
HAL Id: lirmm-01104197
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01104197

Submitted on 16 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Approach to the Measurement of Similarity
between WSDL-based Web Services

Okba Tibermacine, Chouki Tibermacine, Foudil Cherif

To cite this version:
Okba Tibermacine, Chouki Tibermacine, Foudil Cherif. A Practical Approach to the Measurement
of Similarity between WSDL-based Web Services. Revue des Nouvelles Technologies de l’Information,
2014, CAL’2014: 6ème Conférence francophone sur les Architectures Logicielles, RNTI-L-7, pp.03-18.
�lirmm-01104197�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01104197
https://hal.archives-ouvertes.fr

A Practical Approach to the Measurement of Similarity
between WSDL-based Web Services

Okba Tibermacine∗, Chouki Tibermacine∗∗

and Foudil Cherif∗

∗University of Biskra, 07000 Algeria
o.tibermacine@univ-biskra.dz,foud.cherif@yahoo.fr

∗∗LIRMM, CNRS and Montpellier II University, France
tibermacin@lirmm.fr

Abstract. Similarity measurement between web services is a key solution to
benefit from the reuse of the large number of web services freely available in
the internet. This paper presents a practical approach that enables an effective
measurement of web service similarity based on their interfaces descibed with
WSDL. The approach relies on the use of multiple matching techniques and dif-
ferent semantic and structural similarity metrics. The measurement of similarity
determines the best substitute for a failed web service. So, it serves as a good
indicator of the substitutability relation and thus of the capacity for reuse. A sup-
port tool, implementing the approach, is also presented with some experimental
results conducted on real-world web services.

1 Introduction: Context and Motivation
Service-Oriented Architecture (SOA) is an architectural style for designing distributed ap-

plications using functionality implemented by third-party providers. In an SOA, the service
requester satisfies its specific needs by using services offered by service providers. One con-
crete technology used for implementing SOA is Web Services.

According to the W3C, a Web Service is defined as "a software system designed to sup-
port interoperable machine-to-machine interaction over a network" (Chinnici et al., 2007).
Its interface can be described as a WSDL (Web service Description Language) document that
contains structured information about the Web service’s location, its offered operations and the
input/output parameters.

Interface descriptions (WSDL documents) enable Web services to be discovered, used by
applications or other Web services, and composed into new more complex Web services.

Studying the similarity between Web service descriptions is a key solution for building
compositions and healing them by finding relevant substitutes for the failed web services. The
real motivation of measuring the similarity of such specific kind of software artifacts emanates
from the fact that recently thousands of Web services are indexed in libraries, like ServiceX-
plorer1 or XMethods2. The existence of such large space of Web services led us to the study

1ServiceXplorer Website: http://eil.cs.txstate.edu/ServiceXplorer/
2XMethods Website: http://www.xmethods.net

A Practical Approach to the Measurement of Similarity between Web Services

of the classification of these services for facilitating the research and navigation (Azmeh et al.,
2011a,b). When dealing with this classification, we have faced the need for the measurement
of operation or message similarity in Web service interfaces.

Evaluating similarity between Web services for a general purpose does not provide interest-
ing (workable) results. In reverse, measuring similarity for substitution is far more applicable.
We can calculate similarity scores based on particular metrics to define substitutability between
two given Web services. Therefore, we consider in this work "similarity for substitution". In
this particular case, the relation that similarity establishes between services is not symmetric.
A given operation op1 in a Web service can be similar to another operation op2, which means
that: op2 can be substituted by op1; op2 is however not necessarily similar to op1 in the
sense that it cannot necessarily replace it3 (it requires more parameters, for example).

Similarity of both structural (static) and behavioral (dynamic) descriptions of Web services
has been addressed in the literature (Nezhad et al., 2010) (Plebani and Pernici, 2009) (Medja-
hed and Bouguettaya, 2005) and (Wu and Wu, 2005). In this paper, we focus on the study of
the static descriptions and this is mainly due to insufficient availability of Web services that are
documented with their behavioral description on the Internet. As mater of fact, the similarity
process is conducted by matching WSDL files.

The paper presents the approach and its support tool "WSSIM" for web service similarity
for substitution. This approach is parameterized (customized) by different kinds of weighted
scores and the use of multiple metrics. These scores are measured by analyzing WSDL de-
scriptions of Web services interfaces. The similarity measurement process proposed in the
approach starts by calculating similarity between service names, operations, input/output mes-
sages, parameters, and at last compares the documentation. It addresses at the same time the
lexical and semantic similarity between identifiers. It makes schema matching for compar-
ing message structures and complex XML schema types. The similarity scores issued from
the measurement process can determine whether the compared web service are a substitute to
each other, or only a subset of operations which are substitutes for each other, or even more,
the two web services are completely different.

A detailed description of each similarity evaluation step is illustrated in Section 2. The tool
support is presented in Section 3 along with its experimentation on a set of real-world services
in Section 4. Before concluding this paper and exposing the future work, Section 5 summarizes
the related works.

