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Human arm optimal motion analysis in industrial screwing task

N. Sylla1,3, V. Bonnet2, G. Venture2, N. Armande1 and P. Fraisse3

Abstract— In this study, we propose to explore inverse op-
timization process to better understand human arm motion
in industrial screwing task. The process combines several
criteria to minimize such as energy expenditure or trajectory
smoothness leading to the optimal trajectory of a typical
screwing task, often performed by workers. Estimated joint
trajectories are similar with the measured ones, with a mean
square error of 4 degrees. The resulting cost-function is mainly
composed of energy expenditure and geodesic criteria. Results
show the relevance of using composite cost function in human
motion planning. This study has been conducted to assist
workers by using collaborative robots in painful task in PSA
Peugeot Citroen factories to improve ergonomics of manual
workstations.

I. INTRODUCTION
In car production lines, although numerous processes have

been automated, some operations remain manual mainly
because of reduced workspaces and precision requirements.
However, workers dedicated to these jobs could be subjected
to adopt awkward postures and carry notable efforts. PSA
Peugeot Citroen aims to use collaborative robots (cobots),
which present the functionality to work together with humans
for ergonomic assistance [1] to improve occupational health
and prevent musculoskeletal disorders. According to their
reachability and their number of degrees of freedom (DoFs),
cobots could be very expensive and not adapted to all tasks.
Furthermore, ergonomic analysis methods currently used in
industries are unable to find out these limitations since they
are subjective, principally based on movement observation
[2], and rarely consider biomechanics of movements. Con-
sequently, it is necessary to determine criteria involved in
workers’ movements behaviour. This approach is relevant (1)
to improve ergonomic assessment of industrial tasks, (2) to
help in determining the optimal assistive device to implement
according to workers movements.
According to the literature in human motor control since
the last 30 years, human movements are controlled by the
central nervous system (CNS), which selects the optimal
motion strategy among several solutions before sending the
information to the musculoskeletal system [3]. However, the
choice of this optimal trajectory is not trivial. The human
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musculoskeletal system often presents more DoFs than the
ones necessary to accomplish a specific movement. This
kinematic, dynamic and actuation redundancy issue is not
straightforward in term of motion equations. Recently, ob-
servations in human motion science together with progresses
in computational power, optimization and new algorithms
coming from humanoid robotics field have allowed to assess
this problematic over more and more complex tasks.
Numerous cost functions have been identified in the lit-
erature. Flash and Hogan proposed to minimize a purely
kinematic quantity, the cartesian jerk [4] defined as the sum
of the square of the third derivative of cartesian coordinates,
for an arm movement in the horizontal plane only.
The minimum torque change criterion which corresponds
to the sum of human joint torques first derivatives, was
proposed by Uno et al. [5]. The study used a 2 joints arm
model, allowing movements in the horizontal plane. However
results were not validated for 3D movements.
The minimum energy criterion was presented by Alexander
et al. [6] with a 2 DoFs arm model, and was used later by
Taix et al. [7] for reaching tasks performed by the 6 DoFs-
arm of an humanoid robot. Several others criteria such as
minimum work [8], minimum variance [9], minimum joint
constraint forces [10], or minimum time [11] have been
proposed for multi-joints movements. From this literature no
consensus emerges and it appears that each of these optimal
criteria accounts for a feature of the motion depending of
the considered population and/or task.
The use of hybrid cost-functions was then introduce to
determine optimal trajectories. Otha et al. [12] proposed to
combine the hand force change and torque change criteria to
determine the optimal trajectory of human arm movements
in crank rotation tasks. Following this work, the inverse
optimal process was proposed by Monbaur et al. [13] to
determine optimality criteria that produce natural paths for
human locomotion. Resulting data were applied in humanoid
robots path planning. The human body was considered as
a single point and experiments were performed in a 2D
plane. These hypotheses simplified significantly the inverse
optimization process. Albretch et al. [14] also performed
inverse optimization considering properties of both skeletal
and muscular system of the human arm. The retained cost-
function combining cartesian jerk, torque change, joint jerk
and muscle tension change was applied on an only 2 DoFs
arm model. Later Berret et al. proposed a similar approach to
obtain the best cost function which characterizes a reaching-
a-bar movement using a 2 DoFs arm model [15]. However
this interesting and well documented study focuses on a
simple planar task with a poorly constrained paradigm.
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To the best of our knowledge, no study uses the inverse
optimal process for complex 3D tasks and/or industrial pur-
pose. The present study focuses on an under-car workstation
which is very challenging in terms of ergonomics. According
to PSA Peugeot Citroen ergonomicists measures, the main
movement is repeated 35% times in a cycle of 110 seconds
approximately. It consists of raising the arm holding on
a screw-gun to reach a point located 2 meters above the
ground. Based on studies presented in [13] and [15], an
inverse optimization process is used to determine the optimal
hybrid criterion that best describes this screwing movement.
The arm model presents 4 DoFs allowing movement in 3D
plane.
The paper is organised as follows: Section II describes the
experiment protocol and measurements. The arm model and
the inverse optimization process are presented in Section III,
and Section IV discusses the obtained results.

