
HAL Id: lirmm-01110027
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01110027v1

Submitted on 28 Jan 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of Wafer-to-Wafer Integration
Guillerme Duvillié, Marin Bougeret, Vincent Boudet, Trivikram Dokka,

Rodolphe Giroudeau

To cite this version:
Guillerme Duvillié, Marin Bougeret, Vincent Boudet, Trivikram Dokka, Rodolphe Giroudeau. On the
complexity of Wafer-to-Wafer Integration. [Research Report] LIRMM. 2015. �lirmm-01110027�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01110027v1
https://hal.archives-ouvertes.fr

On the complexity of Wafer-to-Wafer Integration

G. Duvillié1, M. Bougeret1, V. Boudet1,
T. Dokka2, R. Giroudeau1

1 LIRMM, Université Montpellier 2, France
{guillerme.duvillie,vincent.boudet,marin.bougeret,rodolphe.giroudeau}@lirmm.fr,

2 Dept. of Management Science, Lancaster University
t.dokka@lancaster.ac.uk

Abstract. In this paper we consider the Wafer-to-Wafer Integration
problem. A wafer is a p-dimensional binary vector. The input of this
problem is described by m disjoints sets (called "lots"), where each set
contains n wafers. The output of the problem is a set of n disjoint stacks,
where a stack is a set ofm wafers (one wafer from each lot). To each stack
we associate a p-dimensional binary vector corresponding to the bit-wise
AND operation of the wafers of the stack. The objective is to maximize
the total number of "1" in the n stacks. We provide O(m1−ε) and O(p1−ε)
non-approximability results even for n = 2, as well as a p

r
-approximation

algorithm for any constant r. Finally, we show that the problem is FPT
when parameterized by p, and we use this FPT algorithm to improve
the running time of the p

r
-approximation algorithm.

1 Introduction

1.1 Problem definition

In this paper we consider Wafer-to-Wafer Integration problems. In these prob-
lems, we are given m disjoint sets V 1 . . . V m, where each set V i contains n binary
p-dimensional vectors. For any j ∈ [n]1

1, and any i ∈ [m]1, we denote by vij the
jth vector of set V i, and for any k ∈ [p]1 we denote by vij(k) ∈ {0, 1} the kth

component of vij.
Let us now define the output. A stack s = (vs1, . . . , v

s
m) is an m−tuple of

vectors such that vsi ∈ V i, for any i ∈ [m]1. An output of the problem is a set
S = {s1, . . . , sn} of n stacks such that for any i and j, vector vij is contained
exactly in one stack. An example of input and output is depicted in Figure 1.

These problems are motivated by an application in IC manufacturing in
semiconductor industry, see [9] for more details about this application. A wafer
can be seen as a string of bad dies (0) and good dies (1). Integrating two wafers
corresponds to superimposing the two corresponding strings. In this operation,
a position in the merged string is only ’good’ when the two corresponding dies
are good, otherwise it is ’bad’. The objective of Wafer-to-Wafer Integration is to
form n stacks, while maximizing the overall quality of the stacks (depending on
the objective function).

1 The notation [n]j stands for {j, . . . , n}.

2

Let us now define several objective functions, and the corresponding opti-
mization problems. We consider the operator ∧ which maps two p-dimensional
vectors to another one by performing the logical and operation on each compo-
nent of entry vectors. More formally, given two p−dimensional vectors u and v,
we define u∧v = (u(1)∧v(1), u(2)∧v(2), . . . , u(p)∧v(p)). We associate to any stack
s = (vs1, . . . , v

s
m) a binary p-dimensional vector vs =

∧m

i=1
vsi . Then, the profit of a

stack s is given by c(vs), where c(v) =
∑p

k=1
v(k). Roughly speaking, the profit of

a stack is the number of good bits in the stack, where a good bit (in position k)
survives iff all the vectors of the stack have a good bit in position k.

V 1 V 2 V 3 S

001101

110111

011101

111101

110010

010101

110011

010101

110110

010110

010011

001111

110010

000000

010001

000101

vs1

vs2

vs3

vs4

c(vs1) = 3

c(vs2) = 0

c(vs3) = 2

c(vs4) = 2

s1

s2

s3

s4

Fig. 1. Example of max
∑

1 instance withm = 3, n = 4, p = 6 and of a feasible solution
S of profit fΣ1(S) = 7.

We are now ready to define two following optimization problems:

Set of problems 1 max
∑

1 and min
∑

0

Input m sets of n binary p-dimensional vectors

Output a set S of n disjoint stacks
Objective
functions

max
∑

1: maximize f∑ 1(S) =
∑n
j=1 c(vsj), the total number of good bits

min
∑

0: minimize f∑ 0(S) = np−
∑n
j=1 c(vsj), the number of bad bits

Instance of these problems will be denoted by I[m,n, p]. The notation f(S)

(instead of f∑ 0(S), f∑ 1(S), . . .) will be used when the context is non ambiguous.

1.2 Related work

In this paper we consider results in the framework of approximation and fixed pa-
rameter tractability theory. We only briefly recall the definitions here and refer
the reader to [8,10] for more information. For any ρ > 1, a ρ-approximation
algorithm A (for a maximization problem) is such that for any instance I,
A(I) ≥ Opt(I)

ρ
, where Opt(I) denotes the optimal value. The input of a para-

meterized (decision) problem Π is a couple (X,κ), where X ⊆ Σ∗ is a classical
decision problem, and κ : Σ∗ −→ N is a parameterization. Deciding Π requires
to determine for any instance I ∈ Σ∗ if I ∈ X. Finally, we say that an algorithm
A decides Π in FPT time (or that Π is FPT parameterized by κ) iff there ex-
ists a computable function f and a constant c such that for any I, A(I) runs in
O(f(κ(I))|I|c).

