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FEEDFORWARD INERTIAL ACTUATION FOR ROLL

STABILIZATION OF AN UNDERACTUATED

UNDERWATER VEHICLE

Divine Maalouf*, Vincent Creuze*, Ahmed Chemori*, and Olivier Tempier ∗

Abstract

This paper deals with a novel control architecture for roll stabilization of an underactuated under-

water vehicle. This method relies on the use of an internal rotor to generate inertial counter torque

in order to cancel out the disturbances affecting the roll. Moreover, the dynamic model incorporates

the thrusters’ dynamics, and undesirable effects are compensated by a feedforward approach. The

performance and efficiency of the proposed control scheme are illustrated by simulation results.
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1 Introduction

Underwater vehicles have recently attracted a great deal of interest from scientists, engineers,

industries and control theorists. These various communities envision in this technology a very
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useful tool for undersea exploration and complex missions. Depending on the mission needed,

various types of vehicles can be used. However, their size has a great impact on their stability.

In the case of big underwater vehicles (weighing more than 100 kg), the inertia combined with a

poor power/mass ratio contributes to increase the vehicle’s stability. Inversely, the inertia of small

underwater vehicles (weighing less than 30 kg) renders them more sensitive to external distur-

bances (shock, hydrodynamic effects, etc...). Moreover, such a class of vehicles often offers a high

power/mass ratio, thus increasing manoeuvrability but also leading to internal disturbances due to

the dynamical effects of the thrusters themselves. In fact, the inertial counter torques, as well as

the gyroscopic effects produced by the motors and the propellers, induce variations in the robot’s

attitude. These variations are caused by the disturbing effects coming from the acceleration of the

motors. In addition to these effects, the propeller torque can be seen to have the most important

impact on the vehicle’s orientation. Indeed, most of the above listed effects have been already

incorporated in various applications of aerial vehicles [1], but rarely been considered in underwa-

ter vehicles. The main reason behind this omission is the presence of nonlinear hydrodynamic

and viscous effects considered predominant and the usual use of big sized vehicles attenuating the

disturbances caused by the thrusters. Nevertheless, some control methods based on gyroscopic sta-

bility and internal actuation have been used in underwater systems. They were firstly investigated

in [2][3][4][5] where the behavior of the open-loop was analyzed. Physical motivation was used

to exploit geometry in order to stabilize unstable motions. From this study, the idea to use internal

actuation to stabilize an underwater vehicle was born. A reduced model of an ellipsoidal vehicle

having one or two rotors inside was initially proposed [6]. Then, a full model was presented and

validated through simulation results [7][8][9]. This ongoing research of internal momentum ex-

change led to the development of the underwater vehicle IAUMBUS [10]. A scheme for attitude

control based on gyroscopic torques was presented in [11] and [12]. Four control moment gyros

units arranged in a pyramid configuration were introduced inside IKURA, a zero-G vehicle (its

center of buoyancy and gravity are coincident). It was the first robot able to dive with a vertical
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pitch and then surface in surge. Our interest is directed towards less conventional control methods

of small underactuated vehicles based on a more complete model of their dynamics. The control

method of interest falls among the less conventional schemes that would use the nonlinearities of

the model emerging from the inertial counter torques as a mean of stabilization rather than ne-

glecting them. The study performed in this paper uses a small underwater vehicle unactuated in

roll. The proposed solution aims at stabilizing the roll, while compensating for the undesirable

effects caused by the thrusters. The method relies on the use of an internal inertial disk, whose

acceleration stabilizes the roll. The undesirable coupled torques affecting the pitch and yaw are

then compensated by a feedforward added to a nonlinear state feedback control law [13]. To the

best knowledge of the authors this is the first study that includes all the undesirable effects of the

thrusters’ dynamics and incorporates them in the control scheme with the aim of compensating

them. The paper is structured as follows: in section 2 the used prototype is described, in section 3

the equations of the dynamic model and the disturbance effects are presented, the proposed control

scheme is explained in section 4 and simulation results are presented and discussed in section 5.

