G Duvillié

M Bougeret
email: marin.bougeret@lirmm.fr

V Boudet

T Dokka
email: t.dokka@lancaster.ac.uk

R Giroudeau
email: rodolphe.giroudeau@lirmm.fr

On the complexity of Wafer-to-Wafer Integration

In this paper we consider the Wafer-to-Wafer Integration problem. A wafer is a p-dimensional binary vector. The input of this problem is described by m disjoints sets (called "lots"), where each set contains n wafers. The output of the problem is a set of n disjoint stacks, where a stack is a set of m wafers (one wafer from each lot). To each stack we associate a p-dimensional binary vector corresponding to the bit-wise AND operation of the wafers of the stack. The objective is to maximize the total number of "1" in the n stacks. We provide O(m 1-) and O(p 1-) non-approximability results even for n = 2, as well as a p r -approximation algorithm for any constant r. Finally, we show that the problem is FPT when parameterized by p, and we use this FPT algorithm to improve the running time of the p r -approximation algorithm.

Introduction

Problem definition

In this paper we consider Wafer-to-Wafer Integration problems. In these problems, we are given m disjoint sets V1 . . . V m , where each set V i contains n binary p-dimensional vectors. For any j ∈ [n]1 1 , and any i ∈ [m]1, we denote by v i j the j th vector of set V i , and for any k ∈ [p]1 we denote by v i j (k) ∈ {0, 1} the k th component of v i j . Let us now define the output. A stack s = (v s 1 , . . . , v s m) is an m-tuple of vectors such that v s i ∈ V i , for any i ∈ [m]1. An output of the problem is a set S = {s1, . . . , sn} of n stacks such that for any i and j, vector v i j is contained exactly in one stack. An example of input and output is depicted in Figure 1.

These problems are motivated by an application in IC manufacturing in semiconductor industry, see [START_REF] Reda | Maximizing the functional yield of wafer-towafer 3-d integration[END_REF] for more details about this application. A wafer can be seen as a string of bad dies (0) and good dies [START_REF] Crescenzi | Structure in approximation classes[END_REF]. Integrating two wafers corresponds to superimposing the two corresponding strings. In this operation, a position in the merged string is only 'good' when the two corresponding dies are good, otherwise it is 'bad'. The objective of Wafer-to-Wafer Integration is to form n stacks, while maximizing the overall quality of the stacks (depending on the objective function).

Let us now define several objective functions, and the corresponding optimization problems. We consider the operator ∧ which maps two p-dimensional vectors to another one by performing the logical and operation on each component of entry vectors. More formally, given two p-dimensional vectors u and v, we define u∧v = (u(1)∧v [START_REF] Crescenzi | Structure in approximation classes[END_REF], u(2)∧v(2), . . . , u(p)∧v(p)). We associate to any stack s = (v s 1 , . . . , v s m) a binary p-dimensional vector vs = m i=1 v s i . Then, the profit of a stack s is given by c(vs), where c(v) = p k=1 v(k). Roughly speaking, the profit of a stack is the number of good bits in the stack, where a good bit (in position k) survives iff all the vectors of the stack have a good bit in position k. We are now ready to define two following optimization problems:

Set of problems 1 max 1 and min 0 Input m sets of n binary p-dimensional vectors Output a set S of n disjoint stacks

Objective functions max 1: maximize f 1 (S) = n j=1 c(vs j), the total number of good bits min 0: minimize f 0 (S) = np -n j=1 c(vs j), the number of bad bits

Instance of these problems will be denoted by I[m, n, p]. The notation f (S) (instead of f 0(S), f 1(S), . . .) will be used when the context is non ambiguous.

Related work

In this paper we consider results in the framework of approximation and fixed parameter tractability theory. We only briefly recall the definitions here and refer the reader to [START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF][START_REF] Williamson | The design of approximation algorithms[END_REF] for more information. For any ρ > 1, a ρ-approximation algorithm A (for a maximization problem) is such that for any instance I,

A(I) ≥ Opt(I) ρ
, where Opt(I) denotes the optimal value. The input of a parameterized (decision) problem Π is a couple (X, κ), where X ⊆ Σ * is a classical decision problem, and κ : Σ * -→ N is a parameterization. Deciding Π requires to determine for any instance I ∈ Σ * if I ∈ X. Finally, we say that an algorithm A decides Π in FPT time (or that Π is FPT parameterized by κ) iff there exists a computable function f and a constant c such that for any I, A(I) runs in

O(f (κ(I))|I| c).
The max 1 problem was originally defined in [START_REF] Reda | Maximizing the functional yield of wafer-towafer 3-d integration[END_REF] as the "yield maximization problem in wafer-to-wafer 3-D integration technology". Authors of [START_REF] Reda | Maximizing the functional yield of wafer-towafer 3-d integration[END_REF] point out that "the classical NP-hard 3-D matching problem is reducible to the max 1 problem". However, they do not provide the reduction and they only conclude that max 1 is NP-hard without stating consequences on the approximability. They also notice that max 1 is polynomial for m = 2 (as it reduces to finding a maximum profit perfect matching in a bipartite graph, solved by Hungarian Method), and design the "iterative matching heuristic" (IMH) that computes a solution based on (2D) matchings.