3

The max
∑

1 problem was originally defined in [9] as the “yield maximization
problem in wafer-to-wafer 3-D integration technology”. Authors of [9] point out
that "the classical NP-hard 3-D matching problem is reducible to the max

∑
1

problem". However, they do not provide the reduction and they only conclude
that max

∑
1 is NP-hard without stating consequences on the approximability.

They also notice that max
∑

1 is polynomial for m = 2 (as it reduces to finding
a maximum profit perfect matching in a bipartite graph, solved by Hungarian
Method), and design the "iterative matching heuristic" (IMH) that computes a
solution based on (2D) matchings.

In [3] and [4] we investigated the min
∑

0 problem by providing a 4

3
- ap-

proximation algorithm for m = 3 and several f(m)-approximation algorithms
for arbitrary m (and for a more general profit function c). Furthermore, we
also noticed in [3] that the natural ILP formulation implied that min

∑
0 and

max
∑

1 are polynomial for fixed p. Concerning negative results, the implicit
straightforward reduction from k-Dimensional Matching in [3] and made ex-
plicit in Appendix A, shows that min

∑
0 is NP-hard, and max

∑
1 is O(m

lnm
)

non-approximable. The more complex reduction of [4] shows that min
∑

0 is
APX-hard even for m = 3, and thus is very unlikely to admit a PTAS.

[9] [3], [4] This paper

max
∑

1 NP-hard
O(m

lnm) inapproximability for any ε, O(p1−ε) and O(m1−ε)
inapproximability (even for n = 2)

polynomial for fixed p
p
r -approximation in O(f(r)poly(n))

FPT/p

min
∑

0
for m = 3 : 4

3 -approximation, APX-hard

FPT/pf(m)-approximation for general m
polynomial for fixed p

Table 1. Overview of results on Wafer-to-Wafer Integration

1.3 Contributions

In this paper we mainly study the max
∑

1 problem, with a particular focus on
parameter p. We prove in Subsection 2.2 that even for n = 2, for any ε, there is no
ρ(m, p)-approximation algorithm for max

∑
1 such that ρ(x, x) = O(x1−ε) unless

P = NP (this implies in particular no O(p1−ε) and no O(m1−ε) ratios). These
negative results show that the simple p-approximation presented in Section 3.1
is somehow the best ratio we can hope for. Nevertheless, looking for better
positive results we focus on p

r
-approximation algorithm for any constant r. It

turns out that any O(f(n,m, p)) exact algorithm for max
∑

1 can be used to
derive a p

r
-approximation in O(p × f(n,m, r)). This motivates our main result:

determining the complexity of the max
∑

1 problem when parameterized by p.
The natural ILP in [4] implied that max

∑
1 (and min

∑
0) is polynomial for fixed

p. In Section 3.2, we improve this result by showing that max
∑

1 (and min
∑

0)
are FPT parameterized by p.

4

2 Negative Results

In order to obtain negative results for max
∑

1, let us first introduce two related
problems defined in the table Set of Problems 2.

Set of problems 2 max max 1 and max 6=0

Input m sets of n binary p-dimensional vectors
Output a set S of n disjoint stacks

Objective
functions

max max 1: maximize fmax 1(S) = maxj∈[n]1 c(vsj), the profit of the best
stack
max 6=0: maximize f 6=0(S) = |{j|c(vsj) ≥ 1}|, the number of non null stacks

Roughly speaking, we will see that approximating max
∑

1 is harder than
approximating these two problems, and that these problems are themselves non-
approximable.

To show that approximability is preserved we will provide strict reductions [1]
noted S-reductions. Indeed, if there is a strict reduction from Π1 to Π2, then any
polynomial ρ-approximation for Π2 yields to a ρ-approximation for Π1. Notice
that in the following we will rather provide reductions as defined in the following
property.
Property 1 Let Π1 and Π2 be two maximization problems with their given objec-
tive functions m1 and m2. Let f be a polynomial function that given any instance
x of Π1 associate an instance f(x) of Π2. Let g be a polynomial function that
given any instance x of Π1, and feasible solution S2 of f(x), associates a feasible
solution g(x, S2) of Π1. If f and g verify the two following conditions:

1. Opt(x) = Opt(f(x))

2. m1(g(x, S2)) ≥ m2(f(x))

then (f, g) is a strict reduction.

2.1 Relation between max 6=0, maxmax 1 and max
∑

1

Observation 1 There exists a strict reduction from max max 1 to max
∑

1.

Proof. Let us construct (f, g) as in Property 1. Consider an instance I ′[m′, n′, p′]
of max max 1. We construct an instance I[m,n, p] of max

∑
1 as follows: we set

p = p′, n = n′, m = m′ + 1. The m′ sets of I ′[m′, n′, p′] remain unchanged in
I[m,n, p]: ∀i ∈ [m′]1, V

i = V ′i and the last set V m′+1 contains (n − 1) "zero
vectors" (i.e. vectors having only 0) and one "one vector" (i.e. vector having
only 1).

