P. Akella, M. Peshkin, E. Colgate, W. Wannasuphoprasit, N. Nagesh et al., Cobots for the automobile assembly line, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), pp.728-733, 1999.
DOI : 10.1109/ROBOT.1999.770061

V. Hue, Simulation de mouvement humain sur postes de travail pour le diagnostic et l'aidè a la conception, 2008.

S. H. Scott, Optimal feedback control and the neural basis of volitional motor control, Nature Reviews Neuroscience, vol.195, issue.7, pp.532-546, 2004.
DOI : 10.1038/nn1102-1110

T. Flash and N. Hogan, The coordination of arm movements: An experimentally confirmed mathematical model, The Journal of Neuroscience, vol.5, pp.1688-1703, 1985.

Y. Uno, M. Kawato, and R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement, Biological Cybernetics, vol.61, issue.2, pp.89-101, 1989.
DOI : 10.1007/BF00204593

R. M. Alexander, A minimum energy cost hypothesis for human arm trajectories, Biological Cybernetics, vol.76, issue.2, pp.97-150, 1997.
DOI : 10.1007/s004220050324

M. Ta¨?xta¨?x, M. T. Tran, P. Soueres, and E. Guigon, Generating human-like reaching movements with a humanoid robot: A computational approach, Journal of Computational Science, vol.4, issue.4, pp.269-284, 2013.
DOI : 10.1016/j.jocs.2012.08.001

T. Kang, J. He, and S. I. Tillery, Determining natural arm configuration along a reaching trajectory, Experimental Brain Research, vol.53, issue.2, pp.352-361, 2005.
DOI : 10.1007/s00221-005-0039-5

C. Harris and D. Wolpert, Signal-dependent noise determines motor planning. [nature. 1998] -PubMed -NCBI, Nature, vol.394, issue.6695, pp.780-784, 1988.
DOI : 10.1038/29528

R. Maas and S. Leyendecker, Optimal control of biomechanical motion using physiologically motivated cost functions, The 2nd joint international conference on multibody system dynamics, 2012.

W. L. Nelson, Physical principles for economies of skilled movements, Biological Cybernetics, vol.1, issue.2, pp.135-147, 1993.
DOI : 10.1007/BF00339982

K. Ohta, M. M. Svinin, Z. Luo, S. Hosoe, and R. Laboissiere, Optimal trajectory formation of constrained human arm reaching movements, Biological Cybernetics, vol.91, issue.1, pp.23-36, 2004.
DOI : 10.1007/s00422-004-0491-5

K. Mombaur, A. Truong, and J. P. Laumond, From human to humanoid locomotion???an inverse optimal control approach, Autonomous Robots, vol.24, issue.5, pp.369-383, 2010.
DOI : 10.1007/s10514-009-9170-7

S. Albrecht, M. Sobotka, and M. Ulbrich, A bilevel optimization approach to obtain optimal cost functions for human arm-movements, 2010.

B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, Evidence for Composite Cost Functions in Arm Movement Planning: An Inverse Optimal Control Approach, PLoS Computational Biology, vol.22, issue.10, pp.1-18, 2011.
DOI : 10.1371/journal.pcbi.1002183.s002

URL : https://hal.archives-ouvertes.fr/inserm-00704789

W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, Applied Mechanics Reviews, vol.56, issue.3, 1999.
DOI : 10.1115/1.1566397

C. R. Houck, J. A. Joines, and M. G. Kay, A genetic algorithm for function optimization: a matlab implementation, NCSU-IE TR, vol.95, issue.09, 1995.

R. H. Byrd, J. C. Gilbert, and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, pp.149-185, 2000.
DOI : 10.1007/PL00011391

URL : https://hal.archives-ouvertes.fr/inria-00073794

A. Biess, M. Nagurka, and T. Flash, Simulating Discrete and Rhythmic Multi-joint Human Arm Movements by Optimization of Nonlinear Performance Indices, Biological Cybernetics, vol.27, issue.1, pp.31-53, 2006.
DOI : 10.1007/s00422-006-0067-7

A. Biess, D. G. Liebermann, and T. Flash, A Computational Model for Redundant Human Three-Dimensional Pointing Movements: Integration of Independent Spatial and Temporal Motor Plans Simplifies Movement Dynamics, Journal of Neuroscience, vol.27, issue.48, pp.13045-13064, 2007.
DOI : 10.1523/JNEUROSCI.4334-06.2007