Conclusions are brought in section 6.
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Figure 1: View of the vehicle under study with the orientations of the thrusts and the axis of the
disk (a) as well as a transversal cut showing the positions of the propellers, motors, and added disk
(b)(c). The body-fixed frame of reference (xbybzb) is also shown along with the angle pertaining to
each axis (b)(c).
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2 System Description

In this paper the vehicle under study is neutrally buoyant, has a cubic shape and weighs 3kg. This

setup correspond to the commercial AC-ROV vehicle (ACCESS Ltd). This latter is equipped with

two vertical thrusters (acting on depth and pitch) and four horizontal thrusters (acting on surge,

sway, and yaw). As three thrusters are sufficient to control these three latter degrees of freedom,

we have replaced one of the four propellers with a disk made of lead as depicted on Fig. 1(b). Gear

trains connect each motor to its propeller under an angle of π/2rad. Fig. 1(a) shows the direction of

the thrust exerted by the propellers, as well as the axis of rotation of the added disk. Two transversal

cuts of the robot are also shown to present the system components and their configuration. Fig.

1(b) displays the propellers and the disk, whereas Fig. 1(c) displays the orientation of the motors.

All the motors are positionned in the (x, y) plane. In this paper, we are interested in the control of

the orientation only, the translation will not be treated. The yaw control is provided thanks to the

differential speed control of the thrusters 1 and 2. Pitch control is ensured using thrusters 3 and 4,

whereas the roll is not actuated by thrusters. The rotational velocity ωdisk seen in Fig.1(a) refers

to the angular velocity of the rotor inserted inside the vehicle. It is coupled to a disk of steel. The

dimensions of this disk are to be designed.

τ is the vector of torques produced by the thrusters to control the orientation angles with τ =

[0 τpitch τyaw]T . Therefore the control input expressed in N.m is given by:

τ = T Kω|ω| (1)

where T ∈ R3×4 is the thrusters’ configuration matrix taking into account the position and orien-

tation of the propellers. K is the control input coefficient of proportionality between the angular

velocity and the obtained torques. ω ∈ R4 is the vector of angular velocities of the motors actuating

the four propellers, in rad.s−1.

4



3 Dynamic Modeling of the Underwater Vehicle

Figure 2: View of the vehicle under study with the body-fixed frame (xbybzb) and the earth-fixed
frame (xiyizi).

3.1 Background

The dynamic model used follows the representation shown in Figure 2 and described in [13]. The

degrees of freedom under study are: roll, pitch, and yaw. Our dynamic model is written as:

η̇ = Tr(η)ν (2)

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + wd (3)

where ν = [p, q, r]T , η = [φ, θ, ψ]T are vectors of angular velocities (in the body-fixed frame) and

Euler angles (in the earth-fixed frame) respectively. Tr(η) ∈ R3×3 is the transformation matrix

mapping the body-fixed angular velocities to the earth-fixed ones. The model matrices M(η),

C(η), and D(η) ∈ R3 denote inertia (including added mass), Coriolis-centripetal (including added

mass), and damping respectively, while g(η) is a vector of gravitational/buoyancy forces. τ ∈

R3 is the vector of control inputs acting only on pitch and yaw (τroll = 0 N). wd ∈ R
3 is the

vector of disturbances to be detailed here after. In the case of our study, the vehicle used has a
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slow dynamics, and hence it will be moving at velocities low enough to make the Coriolis terms

negligible (C(ν) ≈ 0).

3.2 Disturbance effects

In the dynamical model (3), external disturbances coming from the environment are not taken into

account and therefore wd only holds the undesirable effects induced by the thursters dynamics. The

impact of these effects is put upfront in this paper by considering their models and incorporating

them in the vehicle’s model. Then, the vector wd takes the following form:

wd = −τctm − τctp − Q − τGyrom − τGyrop (4)

The first two terms represent the inertial counter torques of the motors and propellers respectively.

Q is the propeller load torque and the last two terms are the gyroscopic effects produced by the

motors and the propellers. Given the configuration of the motors and propellers, we notice that

their axes of rotation do not coincide with the ones of the robot. For this reason, all the torques

calculated are projected into the robot’s frame. This adds coupling and complexity to the system.

The details of their computation are given here below:

• Inertial counter torques: This term appears on the rotational axis of each motor and propeller

given that they have different axes as illustrated in Fig. 1(b) and Fig. 1(c). It occurs upon a

change in the rotational velocity of the motor and propeller generating an opposing resisting

torque on the vehicle. It is given by:

τctmi = Jmω̇i for each motor i (i = 1...4) and for the disk’s motor, with Jm the rotor inertia

and ω̇i the time derivative of its angular velocity. Combining the effects of all the motors and

projecting them along the robot’s axes, we get:

τctm = [τctmroll τctm pitch τctmyaw] with
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τctmroll = cos(π4 )(τctm1 − τctm2 + τctm3 − τctm4 + τctmdisk)

τctm pitch = sin(π4 )(−τctm1 + τctm2 + τctmdisk)

τctmyaw = 0

τctmyaw is null since the motors are in the (x, y) plane and therefore they have no effect on yaw.

