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Abstract

This paper deals with an experimental comparison be‐
tween the proportional integral derivative (PID) control
law and the adaptive nonlinear state feedback control, both
applied on the AC-ROV underwater vehicle. The experi‐
mental results evaluate the closed-loop behaviour of the
system under each controller in various operating condi‐
tions in order to compare how robust they are towards
parameters’ change and how they can reject external
disturbances. It was concluded that the adaptive controller
ensures a faster convergence and can adapt to a change of
parameters as well as compensate for external disturban‐
ces. The PID needs to be retuned for every parameter
change and is more sensitive to external disturbances.

Keywords Underwater robotics, Depth regulation, PID
controller, Adaptive Controller

1. Introduction

Underwater vehicles have gained an increased interest in
the last decades given the multiple operations they can

perform in various fields. The recent development of such
robots enlarged the range of tasks in environments consid‐
ered as hazardous or dangerous. Lots of advantages in
terms of operational cost and safety were brought with the
usage of such vehicles in underwater inspection, as in
various other tasks involving manipulation, assembly or
repair of offshore structures [1, 2]. We are particularly
interested in the category of tethered vehicles also called
remotely operated vehicles (ROV). The teleoperation of
these vehicles is difficult since the execution of the above
mentioned tasks require the simultaneous monitoring of
various parameters and degrees of freedom. Automated
depth control facilitates the missions involving systematic
longitudinal scanning, such as the inspection of dams or
ship hulls. Different challenges in controlling such systems
arise from the inherent high nonlinearities and the time
varying behaviour of the vehicle’s dynamics subjected to
hydrodynamic effects and disturbances. In fact, the model
parameters are likely to change with the environment and
the mission. For example, when the robot is required to
manipulate objects or carry payloads, or when it is equip‐
ped with additional sensors, its weight, inertia, and drag
change. Moreover, the buoyancy varies with the salinity of
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the water and the damping increases if some algae get a
grip on the vehicle. Trajectory tracking involves also
accounting for some expected or unexpected external
disturbances such as waves that are common in shallow
waters, or random obstacles that the vehicle might fail to
avoid. It is therefore highly desirable to design and develop
a controller able to deal with the inherent complex dynam‐
ics of the system while being able to properly compensate
parameters changes and reject disturbances. Various
approaches to solve this control problem can be found in
the literature. Most of them aim at being robust and
adaptive. In [3, 4] and [5], a robust ℋ∞ control approach
was proposed and tested on AsterX AUV (autonomous
underwater vehicle) in simulations. The authors have
tested this control scheme in situations where variations
were brought to the mass of the robot and to the sampling
time control interval. Other successful simulation results
have been reported with the adaptive controller on the
Phantom ROV [6] with 4 degrees of freedom in the aim of
compensating persistent hydrodynamic terms in different
frames of reference. The same approach was used in [7]
where a more explicit description of the varying parame‐
ters and their plots was presented. Experimental results of
this controller can be found in [8] where the AUV ODIN
was tested in a pool with a constant current disturbance.
Various chattering free sliding mode schemes have been
applied on such systems to cope with heavy uncertainties
and were experimentally validated in [9] where a fuzzy
sliding mode controller was applied on the AUV-HM1 and
in [10] where a higher order sliding mode was tested on an
underwater vehicle prototype designed at the Cagliari
University. Combining various techniques has also been
studied with the usage of adaptive fuzzy sliding mode
controllers for trajectory tracking and depth control as
presented with numerical results in [11] and [12]. Intelli‐
gent control methods applying reinforcement learning or
artificial intelligence can be found in [13, 14, 15] and [16]
where simulation results are provided. An experimental
study was reported in [17] where the robot ICTINEU AUV
was subjected to reinforcement learning for a cable tracking
application.

Comparisons among various controllers can be found in
the literature through simulations. In [18] and [19] a
comparison among adaptive controllers is reported. The
former study shows robustness of each control law against
measurements noises and parameters uncertainties while
the latter one describes the ability of each adaptive control‐
ler to compensate for the currents and restoring forces. The
sliding mode controller was compared in simulations to the
Mu synthesis in [20] and to the robust adaptive fuzzy
sliding mode controller in [11], in terms of trajectory
following and measurement noise. In [21], four various
model based controllers (adaptive and nonadaptive exact
linearizing controllers, adaptive and nonadaptive nonlin‐
ear controllers) were experimentally compared to the PD

controller in the case of a good and bad initial parameter
estimation and in the case of thruster saturation. Trajectory
following plots were shown only for the nonlinear control‐
ler. The study was based on the tracking error among the
various controllers that shows a bad performance of
nonadaptive controllers in presence of wrong model values
and a degraded performance for all controllers in presence
of a thruster saturation. This study lacks robustness tests to
disturbances and parameter changes as well as illustrative
plots. To the best of our knowledge, no detailed compara‐
tive experimental study between two controllers with
various robustness tests has been performed. We propose
in this paper to study the closed-loop system behaviour
under a Proportional Integral Derivative (PID) controller
and an adaptive nonlinear state feedback one. Our contri‐
bution lies in reporting an experimental evaluation of the
effects of parameters changes and external disturbances on
the closed-loop response of the system for the tethered
underwater vehicle AC-ROV. For this purpose, the buoy‐
ancy and the damping parameters will be modified and
external disturbances including a mechanical shock and
waves, will be applied on the system. These scenarios will
be conducted on each controller and results ranging from
system response to control input, and changes in model
parameters will be presented. This paper is organised as
follows: in the second section we present the dynamic
modelling of the system, the third section shows the
theoretical aspects of both controllers to be compared, the
fourth section presents the prototype and the experimental
setup and in the fifth section the obtained experimental
results and their analysis.

2. Dynamic modelling of the system

Throughout this paper, the variables in bold represent
matrices and the ones in normal font represent scalars. By
considering the inertial generalised forces, the hydrody‐
namic effects, the gravity, and buoyancy contributions as
well as the effects of the actuators (thrusters), the dynamic
model of an underwater vehicle in matrix form, using the
SNAME notation and the representation proposed by
Fossen in [22], is written as:

( ) ( )
=

+ + + = +

&
& d

( )
( )

J
M C D g w

h h n
n n n n n h t (1)

where ν = u,v,w,p,q,r T ,η = x,y,z,φ,ϑ,ψ T  are vectors of
velocities (in the body-fixed frame) and position/Euler
angles (in the earth-fixed frame) respectively. J (η)∈ℝ6×6 is
the transformation matrix mapping from the body-fixed
frame to the earth-fixed one. The model matrices M , C , and
D denote the inertia (including added mass), Coriolis-
centripetal (including added mass), and damping respec‐
tively, while g  is a vector of gravitational/buoyancy forces
and moments. τ is the vector of control inputs and wd  the

2 Int J Adv Robot Syst, 2015, 12:13 | doi: 10.5772/59185



vector of external disturbances. In the case of our study, the
vehicle will be moving at low velocities which makes the
Coriolis terms negligible. Therefore, the dynamics (1) can
be rewritten as:

( )+ = +& , dM n wn n h t (2)

with n(ν,η)=D(ν)ν + g(η)