II. EXPERIMENTATION

A. Experimental setup and measurements

Eight right-handed volunteers not familiar with the task
reproduced the typical screwing movement. Starting from an
initial standing position with both hands along the body side,
they were asked to reach a target located 2 meters above
the ground, holding on a 0.95 kg screwgun in their right
hand (see Fig. 1). No particular instruction was indicated to
the subjects and the movement was performed in their most
natural way, at their preferred velocity.
3D kinematic quantities were recorded using a motion cap-
ture system (6 MX cameras, VICON, 100 Hz) in combination
with a set of 38 retro-reflective markers. Markers were placed
on anatomical landmarks in accordance with the Plug-in-
Gait whole body marker template (Vicon Motion Systems)
to reconstruct joint angles.

B. Human observations

Averages and standard deviations of subjects’ joint angles
were normalized to 100 data points and reported in Fig.

Fig. 1. The investigated screwing task.
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Fig. 2. Averages and standard deviations of measured shoulder flex-
ion/extension (θ1), shoulder abduction/adduction (θ2), forearm prona-
tion/supination (θ3), elbow flexion/extension (θ4), wrist flexion/extension
(θ5) and wrist abduction adduction (θ6).

2. Note that the observed task results in low amplitude
of shoulder movements in the transverse plane. As ex-
pected measured values of shoulder rotation were negligible
and were not reported in Fig. 2. θ1, θ2, θ3, θ4, θ5 and
θ6 corresponds respectively to shoulder flexion/extension,
shoulder abduction/adduction, forearm pronation/supination,
elbow flexion/extension, wrist flexion/extension and wrist
abuduction/adduction. From this figure one can see the
relatively low standard deviation of joint angles, showing
that subjects perform similar and consistent movements to
reach the target. Furthermore, the observed wrist joints range
of motion are very small. Consequently, wrist joints are
neglected in the human arm model.

III. MODELING OF THE SCREWING TASK

A. Human arm model

The retained human arm model is composed of 4 DoFs,
represented in Fig. 3. Joint torques are computed from
Lagrangian formulation of the inverse dynamical model of
the arm [16]:

Γ = A(θ)θ̈ +C(θ, θ̇)θ̇ +Q(θ), (1)

where Γ=[Γ1 Γ2 Γ3 Γ4]T is the vector of joint torques,
A(θ), C(θ, θ̇) and Q(θ) are respectively the inertial
matrix, the Coriolis and Centrifugal effect matrix, and the
gravity matrix computed from human bodyweight, eight,
and joint angles. θ corresponds to the vector of joint angles:
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Fig. 3. The human arm kinematic model in its zero-configuration.

θ=[θ1 θ2 θ3 θ4]T .