2 Similarity Measurement Approach
The proposed approach to measure the similarity between Web services depends on their

WSDL interfaces. Thus, the elements of WSDL documents are considered by the measurement
process. We limit the similarity measurement to a subset of WSDL elements that includes:

• Service: a service element consists of a set of nested operations. It is described by a
name and a textual documentation.

• Operation: an operation element is described by a name and a textual documentation.
It contains input and output messages.

3We use indifferently the words "replace" and "substitute" throughout the course of the paper.

O. Tibermacine et al.

WS.OperationsList

WS.Name

Operation.Description

Input / Output Messages

WS.Name

WS.Description

Operation.Name

Message.Name

Message.Description

Message.ParameterList

Parameter.Name

Parameter.Type

WS.OperationsList

WS.Name

Operation.Description

Input / Output Messages

WS.Name

WS.Description

Operation.Name

Message.Name

Message.Description

Message.ParameterList

Parameter.Name

Parameter.Type

WSSIM Function

IdentifierSim Function

DocSim Function

OpsSim Function

IdentifierSim

DocSim Function

MessageSim /

SFASim Function

IdentifierSim

DocSim Function

ParsSim Function

IdentifierSim

TypeSim

Function

O
p

Sim
 Fu

n
ctio

n

P
arSim

 Fu
n

ctio
n

Sim
p

M
essage

Sim

Fu
n

ctio
n

Web Service 1 Web Service 2

FIG. 1 – Similarity Measurement Process

• Message: a message element is described by a name and eventually a textual docu-
mentation. A set of parameters are held by each message.

• Parameter: a parameter is described by a name and eventually a textual description.
The parameter could be of simple or complex type.

A hierarchy of functions that deals with measuring similarity between pairs of compared
WSDL elements is defined as the core of the implemented approach. Each function returns
a similarity score that ranges between 0 and 1; 0 means the elements are totally different, 1
means that they are totally similar. We assign weights to theses scores. By default, the value 1
is assigned to all scores. The final score is calculated depending on these weighted scores. It
is possible to customize the weights with different values based on the user’s experience. To
measure these scores, the process starts by evaluating the following function:

WsSim (Ws1, Ws2) = wSN × IdentifierSim (Ws1.Name, Ws2.Name) + wSO ×
OpsSim (Ws1.OpList, Ws2.OpList) + wSD ×DocSim (Ws1.Doc, Ws2.Doc) / (wSN + wSO + wSD) .

where:

• WsSim is the main function which is called for measuring similarity between two web
services denoted Ws1 and Ws2. Every Service Wsi has a name, an operation list, and a
textual description denoted respectively, Wsi.Name, Wsi.OpList, and Wsi.Doc.

• IdentifierSim measures similarity between identifiers that label web services, op-
erations, messages or parameter names.

A Practical Approach to the Measurement of Similarity between Web Services

• OpsSimmeasures similarity between two lists of operations that belong to the compared
services.

• DocSim evaluates the similarity between two textual documentations.

• wSN , wSO and wSD are respectively the assigned weights to IdentifierSim, OpsSim
and DocSim.

Additionally, these functions depend in their tasks on other sub-functions. a list of these
later functions is presented bellow, and more details are covered in the next subsections.

• OpSim measures similarity between a single pair of operations (subsection 2.4).

• MessageSimmeasures similarity of a single pair of messages (Subsection 2.5). MessageSim
is built upon SfaMessSim and SimpMessageSim functions.

• SfaMessSim evaluates the similarity of a single pair of message elements using the
Similarity Flooding Algorithm proposed in (Melnik et al., 2002) (Subsection 2.5).

• SimpMessageSim measures the similarity between names, documentation and pa-
rameters of two compared message elements (Subsection 2.5).

• ParsSim measures similarity between two sets of parameters. The parameters are the
input or the output parameters of a message.

• ParSim called by ParsSim function. It measures the similarity between two parame-
ters of a simple type.

• SimTypeSim evaluates the similarity between two given simple types (Subsection 2.7).

An illustration of the measurement process is depicted in Figure 1. The process starts
by the WsSim function. This later, as denoted previously, gets the similarity scores between
names, textual documentations of the compared WSDL files by invoking IdentifierSim
and DocSim functions respectively. Additionally, WsSim evaluates the similarity between the
services lists of operations by calling the function OpsSim. WsSim assigns weights to these
scores and returns the final similarity score between two web services.

The function OpsSim gets two lists of operations as input. It compares every pair of
operations by calling the function OpSim. The similarity scores of compared pairs are stored
in a similarity matrix. The problem of getting the maximum similarity score from the matrix
is addressed as finding the maximum weighted assignment in a bipartite graph. This later is
implemented by the function HungarianMax which returns the maximum similarity score
between the two lists of compared operations (more details are covered in Subsection 2.8).

The function OpSim uses IdentifierSim, DocSim and MessageSim to calculate
similarity between two operations by comparing names, descriptions, input/output messages.

The measurement of similarity between messages (input messages with input messages
and output messages with output messages) is assigned to the function MessageSim. This
function measures the similarity using two methods: 1) Measuring the similarity using the
algorithm proposed by SFA . 2) Measuring the similarity based on message signature match-
ing. The first method is implemented by the function SfaMessSim, and the second one is

O. Tibermacine et al.

implemented by the function SimpMessageSim. The MessageSim function returns the
maximum score of the two results.