Equation (2) describes the system in 6 degrees of freedom
taking into account the 3 translations and the 3 orientations.
The input vector τ∈ℝ6 considers 6 actions on the system to
fully control it. In this paper, given the available sensors
and instrumentation, we only study the dynamics of the
vehicle in its translational motion along the z axis. Al‐
though the results concern only one DOF, this allows us to
highlight each method’s advantages and drawbacks
throughout the experimental results. We can easily extract
from equation (2) our studied dynamics as:

( ) ( )( ) =z z z dz
M w D w cos cos W B wj J t+ - - +& (3)

The effects of gravitational and buoyancy forces are now
brought to a single term which is a nonlinear combination
between the weight W  and the buoyancy B. τz is therefore
the one dimension control input expressed in Newton and
controlling the depth. It is given by:

=z Kt T u (4)

where u∈ℝ2 is the vector of control inputs in volts (we have
two thrusters acting on the degree of freedom of interest),
K  is the force coefficient in Newton per Volts and it has been
previously identified trough experiments. T ∈ℝ1×2 is the
actuators configuration matrix taking into account the
position and orientation of the motors, thus allowing to
determine the associated forces in the body-fixed frame.

3. Proposed control schemes

Our control objective is to achieve a depth regulation with
a satisfactory closed-loop system response in spite of
various external disturbances or parameters changes. For
this purpose, we propose two different controllers: the
Proportional Integral Derivative and an adaptive nonlinear
state feedback. The former controller has been tuned using
a method that minimises the ISTSE (Integral of Squared
Time Multiplied by Squared Error) [23] while the latter one
was tuned empirically so as to minimise the same criterion.
For this purpose, the gains of this latter controller have been
initially set to the same values than the optimised ones of
the PID controller. Then, once the adaptation has been
included, these gains have been finely adjusted to minimise
the ISTSE criterion. Since each proposed scheme is expected

to exhibit its best performance, the main characteristics and
differences between these two controllers will be revealed
throughout the proposed experimental scenarios even if a
more thorough or slightly different tuning could be
possible. In this study the single control input intended for
the dynamics described in (3) will be computed. The indices
(1) and (2) will be used for the gains of the PID and the
adaptive controller respectively. General KP ,KI ,KD will be
used only to explain the mathematical description of each
law.

3.1 Proportional Derivative Integral (PID) controller

3.1.1 Control law formulation

A classical PID controller has been used to achieve the
desired depth regulation. The control input is given by:

( ) ( ) ( )
01 1 1

=
t

z P des I des D desK z z K z z dt K z zt - - - - - -ò & & (5)

where τz is the input in Newton to be applied along the z
axis, KP1

,K I1
 and KD1

 are positive constants gains represent‐
ing respectively the proportional, the integral and the
derivative gains. z is the measured depth, zdes the desired
one and ż and żdes are their respective time derivatives.

3.1.2 PID Controller Design

The control input in equation (5) is based on the well known
mathematical description of the PID controller given by:

( ) ( ) ( ) ( )
0

1=
t

P d
i

de t
u t K e t e t dt T

T dt
é ù

+ +ê ú
ë û

ò (6)

with e(t) being the error signal, KP  the proportional gain, T i

the integral time and Td  the derivative time.

To tune the parameters of a PID controller, several methods
exist in the literature such as Ziegler-Nichols, Cohen-Coon
and Chien-Hrones-Reswick tuning methods. The depth
behavior of an underwater vehicle can be approximated by
an integral process with dead time. Many tuning rules for
such systems can be found in [24] and [25]. Our system can
therefore be approximated according to the following
Integrator Plus Dead Time (IPDT) model:

( ) = sLaG s e
sL

- (7)

where the parameters L  and a are the intersections of the
tangent to the system step response with the x and y axes
respectively (as illustrated in the Figure 1), and s is the
Laplace variable.
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In order to identify the parameters a and L of our vehicle’s
model, we have experimentally applied a thrust step along
the z axis and we have observed the output behaviour. The
experimental data normalized to a step input of 1N  are
displayed in Figure 2. By comparing the experimental step
input response with Figure 1, we have found : L =2.6570
seconds and a =2.3 meters.

Once these two parameters have been found, according to
[23], the gains of the PID controller can be computed from
Table 1. This table holds all the coefficients for the design
of either a PD or a PID according to different criteria
(Integral of Squared Error (ISE), Integral of Time Squared
Error (ITSE) and Integral of Squared Time multiplied by
Squared Error (ISTSE)). The parameters a1 and a2 are used
for the design of a PD whereas a3, a4 and a5 are used for a
PID. In this paper, we focus on inspection applications. We
have chosen to optimise both speed and accuracy, and thus
have decided to minimise the ISTSE criterion which is well
suited for this purpose. Of course, this choice has to be
made according to the targeted application and in other
situations the optimisation of another criterion could be
preferred.
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Figure 2. Scaled step input response of the AC-ROV to an input
force of 1 N.

is well suited for this purpose. Of course, this choice has
to be made according to the targeted application and in
other situations the optimisation of another criterion could
be preferred.

Using table 1, the computation of the gains of the PID
controller becomes straightforward. With a3 = 1.34 ,
a4 = 1.83, and a5 = 0.49, and by letting K = a

L , the gains
are found to be:

KP1
= a3

KL = 0.58 KI1
=

KP1
Ti

= 0.12 KD1
= KP1

Td = 0.76

with Ti = a4L and Td = a5L.

Table 1. Coefficients of the PID controller for the integral plus
dead time plants

criterion a1 a2 a3 a4 a5

ISE 1.03 0.49 1.37 1.49 0.59

ITSE 0.96 0.45 1.36 1.66 0.53

ISTSE 0.9 0.45 1.34 1.83 0.49

3.2. Adaptive Nonlinear State Feedback Controller

3.2.1. Background

The adaptive state feedback controller is a state feedback
controller with an adaptation part. It provides an online
estimation of the unknown model parameters in order to
ensure to the system a good trajectory following [22]. The
control law is extracted from the dynamics of the robot
presented in equation (2) and rewritten as:

τττ = M̂abM̂abM̂ab + n̂(ν, η)n̂(ν, η)n̂(ν, η) (8)

where the hat symbol denotes the parameter estimates, ababab

the body frame commanded acceleration, and n̂(ν, η)n̂(ν, η)n̂(ν, η) the
estimate of n(ν, η)n(ν, η)n(ν, η) in (2). Given that the dynamic model
is linear in its parameters, the adaptive control law (8) can
then be rewritten as:

τττ = Φ(ab, ν, η)θ̂Φ(ab, ν, η)θ̂Φ(ab, ν, η)θ̂ (9)

where ΦΦΦ is the regressor matrix and θ̂̂θ̂θ is the vector of the
estimated parameters. The computed input is calculated in
the body frame but the trajectory following is performed

in the earth frame and therefore ababab is calculated from a
simple transformation between the body and the earth
frame given by:

ababab = J−1J−1J−1(ananan − J̇νJ̇νJ̇ν) (10)

where ananan is the commanded acceleration in the earth frame
and JJJ the transformation matrix. To guarantee that the
error converges to zero, ananan is chosen as the following
Proportional Integral Derivative (PID) control:

ananan = η̈desη̈desη̈des −KPη̃KPη̃KPη̃ −KI

∫ t

0
η̃KI

∫ t

0
η̃KI

∫ t

0
η̃ dtdtdt −KD ˙̃ηKD ˙̃ηKD ˙̃η (11)

with η̃̃η̃η = ηηη − ηdesηdesηdes and ˙̃η̃̇η̃̇η is its first derivative, ηdesηdesηdes

is the desired trajectory and η̈desη̈desη̈des is its corresponding
acceleration.
The vector of the estimated parameters is updated
according to the following update law:

˙̂θ̇̂θ̇̂θ = −ΓΦ
T(ab, ν, η)J−1yΓΦ
T(ab, ν, η)J−1yΓΦ
T(ab, ν, η)J−1y (12)

where ΓΓΓ is a diagonal positive definite matrix representing
the adaptation gain, JJJ the transformation matrix, and yyy the
combined error defined as:

yyy = c0η̃̃η̃η + c1 ˙̃η̃̇η̃̇η (13)

c0 and c1 are constant positive gains chosen according
to the algorithm presented in [22] which states that the
error on the trajectory, represented by yyy, is guaranteed to
converge to zero by applying Barbalat’s lemma. It has to be
mentioned that the convergence of yyy is only possible when
the parameters also converge. Moreover, if the parameters
are not adequately initialised (for instance if their initial
values are too far from the true values), they might never
converge, thus leading to instability of the plant. It is also
important to note that a good parameter convergence is
more guaranteed to occur when the followed trajectory
is rich enough to excite the parameters under study [26].
However, parameters will converge to a set of values
that allow trajectory following. Moreover, under the
assumption of a good initialisation, the parameter vector
is seen to be convergent according to Barbalat’s lemma as
shown in the proof of stability found in [22].

3.2.2. Case of the depth control

Given the available sensors and actuators with which our
underwater vehicle is equipped, we have chosen to study
a trajectory varying along the heave direction. The vector
of parameters to be estimated includes Mz which is the
third diagonal element in the inertia matrix, Dz the third
diagonal element in the damping matrix, and (W − B) the
parameter representing the difference between the weight
and the buoyancy. Even if the addressed problem concerns
depth control, it is worth to note that this study can be
easily generalised to more degrees of freedom. From
equations (8) to (13), we extract the explicit formulation of
our controller as:

τz = ΦΦΦθ̂̂θ̂θ (14)
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Figure 2. Scaled step input response of the AC-ROV to an input force of
1N

Using table 1, the computation of the gains of the PID
controller becomes straightforward. With a3 =1.34, a4 =1.83,

and a5 =0.49, and by letting K =
a

L , the gains are found to be:

The effects of gravitational and buoyancy forces are now
brought to a single term which is a nonlinear combination
between the weight W and the buoyancy B. τz is therefore
the one dimension control input expressed in Newton and
controlling the depth. It is given by:

τz = TTTKuuu (4)

where uuu ∈ R
2 is the vector of control inputs in volts

(we have two thrusters acting on the degree of freedom
of interest), K is the force coefficient in Newton per Volts
and it has been previously identified trough experiments.
TTT ∈ R

1×2 is the actuators configuration matrix taking
into account the position and orientation of the motors,
thus allowing to determine the associated forces in the
body-fixed frame.

3. Proposed control schemes

Our control objective is to achieve a depth regulation
with a satisfactory closed-loop system response in spite
of various external disturbances or parameters changes.
For this purpose, we propose two different controllers:
the Proportional Integral Derivative and an adaptive
nonlinear state feedback. The former controller has
been tuned using a method that minimises the ISTSE
(Integral of Squared Time Multiplied by Squared Error)
[23] while the latter one was tuned empirically so as
to minimise the same criterion. For this purpose, the
gains of this latter controller have been initially set to
the same values than the optimised ones of the PID
controller. Then, once the adaptation has been included,
these gains have been finely adjusted to minimise the
ISTSE criterion. Since each proposed scheme is expected to
exhibit its best performance, the main characteristics and
differences between these two controllers will be revealed
throughout the proposed experimental scenarios even if
a more thorough or slightly different tuning could be
possible. In this study the single control input intended
for the dynamics described in (3) will be computed. The
indices (1) and (2) will be used for the gains of the PID and
the adaptive controller respectively. General KP, KI , KD

will be used only to explain the mathematical description
of each law.

3.1. Proportional Derivative Integral (PID) controller

3.1.1. Control Law Formulation

A classical PID controller has been used to achieve the
desired depth regulation. The control input is given by:

τz = −KP1
(z − zdes)− KI1

∫ t

0
(z − zdes) dt − KD1

(ż − żdes)

(5)
where τz is the input in Newton to be applied along
the z axis, KP1

, KI1
and KD1

are positive constants gains
representing respectively the proportional, the integral
and the derivative gains. z is the measured depth , zdes

the desired one and ż and żdes are their respective time
derivatives.

3.1.2. PID Controller Design

The control input in equation (5) is based on the well
known mathematical description of the PID controller

given by:

u(t) = KP[e(t) +
1

Ti

∫ t

0
e(t) dt + Td

de(t)

dt
] (6)

with e(t) being the error signal, KP the proportional gain,
Ti the integral time and Td the derivative time.

To tune the parameters of a PID controller, several methods
exist in the literature such as Ziegler-Nichols, Cohen-Coon
and Chien-Hrones-Reswick tuning methods. The depth
behavior of an underwater vehicle can be approximated
by an integral process with dead time. Many tuning rules
for such systems can be found in [24] and [25]. Our system
can therefore be approximated according to the following
Integrator Plus Dead Time (IPDT) model:

G(s) =
a

sL
e−sL (7)

where the parameters L and a are the intersections of the
tangent to the system step response with the x and y axes
respectively (as illustrated in the Figure 1), and s is the
Laplace variable.

y(t)

t

a

L

Figure 1. Graphical parameter estimation of an integrator model

In order to identify the parameters a and L of our vehicle’s
model, we have experimentally applied a thrust step along
the z axis and we have observed the output behaviour. The
experimental data normalized to a step input of 1 N are
displayed in Figure 2. By comparing the experimental step
input response with Figure 1, we have found : L = 2.6570
seconds and a = 2.3 meters.

Once these two parameters have been found, according
to [23], the gains of the PID controller can be computed
from Table 1. This table holds all the coefficients for the
design of either a PD or a PID according to different criteria
(Integral of Squared Error (ISE), Integral of Time Squared
Error (ITSE) and Integral of Squared Time multiplied by
Squared Error (ISTSE)). The parameters a1 and a2 are used
for the design of a PD whereas a3, a4 and a5 are used for
a PID. In this paper, we focus on inspection applications.
We have chosen to optimise both speed and accuracy, and
thus have decided to minimise the ISTSE criterion which
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Figure 1. Graphical parameter estimation of an integrator model

KP1
=

a3
KL =0.58 K I1

=
KP1

T i
=0.12 KD1

= KP1
Td =0.76

with T i =a4L  and Td =a5L .

