of these constraints in an integrated development environment.

REFERENCES

1. Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava : Connecting Software Archi-
tecture to Implementation. In Proceedings of the 22rd International Conference on Software
Engineering (ICSE’02), pages 187-197. ACM, 2002.

2. Robert Allen. A Formal Approach to Software Architecture. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, May 1997.

3. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, 3rd Edition. Addison-
Wesley, 2012.

4. Alex Blewitt, Alan Bundy, and Ian Stark. Automatic verification of design patterns in java. In
Proceedings of the 20th IEEE/ACM international Conference on Automated software engineer-
ing (ASE’05), pages 224-232. ACM, 2005.

5. Boris Bokowsky. Coffeestrainer : Statically-checked constraints on the definition and use of
types in java. In Proceedings of the 7th European Software Engineering Conference held jointly
with the 7th ACM SIGSOFT International Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 355-374, Toulouse, France, 1999. Springer-Verlag.

6. Jan Bosch. Software Architecture : The Next Step. In Proceedings of the 1st European Work-
shop on Software Architecture (EWSA’04), volume 3047 of Lecture Notes in Computer Science,
pages 194-199. Springer, 2004.

7. Lionel C. Briand, Yvan Labiche, Massimiliano Di Penta, and Han (Daphne) Yan-Bondoc. An
experimental investigation of formality in uml-based development. IEEE Transactions on Soft-
ware Engineering, 31(10) :833-849, October 2005.

8. Eric Bruneton, Coupaye Thierry, Matthieu Leclercq, Vivien Quéma, and Stefani Jean-Bernard.
An open component model and its support in java. In Proceedings of the ACM SIGSOFT
International Symposium on Component-based Software Engineering (CBSE’04). Held in con-
Jjunction with ICSE’04, Edinburgh, Scotland, may 2004.

Software architecture : Principles, techniques and tools. 35
By Mourad Oussalah Copyright (©) 2013 John Wiley & Sons, Inc.

36

10.

12.

13.

14.

15.
16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

REFERENCES

. S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog (and never

dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1) :146—166, march
1989.

Anir Chowdhury and Scott Meyers. Facilitating software maintenance by automated detec-
tion of constraint violations. In In Proceedings of the International Conference on Software
Maintenance (ICSM’93), pages 262-271. IEEE, 1993.

. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford.

Documenting Software Architectures, Views and Beyond, Second Edition. Addison-Wesley,
2010.

Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software Architectures, Methods
and Case Studies. Addison-Wesley, 2002.

Remco C. de Boer and Rik Farenhorst. In search of ‘architectural knowledge’. In Pro-
ceedings of the 3rd international workshop on Sharing and reusing architectural knowledge,
SHARK’08, pages 71-78. ACM, 2008.

Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira Mezini. Defining and continu-
ous checking of structural program dependencies. In Proceedings of the 30th international
conference on Software engineering (ICSE’08), pages 391-400. ACM, 2008.

Thomas Erl. SOA Design Patterns. Prentice Hall, 2009.

Luc Fabresse, Christophe Dony, and Marianne Huchard. Foundations of a Simple and Unified
Component-Oriented Language. Journal of Computer Languages, Systems & Structures, 34/2-
3 :130-149, 2008.

. Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe Kruchten. Decision-making

techniques for software architecture design : A comparative survey. ACM Computing Surveys
(CSUR), 43(4) :33 :1-33 :28, October 2011.

Peter H. Feiler and David P. Gluch. Model-Based Engineering with AADL : An Introduction to
the SAE Architecture Analysis & Design Language. Addison-Wesley Professional, 2012.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Elements
of Reusable Object-Oriented Sofware. Addison-Wesley Professional Computing Series. Addi-
son Wesley Longman, Inc., 1995.

David Garlan, Robert Allen, and John Ockerbloom. Exploiting style in architectural design en-
vironments. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 175-188, New Orleans, Louisiana, USA, 1994.

David Garlan, Robert T. Monroe, and David Wile. Acme : Architectural description of
component-based systems. In Gary T. Leavens and Murali Sitaraman, editors, Foundations
of Component-Based Systems, pages 47-68. Cambridge University Press, 2000.

Olivier Gilles and Jérdome Hugues. Expressing and enforcing user-defined constraints of aadl
models. In In Proceedings of the 5th UML and AADL Workshop (UML and AADL 2010),2010.

N. Harrison, P. Avgeriou, and U. Zdun. Using patterns to capture architectural decisions. Soft-
ware, IEEE, 24(4) :38-45, July-Aug. 2007.

C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8) :666—-677, August 1978.

Dagqing Hou and H.J. Hoover. Using scl to specify and check design intent in source code.
IEEE Transactions on Software Engineering, 32(6) :404-423, 2006.

Anton Jansen and Jan Bosch. Software architecture as a set of architectural design decisions.
In Proceedings of of the 5th IEEE/IFIP Working Conference on Software Architecture (WIC-
SA’05), 2005.

Nils Klarlund, Jari Koistinen, and Michael I. Schwartzbach. Formal design constraints. In Pro-
ceedings of the 11th ACM SIGPLAN conference on Object-Oriented Programming, Systems,
Languages, and Applications, pages 370-383, San Jose, California, USA, 1996. ACM Press.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

REFERENCES 37

Philippe Kruchten, Rafael Capilla, and Juan Carlos Duenas. The decision view’s role in soft-
ware architecture practice. I[EEE Software, 26(2) :36-42, 2009.