Likewise to OpsSim, ParsSim evaluates the similarity between two lists of parameters
(used in SimpMessageSim). The similarity between each pair is calculated by the function
ParSim. The results of all pairs are represented as a similarity matrix. The HungarianMax
function uses the similarity matrix to return the maximum similarity score between the two
parameters lists.

2.1 Identifier Similarity
In WSDL, an identifier is a unique word or a sequence of concatenated words that identifies

a web service, an operation, a message or a parameter. The function IdentifierSim deals
with the measurement of similarity between two identifiers. This function could even be used
in the context of comparing databases or XML schemas, software models, or portion of codes.
It measures the similarity between two identifiers following the following tasks:

1. Tokenization: tokenization is the task of chopping up an identifier into pieces (words),
called tokens. So, two sets of tokens are generated. Each one corresponds to an identifier.
Stop words are removed from the two sets.

2. Tree Tagging: the tree tagging aims to annotate the extracted tokens with their grammat-
ical position in the whole identifier.

3. Similarity matrix generation: A similarity matrix is generated based on the similarity of
tokens-tuples. Each cell in the matrix holds a similarity between two compared tokens.
Where tokens are picked from the two sets. So a line in the similarity matrix corresponds
to the similarity scores between a token from the first set with all tokens in the second
set. Structural and semantic metrics are involved in the computation of the similarity
scores stored in matrix cells. If both words are found in WordNet then it returns the
average result after using the 4 semantic metrics listed in Table 1. Else it computes
lexical (structural) similarity using all metrics listed in Table 1 and returns the avarage
of the 5 best results.

Among all the metrics proposed in the literature, we selected a subset by measuring
similarities between a large set of identifiers extracted from real web services. The
results have been compared to our own (human) evaluation. Consequently, the metrics
that gave best results have been preferred. Table 1 summarizes semantic and structural
metrics used in the function IdentifierSim.

4. Maximum similarity score assessement: The first step in this task is to select the best
similarity scores between token-tuples from the similarity matrix. Each token figures
only once in the selected tuples. Then, the average of these maximum scores is returned
as the final similarity score between the compared identifiers. (Selection and computa-
tion are explained in more details in Section 2.8).

2.2 Documentation Similarity
As a matter of fact, available web services do not contain full description/documentation

of all WSDL elements. Hence, we ignore evaluating similarity between documentations once

A Practical Approach to the Measurement of Similarity between Web Services

Structure Metrics Semantic Metrics (Pirró, 2009)
Stoilos (Stoilos et al., 2005) Jiang
ChapmanOrdName (Chapman et al., 2005) Lin
Jaro (Jaro, 1995) Pirro Seco
JaroWinkler (Winkler, 1990) Resnik
Levenshtein (Levenshtein, 1966)
NeedlemanWunch (Needleman and Wunsch, 1970)
QGramsDistance (Ukkonen, 1992)
SmithWatermanGotoh (Smith and Waterman, 1981)

TAB. 1 – List of similarity metrics

they are missed from the WSDL files. Otherwise, we compare the textual descriptions (docu-
mentations) using LSI (Deerwester et al., 1990) and TF/IDF (Baeza-Yates and Ribeiro-Neto,
1999) measures which are widely used in information retrieval (Witten and Frank, 1999). The
function DocSim based on these measures evaluates and returns the similarity between two
compared documentation elements.

2.3 Grammatical tags for enhancing identifier similarity
In order to consider grammatical aspects during the similarity assessment between identi-

fiers, a second version of the function IdentifierSim has been developed. This later uses
the Tree tagging technique. Tree-Tagging consists of annotating text by part-of-speech (POS)
and lemma information based on both word definition, as well as the word context. In the sim-
ilarity assessment, the generated tags (Noun, Verb, Adjective, etc.) assigned to the identifiers-
tokens are used to affect similarity values which are stored in the similarity matrix. Therefore,
the similarity scores between tokens are considered if the tokens have the same generated tag.
And, similarity values are lessened to the half if their associated POS tags are different. As an
illustrative example, the similarity between the identifiers "GetWeatherByPlaceName"
and "GiveWeatherByZipCode" is assessed as follows:

1. Tokenization :

• GetWeatherByPlaceName : Get, Weather, By, Place, Name

• GiveWeatherByZipCode :give, Weather, By, Zip, Code

During stop word removing the token "By" will be dropped from the two sets.

2. Tree Tagging : the result of tree tagging is :

• get/VB weather/NN place/NN name/NN

• give/VB weather/NN zip/NN code/NN

3. Similarity matrix generation: Figure 2 depicts the similarity matrix of the compared
tokens. The initial matrix (a) groups similarity values between tokens without taking
into account their POS tags. And the final matrix (b) is the transformation of (a) after
including POS Tags.