Criterion a1 a2 a3 a4 a5

ISE 1.03 0.49 1.37 1.49 0.59

ITSE 0.96 0.45 1.36 1.66 0.53

ISTSE 0.9 0.45 1.34 1.83 0.49

Table 1. Coefficients of the PID controller for the integral plus dead time
plants

3.2 Adaptive nonlinear state feedback controller

3.2.1 Background

The adaptive state feedback controller is a state feedback
controller with an adaptation part. It provides an online
estimation of the unknown model parameters in order to
ensure to the system a good trajectory following [22]. The
control law is extracted from the dynamics of the robot
presented in equation (2) and rewritten as:

( )ˆ ˆ ,= +bτ Ma n ν η (8)

where the hat symbol denotes the parameter estimates, a b

the body frame commanded acceleration, and ṋ(ν, η) the
estimate of n(ν, η) in (2). Given that the dynamic model is
linear in its parameters, the adaptive control law (8) can
then be rewritten as:

( ) ˆ, ,= Φ bat n h q (9)

where Φ is the regressor matrix and θ̭ is the vector of the
estimated parameters. The computed input is calculated in
the body frame but the trajectory following is performed in
the earth frame and therefore a b is calculated from a simple
transformation between the body and the earth frame given
by:

( )-= - &1b na J a Jn (10)

where a n is the commanded acceleration in the earth frame
and J  the transformation matrix. To guarantee that the
error converges to zero, a n is chosen as the following
Proportional Integral Derivative (PID) control:

= - - -ò &&& % % %
0

tn
des P I Da K K dt Kh h h h

(11)
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with η̃ =η −ηdes and η̇̃ is its first derivative, ηdes is the desired
trajectory and η̈des is its corresponding acceleration.

The vector of the estimated parameters is updated accord‐
ing to the following update law:

ˆ , , -= -ΓΦ& 1( )T bθ a ν η J y (12)

where Γ is a diagonal positive definite matrix representing
the adaptation gain, J  the transformation matrix, and y the
combined error defined as:

0 1c c= + &% %y h h (13)

c0 and c1 are constant positive gains chosen according to the
algorithm presented in [22] which states that the error on
the trajectory, represented by y, is guaranteed to converge
to zero by applying Barbalat’s lemma. It has to be men‐
tioned that the convergence of y is only possible when the
parameters also converge. Moreover, if the parameters are
not adequately initialised (for instance if their initial values
are too far from the true values), they might never con‐
verge, thus leading to instability of the plant. It is also
important to note that a good parameter convergence is
more guaranteed to occur when the followed trajectory is
rich enough to excite the parameters under study [26].
However, parameters will converge to a set of values that
allow trajectory following. Moreover, under the assump‐
tion of a good initialisation, the parameter vector is seen to
be convergent according to Barbalat’s lemma as shown in
the proof of stability found in [22].

3.2.2 Case of the depth control

Given the available sensors and actuators with which our
underwater vehicle is equipped, we have chosen to study
a trajectory varying along the heave direction. The vector
of parameters to be estimated includes Mz which is the
third diagonal element in the inertia matrix, Dz the third
diagonal element in the damping matrix, and (W −B) the
parameter representing the difference between the weight
and the buoyancy. Even if the addressed problem concerns
depth control, it is worth to note that this study can be easily
generalised to more degrees of freedom. From equations
(8) to (13), we extract the explicit formulation of our
controller as:

ˆ
zt = Φθ (14)

with the vector of the estimated parameters being:

θ̭=

M̭ z

Ḓz

W −B
̭ (15)

the regressor matrix:

( ) ( )b
m d g za w cos cosJ jé ùé ù= F F F = -ë û ë ûΦ (16)

the commanded acceleration in the earth frame:

( ) ( )
02 2 2

=
tn

z P des I des Da K z z K z z dt K z- - - - -ò & (17)

the commanded acceleration in the body frame:

( ) ( ) ( ) ( ) ( )( )( ). .b n
z za cos cos a q sin p cos sin wj J J J j= - - - (18)

the parameter adaptation law:

( ) ( )ˆ . .T
zcos cos yj J= -GΦ&θ (19)

and finally the combined error:

( ) ( )0 1z desy c z z c z= - + & (20)

Since we are performing a regulation around a desired
depth, żdes and z̈des are equal to 0.

Finally, given the configuration matrix T  and the force
coefficient K  explained in equation (4), the control input
can be expressed as:

z
K
t-

=
1Tu (21)

3.3 State variables measurement and estimation

From our dynamical model (3), it appears that the used
state variables are w, z, and ż. z is obtained from the depth
sensor, whose data will also serve for the estimation of ż.
For that, the proposed solution is based on an Alpha-Beta
observer [27] described hereafter. From the estimation of ż,
w will be found using the transformation between the earth
frame and the robot frame. The Alpha-Beta observer is a
simple observer formulated for state estimation in a closely
related fashion to the well known Kalman Filter. Its main
advantage is its independence from the system model
which makes it easily implementable. The aim is to estimate
the two internal states of a system where one state is the
derivative of the second (case of many robotic systems). We
consider the two states as being a position and a velocity,
and then we use a two-step-algorithm: the first step is the
estimation of the states using basic dynamics and the
second step is the update of this estimate using the error
computed from the position measurements and two
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constants α and β tuned empirically. The estimation step is
formulated by the following:

1

1 1

ˆ ˆ .
ˆ ˆ ˆ
k k

k k k

cx x T
v v v

-

- -

= + D

=
(22)

where k  is the iteration, ΔT  the sampling time, and x̭k  and
v̭k  the two estimated states at instant k .

The update step is written as:

( )

ˆ

ˆ ˆ .
ˆ ˆ .

k k kmeas

k k k

k k k

r x x

x x r
v v T r

a

b

= -

= +

= + D

(23)

where rk  is the residual error, xkmeas
 is the measured position

and α and β are two constants between 0 and 1. In our case
the position is the depth z updated with the pressure sensor
and the estimated velocity is ż.

4. Real-time experimental setup

4.1 Modified AC-ROV experimental platform

The AC-ROV (cf. Figure 3-(a)) is an underactuated under‐
water vehicle, whose propulsion system consists of six
thrusters (DC motors + propellers) controlling five degrees

of freedom. These actuators allow controlling the vehicle’s
orientation in pitch and yaw as well as all translational
motions along the three axes (x, y and z). The yaw control
is provided thanks to the differential speed control of the
thrusters 1,2,3, and 4 (cf. Figure 3-(a)). These four thrusters
also control the translation along x and y axes. Pitch control
is obtained using thrusters 5 and 6, whereas the roll is left
uncontrolled. However, the roll dynamics remains stable
due to the positive damping parameter Dxx and because the
centre of gravity is situated below the centre of buoyancy.
The translational motion along the z axis is regulated by
decreasing or increasing the combined speed of thrusters 5
and 6. The axes of the vehicle are shown in Figure 3-(b). For
measurement purposes, our prototype is equipped with
various sensors. A 6 DOF (Degrees of Freedom) MEMS
based IMU (Inertial Measurement Unit) is fixed inside the
body of the AC-ROV in order to be able to measure roll,
pitch, and yaw. A pressure sensor allows depth measure‐
ment. To pre-process and transmit the sensors’ data to the
PC, a microcontroller board is used (cf. Figure 4). Once the
control law has been computed by the control PC, the
values of the control inputs are transmitted to the power
stage through a dedicated microcontroller board. Then, 6
PWM modulated signals are sent to the actuators of the AC-
ROV through the tether. The control software has been
developed using C++ language under Windows Operating
System. Figure 4 shows a schematic view summarising the
various components of the vehicle’s hardware and their
interactions.