In [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF] and [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] we investigated the min 0 problem by providing a 4 3 -approximation algorithm for m = 3 and several f (m)-approximation algorithms for arbitrary m (and for a more general profit function c). Furthermore, we also noticed in [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF] that the natural ILP formulation implied that min 0 and max 1 are polynomial for fixed p. Concerning negative results, the implicit straightforward reduction from k-Dimensional Matching in [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF] and made explicit in Appendix A, shows that min 0 is NP-hard, and max 1 is O(m ln m) non-approximable. The more complex reduction of [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] shows that min 0 is APX-hard even for m = 3, and thus is very unlikely to admit a PTAS. Table 1. Overview of results on Wafer-to-Wafer Integration

Contributions

In this paper we mainly study the max 1 problem, with a particular focus on parameter p. We prove in Subsection 2.2 that even for n = 2, for any , there is no ρ(m, p)-approximation algorithm for max 1 such that ρ(x, x) = O(x 1-) unless P = NP (this implies in particular no O(p 1-) and no O(m 1-) ratios). These negative results show that the simple p-approximation presented in Section 3.1 is somehow the best ratio we can hope for. Nevertheless, looking for better positive results we focus on p r -approximation algorithm for any constant r. It turns out that any O(f (n, m, p)) exact algorithm for max 1 can be used to derive a p r -approximation in O(p × f (n, m, r)). This motivates our main result: determining the complexity of the max 1 problem when parameterized by p. The natural ILP in [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] implied that max 1 (and min 0) is polynomial for fixed p. In Section 3.2, we improve this result by showing that max 1 (and min 0) are FPT parameterized by p.

Negative Results

In order to obtain negative results for max 1, let us first introduce two related problems defined in the table Set Roughly speaking, we will see that approximating max 1 is harder than approximating these two problems, and that these problems are themselves nonapproximable.

To show that approximability is preserved we will provide strict reductions [1] noted S-reductions. Indeed, if there is a strict reduction from Π1 to Π2, then any polynomial ρ-approximation for Π2 yields to a ρ-approximation for Π1. Notice that in the following we will rather provide reductions as defined in the following property.

Property 1 Let Π1 and Π2 be two maximization problems with their given objective functions m1 and m2. Let f be a polynomial function that given any instance x of Π1 associate an instance f (x) of Π2. Let g be a polynomial function that given any instance x of Π1, and feasible solution S2 of f (x), associates a feasible solution g(x, S2) of Π1. If f and g verify the two following conditions:

1. Opt(x) = Opt(f (x)) 2. m1(g(x, S2)) ≥ m2(f (x))
then (f, g) is a strict reduction.

Relation between max =0 , max max 1 and max 1

Observation 1 There exists a strict reduction from max max 1 to max 1.

Proof. Let us construct (f, g) as in Property 1. Consider an instance I [m , n , p] of max max 1. We construct an instance I[m, n, p] of max 1 as follows: we set

p = p , n = n , m = m + 1. The m sets of I [m , n , p] remain unchanged in I[m, n, p]: ∀i ∈ [m]1, V i = V i
and the last set V m +1 contains (n -1) "zero vectors" (i.e. vectors having only 0) and one "one vector" (i.e. vector having only 1).

Informally, the set V m +1 of I behaves like a selecting mask: since all stacks except one are turned into zero stacks when assigning the vectors of last set, the unique "one vector" of set V m +1 must be assigned to the best stack, and maximizing the sum of the stacks is equivalent to maximizing the best stack.

More precisely, it is straightforward to see that the following statement is true: ∀x, ∃ solution S of max max 1 of value fmax 1 (S) = x ⇔ ∃ solution S of max 1 of value f 1(S) = x. Thus, we get Optmax max 1(I) = Optmax 1(I). As the previous reduction is polynomial, and a solution of I can be deduced from a solution of I in polynomial time, we get the desired result.

Observation 2 There exists a strict reduction from max =0 to max 1.

We refer the reader to Appendix A for the reduction proving this lemma. According to Observations 1 and 2, any non-approximability result for max =0 or max max 1 will transfer to max 1. This motivates the next section.