4. The maximum score between these identifiers is AVERAGE(0.58+ 1+0.49+0.27) =0.59.

O. Tibermacine et al.

VB NN NN NN

Tokens Get Weather Place Name Tokens Get Weather Place Name

Give 0,58 0,25 0,16 0,22 VB Give 0,58 0,12 0,08 0,11

Weather 0,47 1 0,25 0,23 NN Weather 0,23 1 0,25 0,23

Zip 0,37 0,22 0,32 0,27 NN Zip 0,18 0,22 0,32 0,27

Code 0,37 0,24 0,49 0,47 NN Code 0,18 0,24 0,49 0,47

(a) (b)

FIG. 2 – Identifier similarity matrix sample

2.4 Operations Similarity
Measuring similarity between two operations is based on similarities between their names,

descriptions and the input/output messages. The OpSim function handles this task according
to the following definition:

OpSim (Op1, Op2) = wON × IdentifierSim (Op1.Name, Op2.Name) + wOM ×
MessageSim (Op1.InMessage, Op2.InMessage) + wOM ×
MessageSim (Op1.OutMessage, Op2.OutMessage) + wOD ×
DocSim (Op1.Doc, Op2.Doc) / (wON + 2× wOM + wOD) .

where:

• Op1 and Op2 are the compared operations. Every operation Opi has a name, descrip-
tion, input message and output message denoted respectively Opi.Name, Opi.Doc,
Opi.InMessage and Opi.OutMessage.

• wON ,wOM and wOD are weights associated respectively to IdentifierSim, MessageSim
and DocSim.

OpSim is also used by OperationsSim where it generates the score of all operations.
This is done by retrieving the maximum score from the operations similarity matrix. Cells
of the matrix hold the result of OpSim. The maximum score is computed according to the
function presented in Section 2.8.

2.5 Messages Similarity
A SOAP message outlines the input or the output of an operation in a WSDL file. The

message is represented in the WSDL by a name, a short description and a list of parameters.
The parameters might have of a simple or a complex type. To measure the similarity between
two SOAP messages, two different methods are used by the function MessageSim which re-
turns the final similarity score. The first method is implemented by the function SfaMessSim
on the basis of the similarity flooding algorithm (Melnik et al., 2002), and the second method
is implemented by the function SimpMessageSim on basis of signature matching. The
function MessageSim returns the maximum score of the values returned by the previous
functions. The function MessageSim is defined as follows:

MessageSim =
max(SfaMessSim (Message1, Message2) , SimpMessageSim (Message1, Message2))

A Practical Approach to the Measurement of Similarity between Web Services

where Message1 and Message2 are the compared messages.

• The function SfaMessSim is an implementation of the Similarity Flooding Algorithm.
The algorithm matches between labeled oriented graphs and find similar nodes in the
compared graphs. In our context, we transform a message signature into labeled oriented
graph. Then, we write down initial mapping (similarities) values between nodes. The
algorithm works upon the graph and the initial mapping to compute final scores between
graph nodes based on similarities of their neighborhood. Finally, the score between the
message nodes is returned.

• The function SimpMessageSim is based on signature matching where the similarity
score is computed by thier names, documentations, input and output messages.
SimpMessageSim is defined as follows:

SimpMessageSim (Message1, Message2) =
wMN × IdentifierSim (Message1.Name, Message2.Name) + wMP ×
ParsSim (Message1.ParsList,Message2.ParsList) + wMD ×
DocSim (Message1.Doc,Message2.Doc) / (wMN + 2× wMP + wMD) .

Where:

• Message1 and Message2 are the compared messages. Every Messagei has a name,
documentation and a list of parameters denoted respectively Messagei.Name, Messagei.Doc
and Messagei.ParsList.

• wMN , wMP and wMD are weights assigned to the different used functions.

It is important to note that we can also study similarity between input messages with output
messages in order to detect eventual composition possibilities. This is out of the scope of this
paper which deals with substitution and not composition.

2.6 Complex-Type Parameter Similarity
The measurement of similarity between complex parameters is a challenging problem. In

addition to the use of similarity flooding algorithm, we solve the problem of complex-types
comparison by breaking complex types into a set of simple parameters (set of sub-elements).
The following steps describe how to measure similarity between complex-parameters:

1. Transform complex parameters to a set of simple parameters: In this step, complex
parameters are replaced by their simple-type parameters (sub-elements). Where, the
identifiers of the subelements are aggregated with the identifier of the parent element.

2. Generate the matrix of parameters similarity: ParsSim takes the output of the last step
to generate a similarity matrix. The cells of the matrix contain scores of each parameter
tuple. These similarity scores are extracted using ParSim (see section 2.7).

3. Calculate the maximum score from the similarity Matrix (see Subsection 2.8).

O. Tibermacine et al.

2.7 Simple-Type Parameter Similarity
Considering similarity between simple types as the average between their name and type

similarities, Name similarity is calculated using identifierSim, while Type similarity
is implemented using the solution proposed in (Stroulia and Wang, 2005) and (Plebani and
Pernici, 2009). Similar types are grouped in five categories. Similarities between the groups is
presented in Table 2.