B. Direct optimization

The direct optimization process consists of finding the
optimal value of designated parameters by minimizing an
objective cost-function while respecting all listed constraints.
Applying this principle to our study, direct optimization will
generate the best values of joint angles that produce the
minimum value of a given criterion. Table I reports mathe-
matical expressions of all criteria used in this study. Criteria
were normalized by their corresponding value computed
from measured human movement data. When performing
optimization by using each cost function independently,
resulting joint angles are very different with the measured
ones (see Fig. 4). Combining these cost functions is then
relevant to obtain better results [15].
The retained hybrid cost function includes then all criteria:

J =

7∑
i=1

αiCi, (2)

where αi are the positive weights that define the contribution
of every criterion Ci [15], normalized according to the
following equation:

Ci =
ci

cref (i)
, (3)

where ci corresponds to the criterion as defined in Table
I, and cref (i) its corresponding value when the movement
is performed by subjects, i.e. using measured subjects joint
angles, torques, and end effector position values: cref=
[206.2 2134.8 40.2 43.0 31.0 0.2 3.9].
Joint angles data vectors and their corresponding derivatives
were sampled using a 5th order spline interpolation. Pre-
liminary studies were performed to determine the optimal

number of knots. 12 knots appeared to be the good trade-off
between the number of parameters that need to be identified
and the accuracy in reproducing joint trajectories.
Constraints imposed for the experimentation are listed below:

• Angular limits: To generate feasible motions, opti-
mized trajectories must be compliant with human an-
gular limits defined in the literature [2]:

θmin ≤ θ ≤ θmax, (4)

where θmin and θmax are respectively vectors of
minimum and maximum of human joint angles reported
in Table II.

• Final position and orientation: Regarding the defined
arm model (Fig. 3), the point to reach corresponds to
the final position of the right hand. Final human arm
orientation is also given as a constraint. Right hand
position and orientation are deducted from the direct
geometric model [16] of the human arm developed in
Matlab using symbolic approach.

TABLE I
COST FUNCTION USED IN THE STUDY [15]

Criterion Cost functiona

Cartesian jerk c1 =

n∑
j=1

...
x2

j+
...
y 2

j+
...
z 2
j

n

Angle jerk c2 =

n∑
j=1

4∑
i=1

...
θ
2
ij

n

Angle acceleration c3 =

n∑
j=1

4∑
i=1

θ̈2ij

n

Torque change c4 =

n∑
j=1

4∑
i=1

Γ̇2
ij

n

Torque c5 =

n∑
j=1

4∑
i=1

Γ2
ij

n

Geodesic c6 =

n∑
j=1

√
θ̇Tj A(θ)θ̇j

n

Energy c7 =

n∑
j=1

4∑
i=1

|θ̇ij Γij
|

n

a. n is the length of joint angles and positions variables

TABLE II
ANGULAR LIMITS

Joint angle θmin [deg] θmax [deg]
θ1 -180 55
θ2 -150 30
θ3 -100 100
θ4 -160 0

966



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Measured
Estimated

time  [sec] 

θ1 

0 2.5 0 2.5 0 0 2.5 2.5 

θ2 θ3 θ4 

-50 

50 

-50 

50 

-50 

50 

-50 

50 

-50 

50 

-50 

50 

-50 

50 
A

ng
le

  [
de

g]
 

C7 

A
ng

le
  [

de
g]

 

C6 

A
ng

le
  [

de
g]

 

C5 

A
ng

le
  [

de
g]

 

C4 

A
ng

le
  [

de
g]

 
C1 

A
ng

le
  [

de
g]

 

C3 

A
ng

le
  [

de
g]

 

C2 

Fig. 4. Comparison of measured and estimated joint angles when using
independently one of the normalized criteria (Ci) presented in Table I.