Hardness of max =0 and max max 1

The reduction from k-Dimensional Matching (kDM) provided in [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF] can be adapted to max 1 instead of min 0 as shown in Appendix A Unlike the case of min 0, the reduction preserves approximability:

Theorem 1 (implicit in [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF]). There is a strict reduction from kDM to max =0.

As it is NP-hard to approximate kDM to a factor O(k ln(k)) [START_REF] Hazan | On the complexity of approximating kdimensional matching[END_REF], we get the following corollary:

Corollary 1. It is NP-hard to approximate max =0 within a factor O(m ln(m)).
We can also notice that any m r -approximation ratio (for a constant r ≥ 3) for max =0 or max 1 would improve the currently best known ratio for kDM set to Proof. Let us construct (f, g) as in Property 1. Let us consider an instance G = (V, E) of the Maximum Clique Problem. The corresponding instance of max max 1 is constructed as follows. We consider m = |V | sets, each having two vectors. All the vectors have p = |V | bits. For each vertex i of V , we create the set

V i = (v i 1 , v i 2). For any i, we define v i 1 = (v i 1 (1), v i 1 (2), . . . , v i 1 (p)), where v i 1 (k) = 1 iff {i, k} ∈ E or i = k, and v i 2 = (v i 2 (1), v i 2 (2), . . . , v i 2 (p)), where v i 2 (k) = 1 iff i = k.
In other words, v i 1 corresponds to the i th row of the adjacency matrix of G, with a self loop.

The idea is that selecting v i 1 corresponds to selecting vertex i in graph, and selecting v i 2 will turn the i th component to 0, which corresponds to a penalty for not choosing vertex i.

We first need to state an intermediate lemma. For any stack s = {v s 1 , . . . , v s m },

let Xs = {i|v s i = v i
1 } be the associated set of vertices in G. Recall that vs is the p dimensional vector representing s.

Lemma 1. ∀i ∈ [p]1, vs(i) = 1 ⇔ ((i ∈ Xs) and (∀x ∈ Xs \ i, {x, i} ∈ E)).
Let us first prove Lemma 1. Suppose i th component of vs is 1. This implies that v i 1 ∈ s, and thus i ∈ Xs. Now, suppose by contradiction that ∃x ∈ Xs \ i such that {x, i} / ∈ E. x ∈ Xs implies that v x 1 ∈ s. Moreover, vs(i) = 1 implies that v x 1 (i) = 1, and thus {x, i} ∈ E, which leads to a contradiction. Suppose now that i ∈ Xs, and ∀x ∈ Xs \ i, {x, i} ∈ E. Let us prove that ∀i , v s i (i) = 1. Notice first that for i = i we have

v s i (i) = v i 1 (i) = 1. Moreover, ∀i = i such that i / ∈ Xs we have v s i (i) = v i 2 (i) = 1. Finally, ∀i = i such that i ∈ Xs, we have v s i (i) = v i 1 (i) = 1 as {i , i} ∈ E.
It is now straightforward to prove that ∀x, "∃ solution S for max max 1 of value fmax 1 (S) = x ⇔ ∃ a clique X in G of size x." Indeed, suppose first that we have a solution S such that fmax 1 (S) = x. Let s = (v s 1 , . . . , v s m) be the stack in S of value x, and let Gs = {k|vs(k) = 1} be the set of good bits of s. We immediately get that the vertices corresponding to Gs form a clique in G, as ∀i and j ∈ Gs the previous property implies that i ∈ Xs, j ∈ Xs, and thus {i, j} ∈ E. Suppose now that there is a clique X * in G, and let s be a stack such that Xs = X * . The previous property implies that ∀i ∈ Xs, vs(i) = 1.

Thus, Optmax max 1(I) is equal to the size of the maximum clique in G. As the previous reduction is polynomial, and as a solution of S of I can be translated back in polynomial time into the corresponding clique in G (of same size), we get the desired result.

As for any there is no O(|V | 1-)-approximation for Maximum Clique Problem (with set of vertices V) unless P=NP [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF], we get the following corollary: Corollary 2. Even for n = 2, for any , there is no ρ(m, p)-approximation such that ρ(x, x) = O(x 1-) for max max 1 and thus for max 1. Notice that in particular, O(p 1-) and O(m 1-) are not possible, but for example (pm) 1 2 is not excluded.

To summarize, the main negative results for max 1 are no O(p 1-)-approximation and no O(m 1-) approximation for n = 2, and no O(m ln m)-approximation for arbitrary n (using the reduction from k-Dimensional Matching of [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF]). Notice that it does not seem obvious to adapt the previous reductions to provide the same non-approximability results for min 0. Thus, the question of improving the f (m) ratios provided in [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] is still open.