Informally, the set V m′+1 of I behaves like a selecting mask: since all stacks
except one are turned into zero stacks when assigning the vectors of last set,
the unique “one vector” of set V m′+1 must be assigned to the best stack, and
maximizing the sum of the stacks is equivalent to maximizing the best stack.

5

More precisely, it is straightforward to see that the following statement is
true: ∀x, ∃ solution S′ of max max 1 of value fmax 1(S′) = x ⇔ ∃ solution S of
max

∑
1 of value f∑ 1(S) = x. Thus, we get Optmaxmax 1(I ′) = Optmax

∑
1(I). As the

previous reduction is polynomial, and a solution of I ′ can be deduced from a
solution of I in polynomial time, we get the desired result. ut

Observation 2 There exists a strict reduction from max 6=0 to max
∑

1.
We refer the reader to Appendix A for the reduction proving this lemma.
According to Observations 1 and 2, any non-approximability result for max 6=0

or max max 1 will transfer to max
∑

1. This motivates the next section.

2.2 Hardness of max 6=0 and maxmax 1

The reduction from k-Dimensional Matching (kDM) provided in [3] can be
adapted to max

∑
1 instead of min

∑
0 as shown in Appendix A Unlike the case

of min
∑

0, the reduction preserves approximability:

Theorem 1 (implicit in [3]). There is a strict reduction from kDM to max 6=0.

As it is NP-hard to approximate kDM to a factor O(k

ln(k)
) [5], we get the

following corollary:

Corollary 1. It is NP-hard to approximate max 6=0 within a factor O(m

ln(m)
).

We can also notice that any m

r
-approximation ratio (for a constant r ≥ 3) for

max6=0 or max
∑

1 would improve the currently best known ratio for kDM set to
k+1+ε

3
in [2].

Let us now consider a new reduction which provides results for n = 2 and
according to parameter p.

Theorem 2. There is a strict reduction from Maximum Clique Problem to
max max 1 for n = 2.

Proof. Let us construct (f, g) as in Property 1. Let us consider an instance
G = (V,E) of the Maximum Clique Problem. The corresponding instance
of max max 1 is constructed as follows. We consider m = |V | sets, each having
two vectors. All the vectors have p = |V | bits. For each vertex i of V , we cre-
ate the set V i = (vi1, v

i
2). For any i, we define vi1 = (vi1(1), vi1(2), . . . , vi1(p)), where

vi1(k) = 1 iff {i, k} ∈ E or i = k, and vi2 = (vi2(1), vi2(2), . . . , vi2(p)), where vi2(k) = 1

iff i 6= k. In other words, vi1 corresponds to the ith row of the adjacency matrix
of G, with a self loop.

The idea is that selecting vi1 corresponds to selecting vertex i in graph, and
selecting vi2 will turn the ith component to 0, which corresponds to a penalty for
not choosing vertex i.

We first need to state an intermediate lemma. For any stack s = {vs1, . . . , vsm},
let Xs = {i|vsi = vi1} be the associated set of vertices in G. Recall that vs is the p
dimensional vector representing s.

Lemma 1. ∀i ∈ [p]1, vs(i) = 1⇔ ((i ∈ Xs) and (∀x ∈ Xs \ i, {x, i} ∈ E)).

6

M Let us first prove Lemma 1. Suppose ith component of vs is 1. This implies
that vi1 ∈ s, and thus i ∈ Xs. Now, suppose by contradiction that ∃x ∈ Xs \ i
such that {x, i} /∈ E. x ∈ Xs implies that vx1 ∈ s. Moreover, vs(i) = 1 implies that
vx1 (i) = 1, and thus {x, i} ∈ E, which leads to a contradiction. Suppose now that
i ∈ Xs, and ∀x ∈ Xs \ i, {x, i} ∈ E. Let us prove that ∀i′, vsi′(i) = 1. Notice first
that for i′ = i we have vsi (i) = vi1(i) = 1. Moreover, ∀i′ 6= i such that i′ /∈ Xs we
have vsi′(i) = vi

′
2 (i) = 1. Finally, ∀i′ 6= i such that i′ ∈ Xs, we have vsi′(i) = vi

′
1 (i) = 1

as {i′, i} ∈ E. M

It is now straightforward to prove that ∀x, "∃ solution S for max max 1 of
value fmax 1(S) = x ⇔ ∃ a clique X in G of size x." Indeed, suppose first that we
have a solution S such that fmax 1(S) = x. Let s = (vs1, . . . , v

s
m) be the stack in S of

value x, and let Gs = {k|vs(k) = 1} be the set of good bits of s. We immediately
get that the vertices corresponding to Gs form a clique in G, as ∀i and j ∈ Gs
the previous property implies that i ∈ Xs, j ∈ Xs, and thus {i, j} ∈ E. Suppose
now that there is a clique X∗ in G, and let s be a stack such that Xs = X∗. The
previous property implies that ∀i ∈ Xs, vs(i) = 1.

Thus, Optmaxmax 1(I) is equal to the size of the maximum clique in G. As the
previous reduction is polynomial, and as a solution of S of I can be translated
back in polynomial time into the corresponding clique in G (of same size), we
get the desired result. ut

As for any ε there is no O(|V |1−ε)-approximation for Maximum Clique Prob-
lem (with set of vertices V) unless P=NP [11], we get the following corollary:

Corollary 2. Even for n = 2, for any ε, there is no ρ(m, p)-approximation such
that ρ(x, x) = O(x1−ε) for max max 1 and thus for max

∑
1. Notice that in particu-

lar, O(p1−ε) and O(m1−ε) are not possible, but for example (pm)
1
2 is not excluded.