Integer Real String Date Boolean
Integer 1.0 0.5 0.3 0.1 0.1
Real 1.0 1.0 0.1 0.0 0.1
String 0.7 0.7 1.0 0.8 0.3
Date 0.1 0.0 0.1 1.0 0.0
Boolean 0.1 0.0 0.1 0.0 1.0

TAB. 2 – Similarity table between dataType (Plebani and Pernici, 2009)

The function ParSim is defined as follows:

parSim (Parameter1, Parameter2) = IdentifierSim (Parameter1.Name, Parameter2.Name) +
TypeSim (Parameter1.T ype, Parameter2.T ype) / (2) .

where:

• parameter1 and parameter2 are the compared parameters. Each parameter Parameteri

has a name and a type denoted respectively Parameteri.Name and Parameteri.T ype.

• typeSim evaluates similarity between two simple data types. The omitted weights in
the function parSim are equal to 1. Indeed, we think that the name of a simple parameter
and its type are equals in importance for similarity scoring computation.

2.8 Computation of the Maximal Score in a Similarity Matrix
In order to retrieve the maximum score from a similarity matrix, the HungarianMax

function deals with the problem as finding the maximum mean of weighted assignment in a
bipartite graph. Matrix cells are considered as the edges of the graph. A match is a subset
of edges where no two edges in the subset share a common vertex. In other words, it is
a set of values in the matrix where no two values are from the same line or column. The
assignment consists of finding the best match in the graph where each node in the graph has an
incident edge in the match. In the matrix, the best assignment represents the maximum average
of each pair of scores (line-column). Since The hungarian method (Kuhn, 1955) solves the
assignment problem, it was implemented in HungarianMax to return the similarity score
from a similarity matrix.

To illustrate the logic of this function, let us suppose that we get a similarity score between
operations as depicted in Figure 3. The maximization function returns the maximum mean
score. Thus, the better bipartite matching is (OP1 - OP’2 [0.7]), (OP2 - OP’1 [0.4]) and (OP3 -
OP’3 [0.4]), which equals to (0.7+0.4+0.4/3)=0.5. Eventhough, the naive composition is (OP1-
OP’3 [0.9]) , (OP2-OP’1 [0.4]) and (OP3-OP’2 [0]) with scores of ((0.9+0.4+0)/3)=0.433

A Practical Approach to the Measurement of Similarity between Web Services

 OP’1 OP’2 OP’3

OP1 0.3 0.7 0.9

OP2 0.4 0.2 0.3

OP3 0.1 0 0.4

To illustrate the principal of the maximum function; let’s suppose that we get the similarity score between

compared web service operations as depicted in figure (The same principal for any similarity matrix of other

compared wsdl elements). The maximization function returns the maximum mean score. Thus, the best

bipartite matching is (OP1 – OP’2), (OP2- OP’1) and (OP3 –OP’3), which equals to (0.7+0.4+0.4/3)=5. Even the

naïve matching is OP1-OP’3, OP2-OP’1 and OP3-OP’2 with scores of ((0.9+0.4+0)/3)=4.33

FIG. 3 – An Excerpt of a similarity matrix

3 WSSim: the tool support
WSSim is a Java-based tool implementing the approach presented in the previous section.

WSSim is available as a stand-alone application, a Java API and as a web service. When paths
to the desired Web services are given to the tool, it starts the assessment process by parsing
the WSDL documents. Then, it calculates similarities between WSDL elements. And finally,
it returns the final similarity score between the compared Web services. During the process of
assessment the tool keeps similarity scores between operations, messages and their parameters.

3.1 Overview of WSSim Functionalities
WSSim suggests a list of metrics used to calculate similarity. The application of these

metrics is left for manual selection. Weights are customized based upon the user experience
(for example, one can put 0 for the documentation similarity, because she/he does not trust on
the documentation provided in WSDL documents). There is a manual evaluation of importance
of some functions using weights (for example, similarity between input/output messages of
operations is more important than similarity between names. In another case, one can consider
parameter names more important than their types or vice versa). There are different tabs for
viewing details about similarity scores once extracted.

The similarity for substitution is viewed by WSSim by giving some suggestions of the op-
erations of other web services that best much a given Web service operation. This is illustrated
in the bottom-left corner of the Figure.

3.2 Underlying Technologies
The following APIs has been used to develop this tool:

• SFA API (Melnik et al., 2002): A Java implementation of the Similarity Flooding Al-
gorithm (found in: http://infolab.stanford.edu/∼melnik/mm/sfa/). In our tool, we use
the SFA API to compute similarity between two messages. The RDF model of the two
messages is generated by WSSim before calling the API.

• WordNet4: A lexical database for English words. Words in the database are grouped
into sets of synonyms called synsets. WSSim uses WordNet to find semantic relations
between compared words. It is also implicitly used with the semantic metrics in order to
evaluate the similarity between names.

4WordNet: http://wordnet.princeton.edu/

O. Tibermacine et al.

• SimMetrics5: An open source Java library of similarity metrics between strings. All
metrics in the library can work on a simple basis taking two strings and returning a
measure from 0.0 to 1.0. The library is used in WSSim in order to evaluate structural
similarity between words. The used metrics are listed in Table 1.

• JDOM6: A Java API for processing XML documents. It is used to parse WSDL files.
The parsing consists of representing Web service elements as a basic object model.