Positive Results

In this Section, we develop some polynomial-time approximation algorithm for max 1. Then, we show that max 1 and min 0 are FPT parameterized by p.

p

r -approximation Given the previous negative results, it seems natural to look for ratio p r , where r is a constant. Let us first see how to achieve a ratio p with Algorithm 1.

Property 1. Algorithm 1 is a p-approximation algorithm for max 1.

Algorithm 1: p-approximation for max 1 x = 0; while ∃k such that it is possible to create a stack s such that v s (k) = 1 do Add s to the solution;

x = x + 1; if x < n then
Add n -x arbitrary (null) stacks to the solution;

Proof. Let S = S =0 S0 be the solution computed by the algorithm, where S =0 is the set of non zero stacks, and S0 is the set of the remaining null stacks. Since S =0 and S0 are disjoint, we have S0 = S \ S =0. Let n1 = |S =0|, and ∀i, let

V i = V i S0. Let n2 = |S0| = |V i | (all the V i have the same size). Notice that n = n1 + n2.
As the algorithm cannot create any non null stack at the end of the loop, we know that for any position k ∈ [p]1, there is a set i(k) such for any vector w ∈ V i(k) , w(k) = 0. In other words, we can say that there is a column of n2 zeros in set V i(k) . Notice there may be several columns of zeros in a given set. Thus, we deduce that there are at least p columns (of n2 zeros) in the vectors of V i(k) . Moreover, as none of these zeros can be matched in a solution, we know that these n2p zeros will appear in any solution.

Thus, given S * an optimal solution, we have f (S *) ≤ np -n2p = n1p. As f (S) ≥ n1, we get the desired result.

Given a fixed integer r (and targeting a ratio p r), a natural way to extend Algorithm 1 is to first look for r t-tuples (i.e. find (k1, . . . , kr) such that it is possible to create s such that vs(k1) = • • • = vs(kr) = 1)), then (r -1) t-tuple, etc. However, even for r = 2 this algorithm is not sufficient to get a ratio p 2 , as shown by the example depicted in Figure2. Fig. 2. Counter-example showing that Algorithm 1 for r = 2 remains a papproximation. The depicted stacks correspond to an optimal solution of profit 3 whereas the algorithm outputs a solution of profit 1.

V 1 V 2 V 3 V 4 V 5 V 6 S
In this example it is not possible to create any stack of value strictly greater than 1 since set V 1 kills positions {1, 2} (we say that a set kills positions {k1, k2} iff there is no vector in the set such that w(k1) = w(k2) = 1), set V 2 kills positions {1, 3}, and set V 3 kills positions {2, 3}.

Thus, in this case (and more generally when no stack of value greater than 1 can be created), the solution computed by the algorithm for r = 2 is the same as one computed by Algorithm 1. In the worst case, the algorithm creates only one stack of value 1 (by choosing the first vector of each set). However, as depicted in Figure 2, the optimal value is 3, and thus the ratio p 2 is not verified.

In other words, knowing that no stack of profit 2 can be created does not provide better results for Algorithm 1. This motivates the different approach we follow hereafter.

Property 2. Suppose that there exists an exact algorithm for max 1 running in f (n, m, p). Then, for any r ∈ [p]1 we have a p r -approximation running in O(p × f (n, m, r)).

Proof. The idea is to use a classical "shifting technique" by guessing the subset of the r most valuable consecutive positions in the optimal solution, and run the exact algorithm on these r positions. Let S * be an optimal solution for max 1. For any k, let Ik be the restricted instance where all the vectors are truncated to only keep positions in Xk (there are still nm vectors in Ik, but each vector is now a r dimensional vector). By running the exact algorithm on all the Ik and keeping the best solution, we get a p r -approximation running in O(pf (n, m, r)).

The previous lemma motivates the exact resolution of max 1 in polynomialtime for fixed p. It is already proved in [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] that min 0 can be solved in O(m(n 2 p)). As this result also apply to max 1, we get a p r -approximation running in O(pm(n 2 r)), for any r ∈ [p]1. Our objective is now to improve this running time by showing that max 1 (and min 0) are even FPT parameterized by p (and not only polynomial for fixed p).

Faster algorithm for fixed p for max 1

Definition 1. For any t ∈ [2 p -1]0, we define configuration t as Bt: the pdimensional binary vector that represents t in binary. We say that a p-dimensional vector v is in configuration t iff v = Bt.