To summarize, the main negative results for max
∑

1 are no O(p1−ε)-approx-
imation and no O(m1−ε) approximation for n = 2, and no O(m

lnm
)-approximation

for arbitrary n (using the reduction from k-Dimensional Matching of [4]).
Notice that it does not seem obvious to adapt the previous reductions to pro-
vide the same non-approximability results for min

∑
0. Thus, the question of

improving the f(m) ratios provided in [4] is still open.

3 Positive Results

In this Section, we develop some polynomial-time approximation algorithm for
max

∑
1. Then, we show that max

∑
1 and min

∑
0 are FPT parameterized by p.

3.1 p

r
-approximation

Given the previous negative results, it seems natural to look for ratio p

r
, where

r is a constant. Let us first see how to achieve a ratio p with Algorithm 1.

Property 1. Algorithm 1 is a p-approximation algorithm for max
∑

1.

7

Algorithm 1: p-approximation for max
∑

1

x = 0;
while ∃k such that it is possible to create a stack s such that vs(k) = 1 do

Add s to the solution;
x = x+ 1;

if x < n then
Add n− x arbitrary (null) stacks to the solution;

Proof. Let S = S 6=0

⋃
S0 be the solution computed by the algorithm, where S6=0 is

the set of non zero stacks, and S0 is the set of the remaining null stacks. Since S6=0

and S0 are disjoint, we have S0 = S \S6=0. Let n1 = |S 6=0|, and ∀i, let V
′i = V i

⋂
S0.

Let n2 = |S0| = |V
′i| (all the V ′i have the same size). Notice that n = n1 + n2.

As the algorithm cannot create any non null stack at the end of the loop,
we know that for any position k ∈ [p]1, there is a set i(k) such for any vector
w ∈ V

′i(k), w(k) = 0. In other words, we can say that there is a column of n2

zeros in set V ′i(k). Notice there may be several columns of zeros in a given set.
Thus, we deduce that there are at least p columns (of n2 zeros) in the vectors of
V
′i(k). Moreover, as none of these zeros can be matched in a solution, we know

that these n2p zeros will appear in any solution.
Thus, given S∗ an optimal solution, we have f(S∗) ≤ np − n2p = n1p. As

f(S) ≥ n1, we get the desired result. ut

Given a fixed integer r (and targeting a ratio p

r
), a natural way to extend

Algorithm 1 is to first look for r t-tuples (i.e. find (k1, . . . , kr) such that it is
possible to create s such that vs(k1) = · · · = vs(kr) = 1)), then (r− 1) t-tuple, etc.
However, even for r = 2 this algorithm is not sufficient to get a ratio p

2
, as shown

by the example depicted in Figure2.

V 1 V 2 V 3 V 4 V 5 V 6 S

011 011 101 111 111 111 001

101 110 110 011 101 110 010

011 011 101 011 101 110 100

Fig. 2. Counter-example showing that Algorithm 1 for r = 2 remains a p-
approximation. The depicted stacks correspond to an optimal solution of profit 3
whereas the algorithm outputs a solution of profit 1.

In this example it is not possible to create any stack of value strictly greater
than 1 since set V 1 kills positions {1, 2} (we say that a set kills positions {k1, k2}
iff there is no vector in the set such that w(k1) = w(k2) = 1), set V 2 kills positions
{1, 3}, and set V 3 kills positions {2, 3}.

Thus, in this case (and more generally when no stack of value greater than
1 can be created), the solution computed by the algorithm for r = 2 is the
same as one computed by Algorithm 1. In the worst case, the algorithm creates
only one stack of value 1 (by choosing the first vector of each set). However, as
depicted in Figure 2, the optimal value is 3, and thus the ratio p

2
is not verified.

8

In other words, knowing that no stack of profit 2 can be created does not provide
better results for Algorithm 1. This motivates the different approach we follow
hereafter.

Property 2. Suppose that there exists an exact algorithm for max
∑

1 running
in f(n,m, p). Then, for any r ∈ [p]1 we have a p

r
-approximation running in O(p×

f(n,m, r)).

Proof. The idea is to use a classical “shifting technique” by guessing the subset
of the r most valuable consecutive positions in the optimal solution, and run the
exact algorithm on these r positions.

Let S∗ be an optimal solution for max
∑

1. Let us write f(S∗) =
∑p

k=1
ak,

where ak = |{s ∈ S∗|vs(k) = 1}| is the number of stacks in S∗ that save position
k. ∀k ∈ [p−1]0, let Xk = {k, . . . , (k+ r−1) mod p}, and σk =

∑
t∈Xk

at. Notice that
we have

∑p

k=1
σk = r

∑p

k=1
ak = rf(S∗), as each value ak appears exactly r times

in
∑p

k=1
σk. This implies maxk σk ≥ r

p
f(S∗).

For any k, let Ik be the restricted instance where all the vectors are truncated
to only keep positions in Xk (there are still nm vectors in Ik, but each vector is
now a r dimensional vector). By running the exact algorithm on all the Ik and
keeping the best solution, we get a p

r
-approximation running in O(pf(n,m, r)).

ut

The previous lemma motivates the exact resolution of max
∑

1 in polynomial-
time for fixed p. It is already proved in [4] that min

∑
0 can be solved in O(m(n2p)).