David C. Luckham, John L. Kenney, Larry M. Augustin, James Vera, Doug Bryan, and Walter
Mann. Specification and analysis of system architecture using rapide. IEEE Transactions on
Software Engineering, 21(4) :336-355, 1995.

N Medvidovic, P. Oreizy, J. E. Robbins, and R. N. Taylor. Using object-oriented typing to
support architectural desing in the c2 style. In Proceedings of the Fourth ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE’96), pages 24-32, San Francisco,
California, USA, October 1996.

N. Medvidovic and N R. Taylor. A classification and comparison framework for software
architecture description languages. IEEE Transactions on Software Engineering, 26(1) :70-93,
2000.

Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins. Model-
ing software architectures in the unified modeling language. ACM Transactions On Software
Engineering and Methodology, 11(1) :2-57, 2002.

Naftaly H. Minsky. Law-governed regularities in object systems. part i : An abstract model.
Theory and Practice of Object Systems, 2(4) :283-301, 1996.

Naftaly H. Minsky and Partha Pratim Pal. Law-governed regularities in object systems. part ii :
a concrete implementation. Theory and Practice of Object Systems, 3(2) :87-101, 1997.

Robert T. Monroe. Capturing software architecture design expertise with armani. Technical
report, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, 2001.

Mark Moriconi, Xiaolei Qian, and R. A. Riemenschneider. Correct architecture refinement.
IEEFE Transactions on Software Engineering, 21(4) :356-372, April 1995.

Mark Moriconi and R. A. Riemenschneider. Introduction to sadl 1.0 : A language for speci-
fying software architecture hierarchies. Technical report, Computer Science Laboratory, SRI
International, 1997.

OASIS. Web services business process execution language version 2.0. Oasis Website :
http ://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-OS.pdf, 2007.

OMG. Uml profile for corba and corba components (cccmp), version 1.0 spec-
ification, document formal/08-04-07. Object Management Group Web Site
http ://www.omg.org/spec/CCCMP/1.0/PDF, 2008.

OMG. Unified modeling language superstructure, version 2.4.1 specifica-
tion, document formal/2011-08-06. Object Management Group Web Site
http ://www.omg.org/spec/UML/2.4.1/Superstructure/PDF, 2011.

OMG. Object constraint language specification, version 2.3.1, document formal/2012-01-01.
Object Management Group Web Site : http ://www.omg.org/spec/OCL/2.3.1/PDF, 2012.

Trygve Reenskaug. Thing-model-view-editor an example from a planning system. Technical
report, Xerox Parc, USA, May 1979.

J. C. Seco, Ricardo Silva, and Margarida Piriquito. Componentj : A component-based program-
ming language with dynamic reconfiguration. Computer Science and Information Systems,
05(02) :65-86, 12 2008.

Mary Shaw and David Garlan. Software Architecture : Perspectives on an Emerging Discipline.
Prentice Hall, 1996.

Petr Spacek. Design and Implementation of a Reflective Component-Oriented Programming
and Modeling Language. PhD thesis, Montpellier II University, France, 2013.

Petr Spacek, Christophe Dony, Chouki Tibermacine, and Luc Fabresse. An inheritance system
for structural & behavioral reuse in component-based software programming. In In proceedings

38

47.

48.

49.

50.

51.

52.

53.

54.

REFERENCES

of the 11th International Conference on Generative Programming and Component Engineering
(GPCE’12), Dresden, Germany, September 2012. ACM Press.

Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A survey of the use and doc-
umentation of architecture design rationale. In Proceedings of the 5th IEEE/IFIP Working
Conference on Software Architecture (WICSA’05), Pittsburgh, Pennsylvania, USA, November
2005.

Antony Tang, Jun Han, and Rajesh Vasa. Software Architecture Design Reasoning : A Case
for Improved Methodology Support. IEEE Software, 26(2) :43-49, 2009.

Ricardo Terra and Marco Tulio de Oliveira Valente. A dependency constraint language to man-
age object-oriented software architectures. Software Practice and Experience, 39(12) :1073—
1094, 2009.

Chouki Tibermacine, Régis Fleurquin, and Salah Sadou. On-demand quality-oriented assis-
tance in component-based software evolution. In Proceedings of the 9th ACM SIGSOFT Inter-
national Symposium on Component-Based Software Engineering (CBSE’06), pages 294-309,
Vasteras, Sweden, June 2006. Springer LNCS.

Chouki Tibermacine, Régis Fleurquin, and Salah Sadou. Simplifying transformations of archi-
tectural constraints. In Proceedings of the ACM Symposium on Applied Computing (SAC’06),
Track on Model Transformation, pages 1240—1244, Dijon, France, April 2006. ACM Press.

Chouki Tibermacine, Régis Fleurquin, and Salah Sadou. A family of languages for architecture
constraint specification. In Journal of Systems and Software (JSS), Elsevier, 83(1) :815-831,
2010.

Chouki Tibermacine, Salah Sadou, Christophe Dony, and Luc Fabresse. Component-based
specification of software architecture constraints. In Proceedings of the 14th International
ACM Sigsoft Symposium on Component Based Software Engineering (CBSE’11), pages 31-40.
ACM, 2011.

Jeff Tyree and Art Akerman. Architecture decisions : Demystifying architecture. IEEE Soft-
ware, 22(2) :19-27, March/April 2005.