(a) (b)

Figure 3. Description of the Prototype, a: AC-ROV underwater vehicle and orientations of the forces produced by the 6 thrusters, b:
AC-ROV Reference Frames (XiYiZi: earth fixed frame, XbYbZb: body fixed frame)

Figure 4. Schematic View of the Hardware Architecture of
AC-ROV Prototype

Our parameter vector has been initialised with our rough
initial knowledge of the system. The gains used in the
experiment are shown in the table below.

Table 2. Parameters values of adaptive controller used in the
experiments.

Parameter Value Parameter Value
KP2 0.5 c1 0.15

KI2 0.45 Mzinitial 3 kg

KD2 0.1 Dzinitial 14 N.s/m

Γ 1.5 (W − B)initial 1 N

co 0.15

5. Experimental Results

In this section the obtained experimental results will be
presented and discussed. The controllers detailed in
section 3 have been used to control the underwater vehicle

described in section 4. We will start by explaining the
different scenarios performed to test the two proposed
controllers and then we will analyse the obtained results
presented through Figures 7 to 17. The vehicle is regulated
to reach a depth of 0.35 m when starting from a static
surface position. On the depth response figures, the light
grey lines represent the noisy measurements of the sensor,
the thick black lines the filtered data and the dashed ones
the desired regulated depth position. The evolution of
the control inputs, generated by the actuators 5 and 6
controlling the movements along the z axis are also plotted
for each scenario. Finally, Figure 17 shows the evolution of
the parameter (W − B).

5.1. Proposed Experimental Scenarios

Three experimental scenarios were performed, namely:

i) Scenario 1: Control in Nominal Conditions:
The objective of this scenario is to control the depth
of the AC-ROV without any external disturbance.
The gains for each controller have been tuned to
accommodate this case and were kept unchanged for
the rest of the experiments.

ii) Scenario 2: Robustness towards External Disturbances
The following external disturbances are considered:

a) Punctual External Disturbance:
In this scenario, when the robot reaches its steady
state position, a vertical mechanical impact is
applied to the vehicle, pushing it downwards.
The objective of this experiment is to evaluate the
ability of the controllers to drive the system back
to its regulated position. As it was experimentally
impossible to reach a perfect repeatability of the
impacts, we repeated each test at least ten times
consecutively for each controller. To allow a
fair comparison of the controllers, the indicated
recovery times, as well as overshoot values, and
residual oscillations correspond to the means of
the measured values during the series of impacts.
The figures corresponding to this scenario have
been selected within the set of figures so as to best
fit the mean behaviour.

b) Persistent External Disturbance (Waves) :
With the launching of the test, waves were
generated manually by periodically disturbing the
environment of the pool which created waves
of approximately 15 cm amplitude. The two
proposed controllers will be tested and compared
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Figure 3. Description of the Prototype, a: AC-ROV underwater vehicle and orientations of the forces produced by the 6 thrusters, b: AC-ROV Reference Frames
(XiYiZi: earth fixed frame, XbYbZb: body fixed frame)

4.2 Conditions of the experiments

The experiments have been performed in a 4m 3 water tank.
The tether has been sufficiently unrolled in order to avoid
additional drag to the dynamics of the vehicle. The feed‐
back gains computed for each of the control laws and used

in nominal conditions, have been kept unchanged during
all the experiments despite some eventual changes in the
physical system (AC-ROV) or its environment in order to
evaluate the robustness of each controller. The noisy data
of the depth measured by the pressure sensor are filtered
using a second order Butterworth filter. The information
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concerning the velocity in the z direction is estimated by an
Alpha-Beta observer with α =0.15 and β =0.045, as described
in section 3. Figure 5 displays the experimental test-bed.

(a) (b)

Figure 3. Description of the Prototype, a: AC-ROV underwater vehicle and orientations of the forces produced by the 6 thrusters, b:
AC-ROV Reference Frames (XiYiZi: earth fixed frame, XbYbZb: body fixed frame)

Figure 4. Schematic View of the Hardware Architecture of
AC-ROV Prototype

Our parameter vector has been initialised with our rough
initial knowledge of the system. The gains used in the
experiment are shown in the table below.

Table 2. Parameters values of adaptive controller used in the
experiments.

Parameter Value Parameter Value
KP2 0.5 c1 0.15

KI2 0.45 Mzinitial 3 kg

KD2 0.1 Dzinitial 14 N.s/m

Γ 1.5 (W − B)initial 1 N

co 0.15

5. Experimental Results

In this section the obtained experimental results will be
presented and discussed. The controllers detailed in
section 3 have been used to control the underwater vehicle

described in section 4. We will start by explaining the
different scenarios performed to test the two proposed
controllers and then we will analyse the obtained results
presented through Figures 7 to 17. The vehicle is regulated
to reach a depth of 0.35 m when starting from a static
surface position. On the depth response figures, the light
grey lines represent the noisy measurements of the sensor,
the thick black lines the filtered data and the dashed ones
the desired regulated depth position. The evolution of
the control inputs, generated by the actuators 5 and 6
controlling the movements along the z axis are also plotted
for each scenario. Finally, Figure 17 shows the evolution of
the parameter (W − B).

5.1. Proposed Experimental Scenarios

Three experimental scenarios were performed, namely:

i) Scenario 1: Control in Nominal Conditions:
The objective of this scenario is to control the depth
of the AC-ROV without any external disturbance.
The gains for each controller have been tuned to
accommodate this case and were kept unchanged for
the rest of the experiments.

ii) Scenario 2: Robustness towards External Disturbances
The following external disturbances are considered:

a) Punctual External Disturbance:
In this scenario, when the robot reaches its steady
state position, a vertical mechanical impact is
applied to the vehicle, pushing it downwards.
The objective of this experiment is to evaluate the
ability of the controllers to drive the system back
to its regulated position. As it was experimentally
impossible to reach a perfect repeatability of the
impacts, we repeated each test at least ten times
consecutively for each controller. To allow a
fair comparison of the controllers, the indicated
recovery times, as well as overshoot values, and
residual oscillations correspond to the means of
the measured values during the series of impacts.
The figures corresponding to this scenario have
been selected within the set of figures so as to best
fit the mean behaviour.

b) Persistent External Disturbance (Waves) :
With the launching of the test, waves were
generated manually by periodically disturbing the
environment of the pool which created waves
of approximately 15 cm amplitude. The two
proposed controllers will be tested and compared
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Figure 4. Schematic View of the Hardware Architecture of AC-ROV
Prototype

Our parameter vector has been initialised with our rough
initial knowledge of the system. The gains used in the
experiment are shown in the table below.