• JWS: An API for semantic similarity measurement based on WordNet. The library is
developed by Pirro & Seco (Pirró, 2009).

• Stanford PosTagger: A library for Part-Of-Speech Tagging7.

The tool offers an open-source user-friendly interface and an API. It is designed to be flex-
ible for both simple users and third-party developers. WSSim is available together with the ex-
periments data on the following link: http://www.lirmm.fr/∼tibermacin/WSSim/downloads/.

3.3 WSSim as a Web Service
A version of WSSim is also available as web service in order to ease its use by third-party

developers. The web service groups three operations; 1) the getServiceSimilarity operation
which returns the overall similarity score between two services, 2) the getOperationPairInfo
that returns information about similarity, substitutability and composability between operation
pairs, and 3) getSubstitutableOperations that returns the operation-pairs considered substi-
tutable by the tool.

4 Experiment
The approach and its support tool have been experimented on real-world Web services.

Unfortunately, we were not able to test the implementation of similar tools to compare their
results against those generated by WSSim. Nevertheless, we run several functional tests to
obtain more consistent results according to a human evaluation.

4.1 Tuning
At the beginning, we ran many tests to definitively fix the set of similarity metrics used by

WSSim (The final set is listed in table 1). In addition, we compared results obtained when the
identifier similarity function uses the tree tagging technique with those obtained without using
the tree tagging technique. The collection of identifiers used for test was extracted from real
web services.

Reported results were compared against a human evaluation of similarity of the executed
test cases. As an example, WSSim returns 0.833 between two given Identifiers: GetUniversi-
tyName and GetCollegeName. Since we consider a similarity score that ranges between 0.80
and 1 as high, the human evaluation of the test case has confirmed it.

5Open source Similarity Measure Library: http://sourceforge.net/projects/simmetrics
6JDOM: http://www.jdom.org
7Stanford POS Tagger API: http://nlp.stanford.edu/software/tagger.shtml

A Practical Approach to the Measurement of Similarity between Web Services

The results also had shown that the use of Tree Tagging enhances the similarity between
identifiers in some cases. But generally, the results obtained by the function without Tree
Tagging are close to those obtained by the use of Tree Tagging.

4.2 Case Study
In order to check the effectiveness of the approach and its implementing tool, a case study

is conducted to evaluate similarity between a set of real web services, and to find relevant
substitutes for service operations depending uniquely on similarity scores. The experiment has
been conduction following these steps:

1. Collecting WSDLs: we were interested to study similarities between real web services
offering IP information, ZipCode Information and Weather Information. Thus, we used
the keywords "IP", "ZIP" and "Weather" to find corresponding WSDLs. We retrieve ser-
vices from ServiceXplorer8, Service Repository9, XMethods10 and the service collection
of OWLS-TC 11. We selected 60 web services corresponding to the previous keywords,
20 services for each keyword.

2. First Run and WSDL filtering: After grouping the WSDL files in the same directory,
we run the first experiment on that group. The tool detected 9 duplicate WSDL docu-
ments, even if these WSDL have different names and different extensions (wsdl, asmx,
xml) and retrieved from different sources. The tool returned the similarity value 1 for the
totally similar services. We filtered these services and we kept one copy of each service.

3. Second Run and System performances: WSSim offers the possibility to compare a
group of WSDL documents and returns the similarity matrix between all services. Ad-
ditionally, it returns all similar operation-pairs with their similarity score, Input messages
similarity and output message similarity scores. For substitution, the tool returns a list of
substitutable operations. The tool select all Operation-pairs with similarity score greater
than 0.7, and message similarity score greater or equal to 0.75. Operation pairs that do
not satisfy the previous criteria are considered not substitutable.

The machine used in the experiment run with Intel processor (I3-2100 CPU 3.10 GHZ),
and RAM memory of 4 GB with Windows 7 as an operating system. The tool took only
88 seconds to parse 47 Web services and measure similarities between 135 operations
(135*134), and 270 messages (270*269) with 753 Parameters.

4. Human evaluation of operations pairs: To check the accuracy and the effectiveness of
the automatic selection of operation-substitutes resulted by the tool, we conduct a man-
ual evaluation of the similarity between operations. All operation-pairs with similarity
score greater or equal to 0.5 were verified. We consider two operations as substitutable if
they have a similar identifier and they have the same input and the same output messages
even with some adaptation (ex. parameter casting).

8ServiceXplorer: http://eil.cs.txstate.edu/ServiceXplorer/results.php
9Service Repository: http://www.service-repository.com

10XMethods: http://www.xmethods.com/ve2/index.po
11OWLS-TC: http://projects.semwebcentral.org/projects/owls-tc

O. Tibermacine et al.

>=0,7

>=0,75

>=075

TP (true positive) FP (false positive) Accuracy 0,961

33 14 Precision 0,702

FN (false negative) TN (true negative) Recall 0,647

18 756 F1-Score 0,673

Criteria

Operation Similarity

Input Message Similarity

Output Message similarity

FIG. 4 – Experiment Results

5. Result analysis: The results of the manual annotation (substitutable or not substitutable)
were compared against WSSim results. Figure 4 depicts experiment results with the
associated Precision, Recall, Accuracy and F-Score. The number of False Negatives
Influenced the System Recall. False Negatives in this experiment are the operation-pairs
considered by the tool as non-substitutable, and the human evaluation shows that these
pairs can be considered as substitutable after adaptation at the output message level.
After a manual checking we observed that the tool failed in detecting the similarity
between these pairs because of the comparison between a simple parameter type (String)
in the output message of one of the operations, and the complex parameter type in the
output message of the other operation. Also, the number of true negatives is important
and this is natural because most operations in different services are not similar.