C. Inverse optimization

The aim of the inverse optimization process is to determine
the best combination of α weights that will minimise the
root mean square error (RMSE) between estimated (θest)
and measured (θmes) joint angles.
Inverse optimization is composed by two interlocked op-
timization processes. The first one is an outer optimiza-
tion which minimizes the RMSE between measured and
estimated joint angles, and the second one is an inner
optimization which minimizes the cost function J .
Fig. 5 is an outline of the computational procedure used for
inverse optimization. The variable ∆ corresponds to RMSE
between measured and estimated joint angles:

∆ =

√√√√√ n∑
j=1

(θmesj − θestj )2

n
, (5)

where n is the length of θmes and θest vectors.
Changes of α weights are performed by the algorithm. The
program written in Matlab includes then two optimization
processes. The first one, which determines the optimal set
of α weights is performed with a genetic algorithm [17]
due to the large scale of the optimization problem. The
second one, which determines optimal joint angle trajectories

Fig. 5. Outline of the computational procedure used for inverse optimiza-
tion.

is performed using a gradient based non linear optimization
algorithm [18].

IV. RESULTS

Fig. 6 and 7 show representative results obtained with
one subject. It can be seen that joint angles and cartesian
trajectories obtained with the optimization process are fairly
similar to the measured ones. The resulting RMSE vector
between estimated and measured joint angles is (in degrees):
∆=[4.1 1.0 4.4 6.8]T . Values of normalized weights obtained
by inverse optimization are the following: α=[0.3 1.0 0.1 0.0
0.0 5.2 5.8]T .
Fig. 8 shows the contribution in % of every weighted
cost function in the total hybrid cost function J . From
these results one can see low contributions of jerk, angle
acceleration, torque change and torque criteria during the
movement. The energy is as expected the most important
criterion with a contribution of 53.7% in the resulting cost
function. The second cost function mainly involved in the
screwing movement is the geodesic one. This criterion was
introduced by Biess et al. [19] [20], and has been validated
in their study with a 3D point-to point movement with a 4
DoFs arm model. It combines geometrical (e.g. hand path
and arm posture) and temporal features of a movement. The
Geodesic criterion corresponds to the shortest path in the
curved space. In our case, it means: the shortest path in the
joint space. In term of energy, it amounts to the minimum
energy of the curve.
Results presented in Berret et al. study [15] showed that the
energy is minimized and joints smoothness is maximized
during a reaching-a-bar task. The resulting cost-function
combine energy and angle acceleration criteria hence. Know-
ing that the joint smoothness maximization is also included in
the geodesic criterion, our results are in accordance with the
previous one. We can then conclude that workers minimize
their energy expenditure, the path distance in the joint space
while maximizing arm joints smoothness when performing
the screwing task.
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Fig. 6. Measured and estimated joint angles of a typical subject.
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Fig. 8. Contribution in % of each weighted cost function to the total hybrid
cost function.

V. DISCUSSION

For a representative subject, results show a RMSE
average of 4 degrees between measured joint angles and
the estimated ones through the optimization process while
respecting joint angles averages represented in Fig. 2,
and justify in this case the use of hybrid cost function.
Regarding the investigated screwing task, high contributions
of energy and geodesic criteria in the resulting cost-function
are relevant.
Further analysis with other subjects is being performed
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to validate the hybrid cost function obtained here. It is
important to note that inverse optimization requires high
computational power. One analysis takes about 30 hours of
simulations on a 2.70 GHz Intel core i7.

VI. CONCLUSION

In this study we investigated inverse optimization pro-
cess [15] to determine criteria that are minimized when
performing a typical under-car screwing task, which is very
challenging in terms of ergonomics and appears to cause
muskuloskeletal disorders. No solution has been proposed yet
to assist workers in this task which is difficult to automate.
By understanding human mechanisms involved during the
screwing movement from these results, we believe that we
will be able to determine the optimal assistive device in terms
of DoFs and command strategy to improve workers’ comfort.
Slight differences between measured joint angles and the
estimated ones show the relevance of using a hybrid cost
function in human motion planning. Results have to be
consolidated for all subjects, and future experiments will be
carried out with experimented workers in factory to confirm
these preliminary results.
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