Parameter Value Parameter Value

KP2 0.5 c 1 0.15

K I2 0.45 M zinitial 3 kg

KD2 0.1 Dzinitial 14 N.s/m

Γ 1.5 (W −B)initial 1 N

c o 0.15

Table 2. Parameters values of adaptive controller used in the experiments

5. Experimental results

In this section the obtained experimental results will be
presented and discussed. The controllers detailed in section
3 have been used to control the underwater vehicle
described in section 4. We will start by explaining the
different scenarios performed to test the two proposed
controllers and then we will analyse the obtained results
presented through Figures 7 to 17. The vehicle is regulated
to reach a depth of 0.35 m when starting from a static
surface position. On the depth response figures, the light
grey lines represent the noisy measurements of the sensor,
the thick black lines the filtered data and the dashed ones
the desired regulated depth position. The evolution of the
control inputs, generated by the actuators 5 and 6 control‐
ling the movements along the z axis are also plotted for each
scenario. Finally, Figure 17 shows the evolution of the
parameter (W −B).

5.1 Proposed experimental scenarios

Three experimental scenarios were performed, namely:

i. Scenario 1: Control in Nominal Conditions:

The objective of this scenario is to control the depth of the
AC-ROV without any external disturbance. The gains for
each controller have been tuned to accommodate this case
and were kept unchanged for the rest of the experiments.

ii. Scenario 2: Robustness towards External Disturbances

The following external disturbances are considered:

a. Punctual External Disturbance:

In this scenario, when the robot reaches its steady state
position, a vertical mechanical impact is applied to the
vehicle, pushing it downwards. The objective of this
experiment is to evaluate the ability of the controllers to
drive the system back to its regulated position. As it was
experimentally impossible to reach a perfect repeatability
of the impacts, we repeated each test at least ten times
consecutively for each controller. To allow a fair compari‐
son of the controllers, the indicated recovery times, as well
as overshoot values, and residual oscillations correspond
to the means of the measured values during the series of
impacts. The figures corresponding to this scenario have
been selected within the set of figures so as to best fit the
mean behaviour.

b. Persistent External Disturbance (Waves) :

With the launching of the test, waves were generated
manually by periodically disturbing the environment of the
pool which created waves of approximately 15 cm ampli‐
tude. The two proposed controllers will be tested and
compared in this situation where the controlled system is
subject to this persistent external disturbance and deduce
which one could be more suitable for applications per‐
formed in shallow waters, where waves are likely to be
present.

iii. Scenario 3: Robustness towards Modelling Uncertain‐
ties

In this scenario two uncertainties on two parameters will
be considered, namely:

a. Change in Buoyancy:

The physical system has been changed by the addition of a
rectangular piece of polyester as shown in Figure 6-(b)
introducing a change of buoyancy of approximately +0.32
N and bringing a variation of 32% to the parameter
(W −B). The aim of this modification is to impede the
motion of the system downwards due to its new tendency
to float. The objective of this scenario is to see whether the
proposed controllers are sufficiently robust to compensate
this uncertainty and keep the performance of the controlled
closed-loop system.
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b. Change in Damping:

As before, the physical system has also been changed by
the addition of a floating rectangular ruler on the top of the
vehicle as shown in Figure 6-(c) to increase the damping.

As before, we would like to study the effects of this change
on the response of the system and evaluate the performance
of the proposed two controllers.
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Figure 5. View of the AC-ROV Experimental Test-Bed:
1©: Control PC, 2©: External hardware case, 3©: Power Input, 4©: Switch, 5©: Emergency stop button, 6©: Video in, 7©: AC-ROV tether in, 8©:
Ethernet cable, 9©: Video Capture, 10©: 40-metre tether, 11©: AC-ROV
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Figure 6. View of the AC-ROV in different configurations: a: Nominal conditions, b: Buoyancy change, c: Damping change

in this situation where the controlled system is
subject to this persistent external disturbance and
deduce which one could be more suitable for
applications performed in shallow waters, where
waves are likely to be present.

iii) Scenario 3: Robustness towards Modelling
Uncertainties
In this scenario two uncertainties on two parameters
will be considered, namely:

a) Change in Buoyancy:
The physical system has been changed by the
addition of a rectangular piece of polyester as
shown in Figure 4-(b) introducing a change of
buoyancy of approximately +0.32 N and bringing
a variation of 32% to the parameter (W − B). The
aim of this modification is to impede the motion
of the system downwards due to its new tendency
to float. The objective of this scenario is to see
whether the proposed controllers are sufficiently
robust to compensate this uncertainty and keep the
performance of the controlled closed-loop system.

b) Change in Damping:
As before, the physical system has also been
changed by the addition of a floating rectangular
ruler on the top of the vehicle as shown in Figure
4-(c) to increase the damping. As before, we
would like to study the effects of this change
on the response of the system and evaluate the
performance of the proposed two controllers.

5.2. Control in Nominal Conditions

Figure 7 displays the evolution of the controlled vehicle’s
position for each of the proposed controllers. The PID
controller in Figure 5-(a) needs around 80 seconds to reach
steady state with an overshoot of 57%. Note that the
delay of 40 seconds, noticed in Figure 5-(a), is caused by
the time needed for the integral part to compensate the
floatability of the robot ((W − B) ≈ −1 N). The adaptive
controller reveals to be much faster and converges to the
desired depth in 20 seconds with an overshoot of 28%.
The settling time of this controller also coincides with the
time needed for the parameter (W − B) to converge to its
steady state value (cf. Figure 15-(a)). The evolution of
this parameter is depicted in Figure 15-(a) and reaches a
steady state value of −0.97 N. The other two parameters
did not evolve noticeably and hence were not represented.
The reason of this latter observation lies behind the idea
of enough parameter excitation that needs to be present in
order to induce changes. The suggested trajectory excites
mainly the parameter (W − B) which has a big effect on
the dynamics of the vehicle. The initial parameter of
Mz was carefully initialised since it was only required to
weigh the robot. Indeed, the added elements shown in
Figures 4-(b) and 4-(c) to increase the buoyancy and the
damping respectively have a negligible weight. As for the
parameter Dz, its rough initial estimate was enough since
the vehicle moves at low velocities. As explained in section
3, assuming that the parameters are adequately initialised,
they will converge. Once they have converged for the first
time, it is convenient to record the values of this "nominal"
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1©

ւ

2©

↑

3©
↑

4©
↑

5©
↑

6©
↑

7©
↑

8©
↑

9©

↑

10©

↑

11©

↑

Figure 5. View of the AC-ROV Experimental Test-Bed:
1©: Control PC, 2©: External hardware case, 3©: Power Input, 4©: Switch, 5©: Emergency stop button, 6©: Video in, 7©: AC-ROV tether in, 8©:
Ethernet cable, 9©: Video Capture, 10©: 40-metre tether, 11©: AC-ROV

(a) (b)