5 Related Work

Similarity evaluation between Web services has been addressed by several works in the
literature. Many efforts relied on calculating similarity between Web service interfaces (figured
in a WSDL document). The comparision is performed on signatures by making signature
matching(Zaremski and Wing, 1995).

In (Dong et al., 2004), Dong et al. present a search engine called "Woogle". Based on
similarity search, Woogle returns similar Web services for a given query. The search engine
combines multiple techniques to evaluate similarity between the services and their operations.
These techniques focus on operation parameters as well as operations and services description.
The authors introduced a clustering algorithm for grouping description terms in a set of con-
cepts. After that, similarity between concepts is measured using a simple information retrieval
metric, TF/IDF.

The solution provided in (Dong et al., 2004) is limited to evaluating similarity using se-
mantic relations between clustered concepts, while in our case, we enhance the similarity eval-
uation by using multiple semantic and structural metrics. In addition, not only the service and
operation level is addressed, the similarity between messages, parameters identifiers and types
is taken in account.

A Practical Approach to the Measurement of Similarity between Web Services

In (Wu and Wu, 2005) and (Zhuang et al., 2005), the similarity between Web services is
evaluated using a WordNet-based distance metric. Based on schema matching, Carman et al.
(Carman et al., 2003) proposed an algorithm for semantic matching of complex data types.

In contrast to (Wu and Wu, 2005), we implemented the similarity evaluation between data
types (simple or complex) using the similarity flooding algorithm which we consider as an
efficient schema matching technique.

The approach presented in (Crasso et al., 2008) proposes to discover the most relevant
web service to a given query. The approach is based on the representation of a web service
description and queries within classic space vectors. Then, it matches between the vectors that
represent services and the vector which represents the query using the Cosine metric. It returns
the nearest service to the given query. This work is limited to the use of syntactic similarity
where it uses only the Cosine and TF/IDF metrics.

The similarity evaluation in (Kokash, 2006) is implemented through combinating lexical
and structural matching. In (Plebani and Pernici, 2009), the paper proposes a method of Web
service retrieval called URBE (Uddi Registry By Example). The retrieval is based on the eval-
uation of similarity between Web service interfaces. The algorithm used in URBE combines
the analysis of Web services structure and the terms used inside it.

In addition to (Kokash, 2006), we added matching types with different metrics. Differences
between (Plebani and Pernici, 2009) and the presented work is mainly when we deal with data
types similarities. (Plebani and Pernici, 2009) ignores the similarity between data types (simple
or complex) which is not the case in our paper. Another difference is when we use multiple
structural and semantic metrics like Stoilos and Qgramdistance in the evaluation of similarity
between identifiers.

Works such as (Arpinar et al., 2004), (Syeda-Mahmood et al., 2005) and (Medjahed and
Bouguettaya, 2005) share the same problem of analysing Web services interfaces for similar-
ity evaluation. The main difference relies on the completeness in comparing all parts in the
Web service description files. In our case, all the possible levels of Web service description
(service, operation, message, parameter, simple and complex data-types, and documentation)
are addressed. In addition, customizable settings are made available to satisfy user’s needs in
the best way.

6 Conclusion and Future Work

In this paper, we have proposed a practical approach for measuring the similarity between
Web services by comparing their interface descriptions (WSDL documents). The approach is
based on the use of a set of existing lexical and semantic metrics. The measurement process
is parametrized by a collection of weights associated to the different levels of web service
description. The challenge of measuring the similarity between complex types, which are gen-
erally represented by XML schema, is handled by using different techniques for getting the
best scores as described previously. Obviously, the need for similarity assessment is generally
adapted for composition and substitution; by finding similar services or similar operations, we
can replace failed services/ failed operations by similar ones. Also, it is possible to compose
from several operations, which have similar input-output messages, an equivalent failed oper-
ation (Opfailed=Op1+...+Opn). The prototype tool (WSSIM) has been developed to prove the

O. Tibermacine et al.

feasibility of the approach. It has been experimented on a set of real-world Web services to
show its practicability.

We are considering storing and indexing substitutable operations pairs and their similarity
scores in a relational database in order to simplify the procedure of seeking relevant substitute
for a failed service. Aditionally, the approach and its support tool can be extended to form a
complete Web service orchetrsation healer.

References

Arpinar, I. B., B. Aleman-Meza, R. Zhang, and A. Maduko (2004). Ontology-driven web
services composition platform. In Proceedings of the IEEE CeC, pp. 146–152. IEEE CS.