First ideas to get an FPT algorithm

Let us first recall our previous algorithm in [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] for fixed p. This result is obtained using an integer linear programming formulation of the following form. The objective function is min 2 p -1 t=0 xtct (recall that in [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] the considered objective function is min 0), where xt ∈ [n]0 is an integer variable representing the number of stacks in configuration t, and ct ∈ [p]0 is the number of 0 in configuration t.

This is a good starting point to get an FPT algorithm. Indeed, if we note nvar (resp. mctr) the number of variables (resp. number of constraints) of an ILP, for any A ∈ Q nvar ×m ctr , b ∈ Q m ctr , the famous algorithm of Lenstra [START_REF] Lenstra | Integer programming with a fixed number of variables[END_REF] allows us to decide the feasibility of an ILP, under the form ∃?x ∈ Z nvar |Ax ≤ b, in time

O(C n 3 var m O(1)
ctr) (this running time is given in [START_REF] Kratsch | On polynomial kernels for integer linear programs: Covering, packing and feasibility[END_REF]), where C is a constant. Thus, to get an FPT algorithm parameterized by p, it is sufficient to write min 0 (and max 1) as an ILP using f (p) variables.

However, it remains now to add constraints that represent the min 0 problem. In [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF], these constraints are added using z i jt variables (for i ∈

[m]1, j ∈ [n]1, t ∈ [2 p -1]0))
, where z i jt = 1 iff v i j is assigned to a stack of type t. Nevertheless these new O(mn2 p) variables prevent us to use [START_REF] Lenstra | Integer programming with a fixed number of variables[END_REF]. Thus, we now come back to the max 1 problem, and our objective is to express the constraints using only the {xt} variables.

Presentation of the new ILP for max 1

For any t ∈ [2 p -1]0, we define an integer variable xt ∈ [n]0 representing the number of stacks in configuration t. Let also ct ∈ [p]1 = c(Bt) be the number of 1 in configuration t. Definition 4. Given a profile P , an associated solution S is a solution such that P r(S) = P . We say that a profile P is feasible iff there exists an associated solution S that is feasible.

Notice that the definition of associated solutions also applies to a non feasible profile. In this case, any associated solution will also be non feasible.

Obviously, the max 1 problem can be formulated using the following ILP:

max 2 p -1 t=0 xtct subject to 2 p -1 t=0 xt = n ∀0 ≤ t < 2 p , xt ∈ N P = {xt}
is feasible Our objective is now to express the feasibility of a profile by using only these 2 p variables. Roughly speaking, the idea to ensure the feasibility is the following. Let us suppose (with p = 2 and n = 4 for example) that there exists a feasible solution of fixed profile x0 = 0, x1 = 1, x2 = 2, x3 = 1. Suppose also that the first set is as depicted in Figure 3. To create a feasible solution with this profile, we have to "satisfy" (for each set V i) the demands xt for all configurations t. For example in set 1, the demand x2 can be satisfied by using one vector in configuration 2 and one vector of configuration 3, and the demand 3 can be satisfied using the remaining vector of 3 (the demand x0 is clearly satisfied). Notice that a demand of a given configuration (e.g. configuration 2 here) can be satisfied using a vector that "dominates" this configuration (e.g. configuration 3 here). The notion of domination will be introduced in Definition 5. Thus, a feasible profile implies that for any set i there exists a perfect matching between the vectors of V i and the profile {xt}.

Let us now define more formally the previous ideas.

Definition 5 (Domination).

A p-dimensional vector v1 dominates a p-dimensional vector v2 (denoted by

v1 v2) iff ∀k ∈ [p]1, v2(k) = 1 ⇒ v1(k) = 1. 10 • 01 • 11 • 11 • V 1 P 01 • 10 • 10 • 11 • Fig. 3.
Example showing that satisfying demands of profile P with set 1 requires to find a perfect matching. Edges represent domination between configuration.

A configuration

t1 ∈ [2 p -1]0 dominates a configuration t2 ∈ [2 p -1]0 (denoted by t1 t2) iff Bt 1
Bt 2 (recall that Bt is the p-dimensional binary representation of t).

A solution S dominates a solution S (denoted by S S) iff ∃ a bijection φ :

[n]1 → [n]1 such that for any i ∈ [n]1, v s i
vs φ(i) (in other word, there is a one to one domination between stacks of S and stacks of S).