As this result also apply to max
∑

1, we get a p

r
-approximation running in

O(pm(n2r)), for any r ∈ [p]1. Our objective is now to improve this running time
by showing that max

∑
1 (and min

∑
0) are even FPT parameterized by p (and

not only polynomial for fixed p).

3.2 Faster algorithm for fixed p for max
∑

1

Definition 1. For any t ∈ [2p − 1]0, we define configuration t as Bt: the p-
dimensional binary vector that represents t in binary. We say that a p-dimensional
vector v is in configuration t iff v = Bt.

First ideas to get an FPT algorithm
Let us first recall our previous algorithm in [4] for fixed p. This result is ob-

tained using an integer linear programming formulation of the following form.
The objective function is min

∑2p−1

t=0
xtc̄t (recall that in [4] the considered ob-

jective function is min
∑

0), where xt ∈ [n]0 is an integer variable representing
the number of stacks in configuration t, and c̄t ∈ [p]0 is the number of 0 in
configuration t.

This is a good starting point to get an FPT algorithm. Indeed, if we note
nvar (resp. mctr) the number of variables (resp. number of constraints) of an ILP,
for any A ∈ Qnvar×mctr , b ∈ Qmctr , the famous algorithm of Lenstra [7] allows us
to decide the feasibility of an ILP, under the form ∃?x ∈ Znvar |Ax ≤ b, in time
O(Cn

3
varmO(1)

ctr) (this running time is given in [6]), where C is a constant. Thus, to
get an FPT algorithm parameterized by p, it is sufficient to write min

∑
0 (and

max
∑

1) as an ILP using f(p) variables.

9

However, it remains now to add constraints that represent the min
∑

0 prob-
lem. In [4], these constraints are added using zijt variables (for i ∈ [m]1, j ∈ [n]1, t ∈
[2p− 1]0)), where zijt = 1 iff vij is assigned to a stack of type t. Nevertheless these
new O(mn2p) variables prevent us to use [7]. Thus, we now come back to the
max

∑
1 problem, and our objective is to express the constraints using only the

{xt} variables.

Presentation of the new ILP for max
∑

1

For any t ∈ [2p − 1]0, we define an integer variable xt ∈ [n]0 representing the
number of stacks in configuration t. Let also ct ∈ [p]1 = c(Bt) be the number of 1

in configuration t.

Definition 2. A profile is a tuple P = {x0, . . . , x2p−1} such that
∑2p−1

t=0
xt = n.

Definition 3. The profile Pr(S) = {x0, . . . , x2p−1} of a solution S = {s1, . . . , sn}
is defined by xt = |{i|vsi is in configuration t}|, for t ∈ [2p − 1]0.

Definition 4. Given a profile P , an associated solution S is a solution such
that Pr(S) = P . We say that a profile P is feasible iff there exists an associated
solution S that is feasible.

Notice that the definition of associated solutions also applies to a non feasible
profile. In this case, any associated solution will also be non feasible.

Obviously, the max
∑

1 problem can be formulated using the following ILP:

max

2p−1∑
t=0

xtct subject to
2p−1∑
t=0

xt = n

∀0 ≤ t < 2p, xt ∈ N
P = {xt} is feasible

Our objective is now to express the feasibility of a profile by using only these
2p variables. Roughly speaking, the idea to ensure the feasibility is the following.
Let us suppose (with p = 2 and n = 4 for example) that there exists a feasible
solution of fixed profile x0 = 0, x1 = 1, x2 = 2, x3 = 1. Suppose also that the first
set is as depicted in Figure 3. To create a feasible solution with this profile,
we have to “satisfy” (for each set V i) the demands xt for all configurations t.
For example in set 1, the demand x2 can be satisfied by using one vector in
configuration 2 and one vector of configuration 3, and the demand 3 can be
satisfied using the remaining vector of 3 (the demand x0 is clearly satisfied).
Notice that a demand of a given configuration (e.g. configuration 2 here) can be
satisfied using a vector that “dominates” this configuration (e.g. configuration
3 here). The notion of domination will be introduced in Definition 5. Thus, a
feasible profile implies that for any set i there exists a perfect matching between
the vectors of V i and the profile {xt}.

Let us now define more formally the previous ideas.

Definition 5 (Domination).
A p-dimensional vector v1 dominates a p-dimensional vector v2 (denoted by

v1 � v2) iff ∀k ∈ [p]1, v2(k) = 1⇒ v1(k) = 1.

10

10 •

01 •

11 •

11 •

V 1 P

01•

10•

10•

11•

Fig. 3. Example showing that satisfying demands of profile P with set 1 requires to
find a perfect matching. Edges represent domination between configuration.

A configuration t1 ∈ [2p− 1]0 dominates a configuration t2 ∈ [2p− 1]0 (denoted
by t1 � t2) iff Bt1 � Bt2 (recall that Bt is the p-dimensional binary representation
of t).

A solution S′ dominates a solution S (denoted by S′ � S) iff ∃ a bijection
φ : [n]1 → [n]1 such that for any i ∈ [n]1, vs′

i
� vsφ(i) (in other word, there is a

one to one domination between stacks of S′ and stacks of S).
A profile P ′ dominates a profile P (denoted by P ′ � P) iff there exists solu-

tions S′ and S such that Pr(S′) = P ′, P r(S) = P and S′ � S.