Piece of polyester foam
fixed on top of the robot

(c)

Plastic ruler fixed
on top of the robot

Figure 6. View of the AC-ROV in different configurations: a: Nominal conditions, b: Buoyancy change, c: Damping change

in this situation where the controlled system is
subject to this persistent external disturbance and
deduce which one could be more suitable for
applications performed in shallow waters, where
waves are likely to be present.

iii) Scenario 3: Robustness towards Modelling
Uncertainties
In this scenario two uncertainties on two parameters
will be considered, namely:

a) Change in Buoyancy:
The physical system has been changed by the
addition of a rectangular piece of polyester as
shown in Figure 4-(b) introducing a change of
buoyancy of approximately +0.32 N and bringing
a variation of 32% to the parameter (W − B). The
aim of this modification is to impede the motion
of the system downwards due to its new tendency
to float. The objective of this scenario is to see
whether the proposed controllers are sufficiently
robust to compensate this uncertainty and keep the
performance of the controlled closed-loop system.

b) Change in Damping:
As before, the physical system has also been
changed by the addition of a floating rectangular
ruler on the top of the vehicle as shown in Figure
4-(c) to increase the damping. As before, we
would like to study the effects of this change
on the response of the system and evaluate the
performance of the proposed two controllers.

5.2. Control in Nominal Conditions

Figure 7 displays the evolution of the controlled vehicle’s
position for each of the proposed controllers. The PID
controller in Figure 5-(a) needs around 80 seconds to reach
steady state with an overshoot of 57%. Note that the
delay of 40 seconds, noticed in Figure 5-(a), is caused by
the time needed for the integral part to compensate the
floatability of the robot ((W − B) ≈ −1 N). The adaptive
controller reveals to be much faster and converges to the
desired depth in 20 seconds with an overshoot of 28%.
The settling time of this controller also coincides with the
time needed for the parameter (W − B) to converge to its
steady state value (cf. Figure 15-(a)). The evolution of
this parameter is depicted in Figure 15-(a) and reaches a
steady state value of −0.97 N. The other two parameters
did not evolve noticeably and hence were not represented.
The reason of this latter observation lies behind the idea
of enough parameter excitation that needs to be present in
order to induce changes. The suggested trajectory excites
mainly the parameter (W − B) which has a big effect on
the dynamics of the vehicle. The initial parameter of
Mz was carefully initialised since it was only required to
weigh the robot. Indeed, the added elements shown in
Figures 4-(b) and 4-(c) to increase the buoyancy and the
damping respectively have a negligible weight. As for the
parameter Dz, its rough initial estimate was enough since
the vehicle moves at low velocities. As explained in section
3, assuming that the parameters are adequately initialised,
they will converge. Once they have converged for the first
time, it is convenient to record the values of this "nominal"
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Figure 6. View of the AC-ROV in different configurations: a: Nominal conditions, b: Buoyancy change, c: Damping change

5.2 Control in nominal conditions

Figure 7 displays the evolution of the controlled vehicle’s
position for each of the proposed controllers. The PID
controller in Figure 7-(a) needs around 80 seconds to reach
steady state with an overshoot of 57%. Note that the delay
of 40 seconds, noticed in Figure 7-(a), is caused by the time
needed for the integral part to compensate the floatability
of the robot (W −B)≈ −1 N). The adaptive controller reveals
to be much faster and converges to the desired depth in 20
seconds with an overshoot of 28%. The settling time of this
controller also coincides with the time needed for the
parameter (W −B) to converge to its steady state value (cf.
Figure 17-(a)). The evolution of this parameter is depicted
in Figure 17-(a) and reaches a steady state value of −0.97 N.

The other two parameters did not evolve noticeably and
hence were not represented. The reason of this latter
observation lies behind the idea of enough parameter
excitation that needs to be present in order to induce
changes. The suggested trajectory excites mainly the
parameter (W −B) which has a big effect on the dynamics
of the vehicle. The initial parameter of Mz was carefully
initialised since it was only required to weigh the robot.
Indeed, the added elements shown in Figures 6-(b) and 6-
(c) to increase the buoyancy and the damping respectively
have a negligible weight. As for the parameter Dz, its rough
initial estimate was enough since the vehicle moves at low
velocities. As explained in section 3, assuming that the
parameters are adequately initialised, they will converge.
Once they have converged for the first time, it is convenient

8 Int J Adv Robot Syst, 2015, 12:13 | doi: 10.5772/59185



to record the values of this "nominal" set of parameters and
to initialise them with these values for the next experi‐
ments. If we had not initialise them to these values, this
would have simply induce a delay (convergence time of the
parameters) but the comparison with the PID would not
have been fair. The convergence of parameters that have
been initialised with erroneous values will be illustrated by
the results of scenario 3.

The maximal admissible force that can be generated by the
motors is F =2 N and we can notice from the curves of
Figure 8 that this limit has not been exceeded and that the

control force oscillates around a steady state value of 0.5 N
for both controllers. We notice though that the control input
exhibits larger oscillations (noise) in the case of the adaptive
control. This point is important as it not only increases the
power consumption (this is however not critical for
tethered vehicles like ROV), but it also increases the
thrusters’ fatigue. This noise in the control inputs is mainly
due to the noisy depth measurement (even when filtered)
and to the derivative term of the controller. The possible
solutions of this problem are indicated in the conclusion of
the paper.
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Figure 7. Depth Response in Nominal Regime
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Figure 8. Control Input in Nominal Regime
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Figure 9. Depth Response in Presence of a Punctual Disturbance
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5.3 Robustness to external disturbances

5.3.1 Punctual external disturbance

As specified  earlier,  series  of  mechanical  impacts  have
been applied on the vehicle after  it  has reached steady
state  (cf.  Figure  9).  For  the  PID  controller,  the  mean
recovery time was of 30 seconds against 25 seconds for
the  adaptive  controller.  The  system  responses  of  both
controllers are similar even though we can notice larger
oscillations around the regulated depth with the PID after

the  recovery  from  the  disturbance  was  achieved.  The
control  inputs  shown in  Figure  10  reveal  an important
overshoot  with  the  adaptive  controller,  while  the  PID
witnesses  a  decrease  in  its  commanded  input  in  abso‐
lute value. The former controller had a sudden change in
its  parameters  leading  to  an  overshoot  of  1.5  N  in  its
control input, while the latter was compensating for the
induced error by sending a lower order to the thrusters.
In this case, the PID controller seems to behave better in
terms of energy consumption.
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5.3.2 Persistent external disturbance (Waves)

The obtained results of this scenario are depicted in Figures
15 and 16. Figure 15 shows the system response of the robot
in presence of disturbing waves. Varying oscillations
around the regulated depth are observed with both
controllers. However, those of the PID controller are more
significant with an average of 20 cm amplitude. It is worth
to notice that the adaptive controller exhibits smaller
oscillations with 10 cm of average amplitude which means
that it was able to partially attenuate the effect of the waves
in order to remain around the value of the desired depth.
The oscillations observed in Figure 15-(a) are reflected in
Figure 16-(a) where the control input is observed to be
oscillating without converging to a steady state value. In
Figure 16-(b), less severe oscillations can be observed on the
control signals generated by the adaptive controller.