A profile P dominates a P (denoted by P P) iff there exists solutions S and S such that P r(S) = P , P r(S) = P and S S. Definition 6. For any i ∈ [m]1 and any t ∈ [2 p -1]0, let b i t be the number of vectors of set V i in configuration t. Definition 7 (Graph G i P). Let P be a profile not necessarily feasible. Let G i P = ((∆P , Λ i), E), where

Λ i = {λ i,l t , 0 ≤ t ≤ 2 p -1, 1 ≤ l ≤ b i t }, and ∆P = {δ l t , 0 ≤ t ≤ 2 p -1, 1 ≤ l ≤ xt}.
Let us fix a bijection f : ∆P ∪ Λ i → [2 p -1]0, that associates to each vertex λ i,l t and to each vertex δ l t the vector in configuration t. Λ i (resp. ∆P) represents the set of vectors of V i (resp. the demands of profile P) grouped according to their configurations. Notice that

|Λ i | = |∆P | = n. Finally, we set E = {{a, b}|a ∈ ∆P , b ∈ Λ i , f (a) f (b)}.
We are now ready to show the following proposition.

Proposition 1. For any profile P = {x0, . . . , x2p-1}, (∃P feasible, with P P) ⇔ ∀i ∈ [m]1, ∃a matching of size n in G i P Before starting the proof, notice that the simpler proposition "for any P , P feasible ⇔ ∀i ∈ [m]1, there is a matching of size n in G i P " does not hold. Indeed, ⇒ is correct, but ⇐ is not: consider P with x0 = n (recall that configuration 0 is the null vector), and an instance with nm "1 vectors" (containing only 1). In this case, there is a matching of size n in all the G i P , but P is not feasible. This explains the formulation of Proposition 1. An example of the correction formulation is depicted Figure 4.

Proof. Let P be a profile.

(⇒) Let P be a feasible profile that dominates P . Let S = {s1, . . . , sn} and S = {s 1 , . . . , s n } two solutions such that S is feasible, P r(S) = P , P r(S) = P (notice that S and P are not necessarily feasible), and S S. Without loss of generality, let us assume that ∀j, s j sj (i.e. the bijection φ of Definition 5 is the identity), and let us assume that for any j, s j = (v 1 j , . . . , v m j). Since v i j ∈ s j , then for any f (δj) creates another vector that dominates f (δj). Thus, S is feasible, and P r(S) P , and we set

1101 • λ 1,1 13 0110 • λ 1,1 6 1110 • λ 1,1 14 V 1 Λ 1 0101 • λ 3,1 5 1110 • λ 3,1 13 0110 • λ 3,1 6 V 3 Λ 3 0111 • λ 2,1 7 1111 • λ 2,1 15 1110 • λ 2,1 14 V 2
P = P r(S).
Now, we can use the famous Hall's Theorem to express the existence of a matching in every set.

Theorem 3 (Hall's Theorem

). Let G = ((V 1 , V 2), E) a bipartite graph with |V 1 | = |V 2 | = n. There is a matching of size n in G iff ∀σ ⊆ V 1 , |σ| ≤ |Γ (σ)|, where Γ (σ) = {v2 ∈ V 2 |∃v1 ∈ σ such that {v1, v2} ∈ E}.
Remark 1. Notice that we cannot use Hall's Theorem directly on graphs G i P , as we would have to add the 2 n constraints of the form ∀S ⊆ V i . However, we will reduce the number of constraints to a function f (p) by exploiting the particular structure of G i P . Proposition 2 (Matching in G i P).

∀i ∈ [m]1, ∀P = {x0, . . . , x2p-1}:

(∀σ ⊆ ∆P , |σ| ≤ |Γ (σ)|) ⇔ (∀σcfg ⊆ [2 p -1]0, t∈σ cf g xt ≤ t∈dom(σ cf g) b i t)
where dom(σcfg) = {t |∃t ∈ σcfg such that t t} is the set of configurations that dominate σcfg.

Proof. (⇒) Let

σcfg = {t1, . . . , tα}. Let σ = {δ l t i , 1 ≤ i ≤ α, 1 ≤ l ≤ xt i } be the vertices of ∆P corresponding to the demands in σcfg. Observe that t∈σ cf g xt = |σ|. Notice also that Γ (σ) = {λ i,l t , t ∈ dom(σ), 1 ≤ l ≤ b i t } by construction. Thus, |σ| ≤ |Γ (σ)| implies t∈σ cf g xt ≤ t∈dom(σ cf g) b i t . (⇐) Let σ ⊆ ∆P . ∀t ∈ [2 p -1]0, let Xt = {δ l t , 1 ≤ l ≤ xt}, let σt = σ Xt. Let σcfg = {t1, . . . , tα} = {t|σt = ∅}. Let X = t∈σ cf g {Xt}. Notice that |σ| ≤ |X| = t∈σ cf g xt.
Let us first prove that Γ (σ) = Γ (X). Γ (σ) ⊆ Γ (X) is obvious. Now, if there is a λ i,l t ∈ Γ (X), it means that there is a t ∈ σcfg such that λ i,l t ∈ Γ (Xt), and thus there exists l such that {δ l t , λ i,l t } ∈ E (which implies that t t). As σt = ∅, there exists l such that δ l t ∈ σt, and {δ l t , λ i,l t } ∈ E as t t.