Definition 6. For any i ∈ [m]1 and any t ∈ [2p − 1]0, let bit be the number of
vectors of set V i in configuration t.

Definition 7 (Graph GiP).
Let P be a profile not necessarily feasible. Let GiP = ((∆P , Λ

i), E�), where
Λi = {λi,lt , 0 ≤ t ≤ 2p − 1, 1 ≤ l ≤ bit}, and ∆P = {δlt, 0 ≤ t ≤ 2p − 1, 1 ≤ l ≤ xt}.
Let us fix a bijection f : ∆P ∪ Λi 7→ [2p − 1]0, that associates to each vertex λi,lt
and to each vertex δlt the vector in configuration t. Λi (resp. ∆P) represents the
set of vectors of V i (resp. the demands of profile P) grouped according to their
configurations. Notice that |Λi| = |∆P | = n. Finally, we set E� = {{a, b}|a ∈
∆P , b ∈ Λi, f(a)� f(b)}.

We are now ready to show the following proposition.

Proposition 1. For any profile P = {x0, . . . , x2p−1},

(∃P ′ feasible, with P ′ � P)⇔ ∀i ∈ [m]1, ∃a matching of size n in GiP

Before starting the proof, notice that the simpler proposition “for any P , P
feasible ⇔ ∀i ∈ [m]1, there is a matching of size n in GiP ” does not hold. Indeed,
⇒ is correct, but ⇐ is not: consider P with x0 = n (recall that configuration
0 is the null vector), and an instance with nm "1 vectors" (containing only 1).
In this case, there is a matching of size n in all the GiP , but P is not feasible.
This explains the formulation of Proposition 1. An example of the correction
formulation is depicted Figure 4.

Proof. Let P be a profile.
(⇒) Let P ′ be a feasible profile that dominates P . Let S = {s1, . . . , sn} and

S′ = {s′1, . . . , s′n} two solutions such that S′ is feasible, Pr(S) = P , Pr(S′) = P ′

(notice that S and P are not necessarily feasible), and S′ � S. Without loss of
generality, let us assume that ∀j, s′j � sj (i.e. the bijection φ of Definition 5 is
the identity), and let us assume that for any j, s′j = (v1

j , . . . , v
m
j). Since vij ∈ s′j,

11

1101 •λ1,1
13

0110 •λ1,1
6

1110 •λ1,1
14

V 1 Λ1

0101•λ3,1
5

1110•λ3,1
13

0110•λ3,1
6

V 3Λ3

0111

•
λ2,1
7

1111

•
λ2,1
15

1110

•
λ2,1
14

V 2

Λ2

1010

•
δ110

0110

•
δ16

0101

•
δ15

P

∆P

1101

0110

1110

V 1

0101

1110

0110

V 2

0111

1111

1110

V 3

0110

0101

1110

Pr(S′)

1010�

0110�
0101�

P

Fig. 4. Illustration of Proposition 1 with m = n = 3 and p = 4. Left: The three GiP
graphs (edges are depicted by solid and dotted lines), and three matchings (in solid
lines) corresponding to S′. Right: Solution S′ s.t. Pr(S′)� P .

then for any i, we know that vij � s′j � sj, ∀j ∈ [n]1. This implies a matching of
size n in all the graphs GiP .

(⇐) Let us suppose that ∀i ∈ [m]1, there is a matching Mi of size n in GiP .
W.l.o.g.let us rename {δ1, . . . , δn} the vertices of ∆P , and {λi1, . . . , λin} the

vertices of Λi such that for any i, Mi = {{λi1, δ1}, . . . , {λin, δn}}. This implies
f(λi1)� f(δ1), . . . , f(λin)� f(δn). Let us define S = {s1, . . . , sn}, where ∀j ∈ [n]1,
sj = (f(λ1

j), . . . , f(λmj)). Notice that for any j, sj � f(δj), as all the f(λij)� f(δj),
and combining two vectors f(λ

i1
j) � f(δj) and f(λ

i2
j) � f(δj) creates another

vector that dominates f(δj). Thus, S is feasible, and Pr(S) � P , and we set
P ′ = Pr(S). ut

Now, we can use the famous Hall’s Theorem to express the existence of a
matching in every set.

Theorem 3 (Hall’s Theorem). Let G = ((V 1, V 2), E) a bipartite graph with
|V 1| = |V 2| = n. There is a matching of size n in G iff ∀σ ⊆ V 1, |σ| ≤ |Γ (σ)|,
where Γ (σ) = {v2 ∈ V 2|∃v1 ∈ σ such that {v1, v2} ∈ E}.

Remark 1. Notice that we cannot use Hall’s Theorem directly on graphs GiP , as
we would have to add the 2n constraints of the form ∀S ⊆ V i. However, we will
reduce the number of constraints to a function f(p) by exploiting the particular
structure of GiP .

Proposition 2 (Matching in GiP).
∀i ∈ [m]1, ∀P = {x0, . . . , x2p−1}:

(∀σ ⊆ ∆P , |σ| ≤ |Γ (σ)|) ⇔ (∀σcfg ⊆ [2p − 1]0,
∑

t∈σcfg
xt ≤

∑
t∈dom(σcfg)

bit) where
dom(σcfg) = {t′|∃t ∈ σcfg such that t′ � t} is the set of configurations that domi-
nate σcfg.