5.4 Robustness to modelling uncertainties

5.4.1 Change in buoyancy

The additional buoyancy incorporated in the system
disturbs in a persistent way the motion of the vehicle that
would tend to float more. The PID controller in this case
responded with a delay of 35 seconds and an overshoot of
128% ; furthermore oscillations of approximately 10 cm can

clearly be observed around the desired depth (cf. Figure
11-(a)). Its control input seems to be similar to the nominal
case except that it stabilises to a steady state value in a
steeper manner with some small oscillations. We notice in
this scenario a new delay in Figure 11-(b) when applying
the adaptive controller. The delay is of 8 seconds and the
settling time is of 40 seconds compared to 20 seconds in
nominal conditions. This can be explained with the
necessary time to adapt the parameter to the change and
converge to its new steady state value of −1.18 N which also
took 40 seconds to be reached (cf. Figure 17-(b)). The added
buoyancy is found to be 0.21 N (−0.97− (−1.18)=0.21 N)
when comparing the steady state values of the parameter
(W −B) in Figures 17-(a) and 17-(b). This value of 0.21 N is
close to the real one (0.32 N) by 65%. It is worth to note that
adaptive controllers do not necessarily ensure the conver‐
gence of the updated parameters to their desired values [26]
in order to obtain the convergence of the system to its
desired position. The control law detailed in section 3.2
ensures the boundedness of the parameters but not
necessarily their convergence to the real values. Concern‐
ing the control inputs generated by this controller, and
depicted in Figure 12-(b), we can observe that the robot’s
actuators are exerting more effort and they oscillate around
a mean value of 0.65 N. These oscillations are seen to be
larger than with the PID case. This profile reveals the
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additional difficulty experienced by the motors in order to
immerse the vehicle.

5.4.2 Change in damping

Similarly to the previous scenario, a change in the physical
system was considered. It was integrated to damp the dive
of the vehicle as illustrated in Figure 6-(c). The PID con‐
troller in Figure 13-(a) starts reacting at around 40 seconds
and displays an overshoot of 171% but reaches steady state
after 80 seconds. The required control input generated by

this controller (cf. Figure 14-(a)) has a maximal value of 0.9
N and converges to a steady state value of 0.55 N after a
small oscillation matched with the oscillation observed in
the response of the system. The adaptive controller stabil‐
ises the system with a settling time of 20 seconds and a small
overshoot of 28% like the nominal case but the oscillations
around the desired depth are more important. The re‐
sponse could have been improved with a better excitation
of the parameter Dz.
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Figure 15. Depth Response in Presence of Waves
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5.5 Summary of comparison between the proposed controllers

Table 3 below summarises the comparisons performed
above between the two proposed controllers for different
scenarios. Some relevant criteria have been chosen to
perform this comparison which has been done in a quali‐
tative and quantitative way depending on the criterion. It
can be easily seen that the adaptive controller drives the
system to steady state faster than the PID controller.
Indeed, its closed-loop response has a settling time of
approximately three times smaller than the case of the PID
controller. This difference can be explained (as mentioned
before) by the fact that the PID controller needs some time
for its integral action to counterbalance the effect of the
floatability. The adaptive controller needs a certain time to
converge its parameters to their steady state values.
However, this time depends on the adaptation gain and can
therefore be shortened by increasing this design parameter.
However, it is known that the adaptive control is not robust
when the adaptation gain is set to be high and that justifies
the reasonable choice of Γ =1.5 (see Table 2). The settling
time of the closed-loop system controlled by the PID is
around 60 seconds in the nominal case, however it increases
to 80 seconds when considering the uncertainty on damp‐

ing. In the case of the adaptive controller, the settling time
is around 20 seconds but it doubles when an uncertainty on
buoyancy is considered. Indeed, this unexpected uncer‐
tainty will lengthen the necessary time for the parameters
to converge to their steady state values. Therefore the
control input will be changed accordingly which affects the
settling time of the closed-loop system. The PID controller
always exhibits large overshoots when any kind of change
is introduced to the system, while the adaptive controller
stays around the performance of its nominal conditions
thanks to the adaptation of its parameters. Regarding the
precision of the output response, it is worth to note that the
depth sensor used has an uncertainty of 5 cm and that’s
why the steady state oscillations were meant to be quanti‐
tatively indicated. The adaptive controller requires more
energy than the PID controller and this can be shown from
the more relevant force generated by the thrusters. This
behaviour can be explained by the fact that the adaptive
controller remains faster and more robust to all kind of
disturbances. Even though both controllers could not
compensate completely the persistent disturbance (waves),
the adaptive controller was able to better compensate for it
with less significant oscillations.

Nominal Conditions PID Controller Adaptive Controller

Settling Time 60 s 20 s

Maximum Overshoot 57% 28%

Residual oscillations 5 cm 2.5 cm

Control Input Oscillations of 0.1 N Oscillations of 0.5 N

ISTSE 0.1458 s2.m2 0.0107 s2.m2

Punctual Disturbance

Recovery Time 30 s 25 s

Maximum Overshoot 80% 80%

Residual oscillations 5 cm 2.5 cm

Control Input Smooth motor response Overshoot of 1.5 N

Persistent Disturbance: Waves

Maximum Overshoot 80% 37%

Residual oscillations 20 cm average 5 cm

Control Input Oscillations of 0.2 N Oscillations of 0.2 N

Change in Buoyancy

Settling Time 60 s 40 s

Maximum Overshoot 128% 28%

Residual oscillations 10 cm 2.5 cm

Control Input Overshoot of 0.95 N 1 N oscillations and later 0.5 N

ISTSE 0.1572 s2.m2 0.0343 s2.m2

Change in Damping

Settling Time 80 s 20 s

Maximum Overshoot 171% 28%

Residual oscillations 2.5 cm 10 cm

Control Input Overshoot of 0.9 N Oscillations of 1 N

ISTSE 0.2236 s2.m2 0.0283 s2.m2

Table 3. Controllers Performance Comparison
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6. Conclusion

This paper deals with the problem of depth control of an
underwater vehicle. The proposed solution lies in an
experimental comparison study between a PID controller
and a nonlinear adaptive one, both applied on the modified
AC-ROV underwater vehicle. These two controllers have
been tested in various conditions such as nominal case as
well as different situations to highlight robustness towards
external disturbances and uncertainties. To the best
knowledge of the authors, such an experimental study
comparing the performance of two proposed controllers
was not conducted before. It gives a good insight on the
robot’s behaviour in real environments when carrying out
different tasks. The adaptive controller was observed to
converge faster than the PID controller and compensate
better for external disturbances and parameters changes.
Furthermore, less overshoots and oscillations were ob‐
served on the output response with the adaptive controller.
The only drawback of the latter is the oscillations observed
on the control input. This is due to its need to react fast and
ensure the convergence of the parameters. Our future work
includes the design and implementation of a nonlinear
multivariable L1 adaptive controller, for depth and pitch
control of the same underwater vehicle.
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