Finally, the hypothesis with our set σcfg leads to

|σ| ≤ |X| = t∈σ cf g xt ≤ t∈dom(σ cf g) b i t = |Γ (X)| = |Γ (σ)|
Using Propositions 1 and 2, we can now write that for any profile P = {x0, . . . , x2p-1}:

∃P feasible, with

P P ⇔ ∀i, ∀σcfg ⊆ [2 p -1]0, t∈σ cf g xt ≤ t∈dom(σ cf g) b i t .
Thus, we use now the following ILP to describe the max 1 problem:

max 2 p -1 t=0 xtct subject to ∀i ∈ [m]1 : ∀σcfg ⊆ [2 p -1]0, t∈σ cf g xt ≤ t∈dom(σ cf g) b i t ∀t ∈ [2 p -1]0, xt ∈ N
This linear program has 2 p variables and (m2 2 p + 2 p) constraints. Thus, we can solve it using [START_REF] Lenstra | Integer programming with a fixed number of variables[END_REF] in time f (p)poly(n+m), we get that max 1 and min 0 are FPT parameterized by p. Using Property 2 this ILP leads to a p r -approximation algorithm for max 1 running in time f (r)poly(n + m).

Conclusion

In this article, we established that max 1 is O(m 1-ε) and O(p 1-ε) non-approximable for n = 2. On the positive side, we provided a FPT algorithm for max 1 leading to a p r -approximation algorithm running in O(f (r)poly(m + n)), which is the best we can hope for. The existence of a ρ(m)-approximation (typically m) algorithm remains open. arbitrary stacks (as these stacks use in each of the first m -1 set the set X of null vectors, the value of these stacks is zero). Thus, we get f 1 (S) = x.

Let us new check that "∀ solution S of max 1, ∃ solution S of max =0 of value fmax 1 (S) ≥ f =0(S). As any vector of set m has only one good bit (i.e.equal to 1), the profit of any stack of S is at most 1, and thus there is exactly x non null stacks {s1, . . . , sx} in S. By removing the vector in set m in each of these x stacks, we get x non null stacks of I . Finally, we complete the construction of S by creating arbitrarily the n -x remaining stacks, and we get f =0(S) ≥ x (notice that the value of S can be greater than x, as we could have a null stack si ∈ S whose restriction to the first (m -1) set is a non null stack of I).

Thus, we get Optmax =0 (I) = Optmax 1(I). As the previous reduction is polynomial, and as a solution of S of I can be translated back in polynomial time into a solution S of I with f =0(S) ≥ f 1 (S), we get the desired result.

We now prove that max =0 is harder than kDM. But first of all, let us recall the k Dimensional Matching problem. Theorem 2 (implicit in [START_REF] Dokka | Approximation algorithms for the wafer to wafer integration problem[END_REF]). For any ρ(m), any polynomial ρ(m)-approximation algorithm for max =0 can be converted into a polynomial ρ(k)-approximation algorithm for the kDM problem.

Proof. Let us consider an instance of kDM described by k sets Xi, 1 ≤ i ≤ k (where Xi are pairwise disjoint) such that |Xi| = n, and x k-tuple tl ∈ X1 × • • • × Xk, 1 ≤ l ≤ x. We denote by a j i , 1 ≤ j ≤ n the elements of set Xi. From this instance, we construct an instance of max =0 composed of k sets, each containing n vectors. The number of bits per vector is equal to x. Vector j of set i represents the set of k-tuple that use element a j i . Thus, we define v i j as a string of size x, where the k th bit is set to 1 iff a j i is used in tk. Thus, the k th bit of a stack is 1 iff each element of tuple k is selected (by selecting corresponding vector), and then iff tuple t belongs to solution of kDM instance. Notice that the value of any stack is at most 1, since a stack represents a tuple.

Fig. 1 .

 1 Fig. 1. Example of max 1 instance with m = 3, n = 4, p = 6 and of a feasible solution S of profit fΣ1(S) = 7.

 ln m) inapproximability for any ε, O(p 1-ε) and O(m 1-ε) inapproximability (even for n = 2) polynomial for fixed p p r -approximation in O(f (r)poly(n)) FPT/p min 0 for m = 3 : 4 3 -approximation, APX-hard FPT/p f (m)-approximation for general m polynomial for fixed p

k+1+ 3 in [2 Theorem 2 .

 322].Let us now consider a new reduction which provides results for n = 2 and according to parameter p. There is a strict reduction from Maximum Clique Problem to max max 1 for n = 2.