Proof. (⇒) Let σcfg = {t1, . . . , tα}. Let σ = {δlti , 1 ≤ i ≤ α, 1 ≤ l ≤ xti} be the
vertices of ∆P corresponding to the demands in σcfg. Observe that

∑
t∈σcfg

xt =

|σ|. Notice also that Γ (σ) = {λi,lt , t ∈ dom(σ), 1 ≤ l ≤ bit} by construction. Thus,
|σ| ≤ |Γ (σ)| implies

∑
t∈σcfg

xt ≤
∑

t∈dom(σcfg)
bit.

(⇐) Let σ ⊆ ∆P . ∀t ∈ [2p − 1]0, let Xt = {δlt, 1 ≤ l ≤ xt}, let σt = σ
⋂
Xt. Let

σcfg = {t1, . . . , tα} = {t|σt 6= ∅}. Let X =
⋃
t∈σcfg

{Xt}. Notice that |σ| ≤ |X| =∑
t∈σcfg

xt.
Let us first prove that Γ (σ) = Γ (X). Γ (σ) ⊆ Γ (X) is obvious. Now, if there

is a λi,l
′

t′ ∈ Γ (X), it means that there is a t ∈ σcfg such that λi,l′
t′ ∈ Γ (Xt), and

12

thus there exists l such that {δlt, λi,l
′

t′ } ∈ E (which implies that t′ � t). As σt 6= ∅,
there exists l′ such that δl′t ∈ σt, and {δl

′
t , λ

i,l′

t′ } ∈ E as t′ � t.
Finally, the hypothesis with our set σcfg leads to

|σ| ≤ |X| =
∑

t∈σcfg
xt ≤

∑
t∈dom(σcfg)

bit = |Γ (X)| = |Γ (σ)|

ut
Using Propositions 1 and 2, we can now write that for any profile P =

{x0, . . . , x2p−1}:

∃P ′ feasible, with P ′ � P ⇔ ∀i,∀σcfg ⊆ [2p − 1]0,
∑

t∈σcfg

xt ≤
∑

t∈dom(σcfg)

bit.

Thus, we use now the following ILP to describe the max
∑

1 problem:

max

2p−1∑
t=0

xtct

subject to ∀i ∈ [m]1 : ∀σcfg ⊆ [2p − 1]0,
∑

t∈σcfg

xt ≤
∑

t∈dom(σcfg)

bit

∀t ∈ [2p − 1]0, xt ∈ N
This linear program has 2p variables and (m22p + 2p) constraints. Thus, we

can solve it using [7] in time f(p)poly(n+m), we get that max
∑

1 and min
∑

0 are
FPT parameterized by p. Using Property 2 this ILP leads to a p

r
-approximation

algorithm for max
∑

1 running in time f(r)poly(n+m).

4 Conclusion

In this article, we established that max
∑

1 is O(m1−ε) and O(p1−ε) non-approximable
for n = 2. On the positive side, we provided a FPT algorithm for max

∑
1 leading

to a p

r
-approximation algorithm running in O(f(r)poly(m+n)), which is the best

we can hope for. The existence of a ρ(m)-approximation (typically m) algorithm
remains open.

References

1. P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation
classes. SIAM Journal on Computing, 28(5):1759–1782, 1999.

2. M. Cygan. Improved approximation for 3-dimensional matching via bounded path-
width local search. In Foundations of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on, pages 509–518. IEEE, 2013.

3. T. Dokka, M. Bougeret, V. Boudet, R. Giroudeau, and F. CR Spieksma. Approx-
imation algorithms for the wafer to wafer integration problem. In Approximation
and Online Algorithms (WAOA), pages 286–297. Springer, 2013.

4. T. Dokka, Y. Crama, and F. C.R. Spieksma. Multi-dimensional vector assignment
problems. Discrete Optimization, 14:111–125, 2014.

5. E. Hazan, S. Safra, and O. Schwartz. On the complexity of approximating k-
dimensional matching. In Approximation, Randomization, and Combinatorial Op-
timization.. Algorithms and Techniques, pages 83–97. Springer, 2003.

13

6. S. Kratsch. On polynomial kernels for integer linear programs: Covering, packing
and feasibility. In Algorithms–ESA 2013, pages 647–658. Springer, 2013.

7. H. W. Lenstra Jr. Integer programming with a fixed number of variables. Mathe-
matics of operations research, 8(4):538–548, 1983.

8. R. Niedermeier. Invitation to fixed-parameter algorithms. 2006.
9. S. Reda, G. Smith, and L. Smith. Maximizing the functional yield of wafer-to-

wafer 3-d integration. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 17(9):1357–1362, 2009.

10. D. P. Williamson and D. B. Shmoys. The design of approximation algorithms.
Cambridge University Press, 2011.

11. D. Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Proceedings of the thirty-eighth annual ACM symposium
on Theory of computing, pages 681–690. ACM, 2006.

14

A Reduction from kDM

In this section, we provide the reductions proving that max
∑

1 is harder than
max 6=0 and that max 6=0 is even harder than kDM.
Observation 2 There exists a strict reduction from max 6=0 to max

∑
1.

