B. P. Bernard, Musculoskeletal disorders and workplace factors: a critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back, 1997.

K. Kiguchi, T. Tanaka, K. Watanabe, and T. Fukuda, Exoskeleton for human upper-limb motion support, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), pp.2206-2211, 2003.
DOI : 10.1109/ROBOT.2003.1241921

R. A. Gopura, K. Kiguchi, and Y. Li, SUEFUL-7: A 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1126-1131, 2009.
DOI : 10.1109/IROS.2009.5353935

Y. Sankai, Leading Edge of Cybernics: Robot Suit HAL, 2006 SICE-ICASE International Joint Conference, p.1, 2006.
DOI : 10.1109/SICE.2006.314982

P. Garrec, J. Friconneau, Y. Measson, and Y. Perrot, ABLE, an innovative transparent exoskeleton for the upper-limb, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1483-1488, 2008.
DOI : 10.1109/IROS.2008.4651012

N. Jarassé, ContributionsàContributions`Contributionsà l'exploitation d'exosquelettes actifs pour la rééducation neuromotrice, 2010.

N. Sylla, V. Bonnet, F. Colledani, and P. Fraisse, Ergonomic contribution of ABLE exoskeleton in automotive industry, International Journal of Industrial Ergonomics, vol.44, issue.4
DOI : 10.1016/j.ergon.2014.03.008

URL : https://hal.archives-ouvertes.fr/lirmm-01111273

S. H. Scott, Optimal feedback control and the neural basis of volitional motor control, Nature Reviews Neuroscience, vol.195, issue.7, pp.532-546, 2004.
DOI : 10.1038/nn1102-1110

T. Flash and N. Hogan, The coordination of arm movements: An experimentally confirmed mathematical model, The Journal of Neuroscience, vol.5, pp.1688-1703, 1985.

Y. Uno, M. Kawato, and R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement, Biological Cybernetics, vol.61, issue.2, pp.89-101, 1989.
DOI : 10.1007/BF00204593

R. M. Alexander, A minimum energy cost hypothesis for human arm trajectories, Biological Cybernetics, vol.76, issue.2, pp.97-150, 1997.
DOI : 10.1007/s004220050324

T. Kang, J. He, and S. I. Tillery, Determining natural arm configuration along a reaching trajectory, Experimental Brain Research, vol.53, issue.2, pp.352-361, 2005.
DOI : 10.1007/s00221-005-0039-5

C. Harris and D. Wolpert, Signal-dependent noise determines motor planning. [nature. 1998] -PubMed -NCBI, Nature, vol.394, issue.6695, pp.780-784, 1988.
DOI : 10.1038/29528

C. L. Bottasso, B. I. Prilutsky, A. Croce, E. Imberti, and S. Sartirana, A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system, Multibody System Dynamics, vol.22, issue.2, pp.123-154, 2006.
DOI : 10.1007/s11044-006-9019-1

K. Mombaur, A. Truong, and J. P. Laumond, From human to humanoid locomotion???an inverse optimal control approach, Autonomous Robots, vol.24, issue.5, pp.369-383, 2010.
DOI : 10.1007/s10514-009-9170-7

B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, Evidence for Composite Cost Functions in Arm Movement Planning: An Inverse Optimal Control Approach, PLoS Computational Biology, vol.22, issue.10, pp.1-18, 2011.
DOI : 10.1371/journal.pcbi.1002183.s002

URL : https://hal.archives-ouvertes.fr/inserm-00704789

V. Hue, Simulation de mouvement humain sur postes de travail pour le diagnostic et l'aidè a la conception, 2008.

C. R. Houck, J. A. Joines, and M. G. Kay, A genetic algorithm for function optimization: a matlab implementation, NCSU-IE TR, vol.95, issue.09, 1995.

R. H. Byrd, J. C. Gilbert, and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, pp.149-185, 2000.
DOI : 10.1007/PL00011391

URL : https://hal.archives-ouvertes.fr/inria-00073794