Azmeh, Z., M. Driss, F. Hamoui, M. Huchard, N. Moha, and C. Tibermacine (2011a). Selec-
tion of composable web services driven by user requirements. In In proceedings of ICWS’11

Azmeh, Z., F. Hamoui, M. Huchard, N. Messai, C. Tibermacine, C. Urtado, and S. Vauttier
(2011b). Backing composite web services using formal concept analysis. In P. Valtchev and
R. Jäschke (Eds.), ICFCA, Volume 6628 of LNCS, pp. 26–41. Springer.

Baeza-Yates, R. A. and B. Ribeiro-Neto (1999). Modern Information Retrieval. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.

Carman, M., L. Serafini, and P. Traverso (2003). Web service composition as planning. In In
ICAPS 2003 Workshop on Planning for Web Services.

Chapman, S., B. Norton, and F. Ciravegna (2005). Armadillo: Integrating knowledge for the
semantic web. In Proc. of the Dagstuhl Seminar in Machine Learning for the Semantic Web.

Chinnici, R., J.-J. Moreau, A. Ryman, and S. Weerawarana (2007). Web services description
language (wsdl) version 2.0 part 1: Core language. World Wide Web Consortium, Recom-
mendation REC-wsdl20-20070626.

Crasso, M., A. Zunino, and M. Campo (2008). Query by example for web services. In Proc.
of ACM SAC’08, pp. 2376–2380. ACM.

Deerwester, S., S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman (1990). Indexing
by latent semantic analysis. journal of the american society for information science 41(6).

Dong, X., A. Halevy, J. Madhavan, E. Nemes, and J. Zhang (2004). Similarity search for web
services. In Proc. of VLDB ’04, pp. 372–383.

Jaro, M. A. (1995). Probabilistic linkage of large public health data file. In Statistics in
Medicine, Volume 14, pp. 491–498.

Kokash, N. (2006). A comparison of web service interface similarity measures. In Proc. of
STAIRS 2006, Amsterdam, The Netherlands, pp. 220–231. IOS Press.

Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97.

Levenshtein, V. (1966). Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals. Soviet Physics Doklady 10, 707.

Medjahed, B. and A. Bouguettaya (2005). A multilevel composability model for semantic web
services. IEEE Trans. on Knowl. and Data Eng. 17, 954–968.

A Practical Approach to the Measurement of Similarity between Web Services

Melnik, S., H. Garcia-Molina, and E. Rahm (2002). Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proc. of ICDE’02.

Needleman, S. and C. Wunsch (1970). A general method applicable to the search for similari-
ties in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3).

Nezhad, H. R. M., G. Y. Xu, and B. Benatallah (2010). Protocol-aware matching of web
service interfaces for adapter development. In Proc. of WWW 2010, pp. 731–740.

Pirró, G. (2009). A semantic similarity metric combining features and intrinsic information
content. Data Knowl. Eng. 68, 1289–1308.

Plebani, P. and B. Pernici (2009). Urbe: Web service retrieval based on similarity evaluation.
IEEE Trans. on Knowl. and Data Eng. 21, 1629–1642.

Smith, T. F. and M. S. Waterman (1981). Identification of common molecular subsequences.
In Journal of Molecular Biology, Volume 147(1), pp. 195–197.

Stoilos, G., G. Stamou, and S. Kollias (2005). A string metric for ontology alignment. In Proc.
of ISWC’05, pp. 624–637. Springer.

Stroulia, E. and Y. Wang (2005). Y.: Structural and semantic matching for assessing web-
service similarity. International Journal of Cooperative Information Systems 14, 407–437.

Syeda-Mahmood, T., G. Shah, R. Akkiraju, A.-A. Ivan, and R. Goodwin (2005). Searching
service repositories by combining semantic and ontological matching. In Proc. of ICWS’05.

Ukkonen, E. (1992). Approximate string-matching with q-grams and maximal matches. In
Theoretical Computer Science, Volume 92, pp. 191–211.

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the fellegi-
sunter model of record linkage. In Section on Survey Research, pp. 354–359.

Witten, I. H. and E. Frank (1999). Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann.

Wu, J. and Z. Wu (2005). Similarity-based web service matchmaking. In Proc. of SCC’05,
Washington, DC, USA, pp. 287–294. IEEE Computer Society.

Zaremski, A. M. and J. M. Wing (1995). Signature matching: a tool for using software li-
braries. ACM Trans. Softw. Eng. Methodol. 4, 146–170.

Zhuang, Z., P. J. Mitra, and A. Jaiswal (2005). Corpus based web service matchmaking. In
Proc of AAAI 2005, Pennsylvania, USA.

Résumé
La mesure de similarité entre services Web est une solution clé pour pouvoir réutiliser les

nombreux services publiés sur le Web. Cet article présente une approche pratique qui permet
de mesurer de façon efficace la similarité entre services Web en se basant sur leurs interfaces
décrites avec WSDL. Cette approche s’appuie sur un certain nombre de techniques de mat-
ching et sur des métriques de similarité structurelle et sémantique. Elle sert comme indicateur
pour la relation de substituabilité entre services et donc pour leur capacité de réutilisation.
Nous présentations également un outil, nommé WSSim, implémentant cette approche, et nous
exposons des résultats empiriques obtenus sur des services Web réels.