 Let us write f (S *) = p k=1 ak, where ak = |{s ∈ S * |vs(k) = 1}| is the number of stacks in S * that save position k. ∀k ∈ [p -1]0, let Xk = {k, . . . , (k + r -1) mod p}, and σk = t∈X k at. Notice that we have p k=1 σk = r p k=1 ak = rf (S *), as each value ak appears exactly r times in p k=1 σk. This implies maxk σk ≥ r p f (S *).

Definition 2 .

 2 A profile is a tuple P = {x0, . . . , x2p-1} such that 2 p -1 t=0 xt = n. Definition 3. The profile P r(S) = {x0, . . . , x2p-1} of a solution S = {s1, . . . , sn} is defined by xt = |{i|vs i is in configuration t}|, for t ∈ [2 p -1]0.

Fig. 4 .

 4 Fig. 4. Illustration of Proposition 1 with m = n = 3 and p = 4. Left: The three G i P graphs (edges are depicted by solid and dotted lines), and three matchings (in solid lines) corresponding to S . Right: Solution S s.t. P r(S) P .

 Inputk pairwise disjoint sets of n elements andx k-tuple tl ∈ X1 × • • • × Xk, 1 ≤ l ≤ x Output a set of disjoint k-tuplesObjective functionsmaximize the number of tuples in solution

 of Problems 2.

	Set of problems 2 max max 1 and max =0
	Input	m sets of n binary p-dimensional vectors
	Output	a set S of n disjoint stacks
	Objective functions	max max 1: maximize fmax 1(S) = max j∈[n] 1 c(vs j), the profit of the best stack max =0 : maximize f =0 (S) = |{j|c(vs j) ≥ 1}|, the number of non null stacks

 i, we know that v i Let us suppose that ∀i ∈ [m]1, there is a matching M i of size n in G i P . W.l.o.g.let us rename {δ1, . . . , δn} the vertices of ∆P , and {λ i 1 , . . . , λ i n } the vertices of Λ i such that for any i, M i = {{λ i Let us define S = {s1, . . . , sn}, where ∀j ∈ [n]1,

	j	s j	sj, ∀j ∈ [n]1. This implies a matching of
	size n in all the graphs G i P .		
	(⇐) 1 , δ1}, . . . , {λ i n , δn}}. This implies
	f (λ i 1) f (δn). sj = (f (λ 1 f (δ1), . . . , f (λ i n) j), . . . , f (λ m j)). Notice that for any j, sj	f (δj), as all the f (λ i j)	f (δj),
	and combining two vectors f (λ i 1 j)		f (δj) and f (λ i 2 j)

The notation [n]j stands for {j, . . . , n}.

A Reduction from kDM

In this section, we provide the reductions proving that max 1 is harder than max =0 and that max =0 is even harder than kDM. Observation 2 There exists a strict reduction from max =0 to max 1.

Proof. Consider an instance I [m , n , p] of max =0. We construct an instance I[m, n, p] of max 1 as follows. The number of components of each vector is left unchanged (p = p), the number of vectors per set is multiplied by p (n = n p) and the number of sets is increased by one (m = m + 1). ∀j = 1, . . . , m , the sets V j are constructed as follows: V i = V i X, where X contains n -n null vectors, and V m +1 contains n times the following sets of vectors (this is the reason why n = n p): {1000 . . . 000 p=p , 0100 . . . 000, 0010 . . . 000, . . . , 0000 . . . 010, 0000 . . . 001}

As an example, the following instance

is turned into the following one I [START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF][START_REF] Niedermeier | Invitation to fixed-parameter algorithms[END_REF][START_REF] Dokka | Multi-dimensional vector assignment problems[END_REF] of max 1:

Informally, as the set V m of I turns any non zero stack of I into a stack of value 1 (by choosing an appropriate vector), maximizing the total number of 1 in I requires to maximize the number of non null stacks in I . Let us check first that "∀ solution S of max =0, ∃ solution S of max 1 of value f 1 (S) = f =0(S)". Let {s 1 , . . . , s x } be the x non null stacks of S , and {s x+1 , . . . , s n } be the null stacks of S . Let us now construct S. For any i, 1 ≤ i ≤ x, let ki be a non null bit in s i . We extend s i to a stack si by adding a vector v m j of set m such that v m j (ki) = 1. Notice that such a vector always exists as for any position k, 1 ≤ k ≤ p there are n wafers in set m whose bit in position k is equal to 1. Thus, even if the x stacks of S have the same non null position k, the previous construction is possible. Finally, the n -x remaining null stacks of S are extended arbitrarily, and we complete the construction of S by adding n -n