Proof. Consider an instance I ′[m′, n′, p′] of max 6=0. We construct an instance
I[m,n, p] of max

∑
1 as follows. The number of components of each vector is left

unchanged (p = p′), the number of vectors per set is multiplied by p′ (n = n′p′)
and the number of sets is increased by one (m = m′ + 1). ∀j = 1, . . . ,m′, the sets
V j are constructed as follows: V i = V ′i

⋃
X, where X contains n−n′ null vectors,

and V m′+1 contains n′ times the following sets of vectors (this is the reason why
n = n′p′):

{1000 . . . 000︸ ︷︷ ︸
p=p′

, 0100 . . . 000, 0010 . . . 000, . . . , 0000 . . . 010, 0000 . . . 001}

As an example, the following instance I ′[3, 2, 4] of max 6=0

V ′11 = 1010 V ′21 = 0001 V ′31 = 1111

V ′12 = 1001︸ ︷︷ ︸ V ′22 = 0100︸ ︷︷ ︸ V ′32 = 1000︸ ︷︷ ︸
V 1 V 2 V 3

is turned into the following one I[4, 8, 4] of max
∑

1:

v1
1 = 1010 v2

1 = 0001 v3
1 = 1111 v4

1 = 1000

v1
2 = 1001 v2

2 = 0100 v3
2 = 1000 v4

2 = 0100

v1
3 = 0000 v2

3 = 0000 v3
3 = 0000 v4

3 = 0010

v1
4 = 0000 v2

4 = 0000 v3
4 = 0000 v4

4 = 0001

v1
5 = 0000 v2

5 = 0000 v3
5 = 0000 v4

5 = 1000

v1
6 = 0000 v2

6 = 0000 v3
6 = 0000 v4

6 = 0100

v1
7 = 0000 v2

7 = 0000 v3
7 = 0000 v4

7 = 0010

v1
8 = 0000︸ ︷︷ ︸ v2

8 = 0000︸ ︷︷ ︸ v3
8 = 0000︸ ︷︷ ︸ v4

8 = 0001︸ ︷︷ ︸
V 1 V 2 V 3 V 4

Informally, as the set V m of I turns any non zero stack of I ′ into a stack of value
1 (by choosing an appropriate vector), maximizing the total number of 1 in I

requires to maximize the number of non null stacks in I ′.
Let us check first that "∀ solution S′ of max6=0, ∃ solution S of max

∑
1

of value f∑ 1(S) = f 6=0(S′)". Let {s′1, . . . , s′x} be the x non null stacks of S′, and
{s′x+1, . . . , s

′
n′} be the null stacks of S′. Let us now construct S. For any i, 1 ≤ i ≤ x,

let ki be a non null bit in s′i. We extend s′i to a stack si by adding a vector vmj
of set m such that vmj (ki) = 1. Notice that such a vector always exists as for any
position k, 1 ≤ k ≤ p there are n′ wafers in set m whose bit in position k is equal
to 1. Thus, even if the x stacks of S′ have the same non null position k, the
previous construction is possible. Finally, the n′ − x remaining null stacks of S′
are extended arbitrarily, and we complete the construction of S by adding n−n′

15

arbitrary stacks (as these stacks use in each of the first m − 1 set the set X of
null vectors, the value of these stacks is zero). Thus, we get f∑ 1(S) = x.

Let us new check that "∀ solution S of max
∑

1, ∃ solution S′ of max6=0 of
value fmax 1(S′) ≥ f 6=0(S). As any vector of set m has only one good bit (i.e.equal
to 1), the profit of any stack of S is at most 1, and thus there is exactly x non
null stacks {s1, . . . , sx} in S. By removing the vector in set m in each of these
x stacks, we get x non null stacks of I ′. Finally, we complete the construction
of S′ by creating arbitrarily the n′ − x remaining stacks, and we get f 6=0(S′) ≥ x
(notice that the value of S′ can be greater than x, as we could have a null stack
si ∈ S whose restriction to the first (m− 1) set is a non null stack of I ′).

Thus, we get Optmax 6=0
(I ′) = Optmax

∑
1(I). As the previous reduction is poly-

nomial, and as a solution of S of I can be translated back in polynomial time
into a solution S′ of I ′ with f 6=0(S) ≥ f∑ 1(S′), we get the desired result.

ut

We now prove that max 6=0 is harder than kDM. But first of all, let us recall
the k Dimensional Matching problem.

Input
k pairwise disjoint sets of n elements and x k−tuple tl ∈ X1 × · · · ×
Xk, 1 ≤ l ≤ x

Output a set of disjoint k−tuples

Objective
functions maximize the number of tuples in solution

Theorem 2 (implicit in [3]). For any ρ(m), any polynomial ρ(m)-approximation
algorithm for max 6=0 can be converted into a polynomial ρ(k)-approximation al-
gorithm for the kDM problem.

Proof. Let us consider an instance of kDM described by k sets Xi, 1 ≤ i ≤ k

(where Xi are pairwise disjoint) such that |Xi| = n, and x k-tuple tl ∈ X1 × · · · ×
Xk, 1 ≤ l ≤ x. We denote by aji , 1 ≤ j ≤ n the elements of set Xi. From this
instance, we construct an instance of max 6=0 composed of k sets, each containing
n vectors. The number of bits per vector is equal to x. Vector j of set i represents
the set of k-tuple that use element aji . Thus, we define vij as a string of size x,
where the kth bit is set to 1 iff aji is used in tk. Thus, the kth bit of a stack is
1 iff each element of tuple k is selected (by selecting corresponding vector), and
then iff tuple t belongs to solution of kDM instance. Notice that the value of any
stack is at most 1, since a stack represents a tuple. ut