Similarly, the same equation is applied for each propeller: τctpi
= Jp

ω̇i
Gratio

with i (i = 1...4), Jp

being the propeller inertia and Gratio the gear ratio between the motor and the propeller. The

expression of the vector τctp is not explicitly written since it can be obtained by performing

similar projections as for the case of the motors.

• Propeller load torque: The propeller load torque acts on the system in the opposite sense of

the propeller angular velocity. It is given as a function of the thrusters’ parameters that will

be incorporated in our study in a lumped parameter Kq. We therefore get: Qi = Kq|
ωi

Gratio
|
ωi

Gratio
,

and Q = [cos(π4 )(Q1 − Q2), sin(π4 )(Q1 − Q2), −Q3 − Q4]T .

ωm

ωdisk

ω = [ωm ωdisk]T

ωm = [ω1 ω2 ω3 ω4]T

τdes

ω

η, η̇, η̈

ηdes, η̇des, η̈des

ν

τdes f

Figure 3: Block diagram of the proposed control scheme.

• Gyroscopic torques: These disturbances are caused by the gyroscopic effect induced when a
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change in the angular momentum of the motors or propellers occurs. It is given by: τGyromi
=

Jmωi ∧ ν for the motors with i (i = 1...4) and for the disk’s motor, ν = [p, q, r]T being the

rotational velocity of the vehicle. Similarly for the propellers we have: τGyropi
= Jp

ωi
Gratio
∧ ν

with i (i = 1...4) . In most studies these effects are neglected. However, in this paper, we

will demonstrate their impact on the vehicle’s dynamics by neglecting them first and then

including them.

4 Proposed Control Scheme

The model presented in (3) is subjected to various disturbances emanating from its actuation and

movements. These undesirable effects have an impact on the performances of the closed-loop

system especially when dealing with a small vehicle. Our objective is to design and implement a

contol law that will take into account these disturbances and improve the behavior of the vehicle

in closed-loop. The proposed control scheme illustrated through the block diagram of Fig. 3 is

described in three main parts, namely:

1. Nonlinear State Feedback Control: This controller, as suggested in [13], is applied to the

actuated variables of the orientation vector (θ and ψ).

2. Roll stabilization: In the absence of external disturbances, oscillating effects appear on roll

given the coupling between the degrees of freedom due to the configuration of the motors

shown in Fig. 1.These oscillations are induced by the propeller load torque and by the iner-

tial counter torque of both motors and propellers. An internal disk is then incorporated to

compensate these effects by producing a calculated inertial counter torque.

3. Feedforward Control: This part incorporates the calculated compensation along pitch and

yaw of the undesirable torques produced by the thrusters and the compensation of the dis-

turbing effects along the pitch induced by the rotation of the above mentionned disk.

In the following, these three parts of the control scheme will be detailed.
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4.1 Nonlinear State Feedback Control

The proposed nonlinear state feedback controller is that suggested in [13] which is based on the

linearization of the commanded acceleration an for a trajectory following in the earth frame. To

guarantee that the error converges to zero, an is then chosen as the following Proportional Integral

Derivative (PID) control:

an = η̈des − KPη̃ − KI

∫ t

0
η̃ dt − KD ˙̃η (5)

with η̃ = η − ηdes and ˙̃η is its first derivative, ηdes is the desired trajectory and η̈des is its second

derivative. The computed input is calculated in the body-fixed frame but the trajectory following

is performed in the earth-fixed frame and therefore ab, the acceleration in the body-fixed frame, is

calculated from the simple following transformation:

ab = T−1
r (η)(an − Ṫr(η) ν) (6)

Introducing equation (6) in the dynamic model (3), the control law that cancels the nonlinearities

is then chosen to be:

τdes = Mab + C(ν)ν + D(ν)ν + g(η) (7)

τdes being the desired forces and torques to be applied to the vehicle. One remarks that the distur-

bance term wd, explained in (3), is not yet taken into account but will be compensated through the

feedforward explained below yielding to the final vector τdes f .

4.2 Disk-based Roll Compensation

We propose to use the acceleration of the disk’s motor as a control input to induce a torque that

cancels the effects on the roll. The torque τroll provided by the disk should be equal in magnitude

to the disturbing effects and also opposite in direction in order to ensure a complete compensation.

From the definitions and equations provided in section 3.B, we get:
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τroll = −(τctm3
− τctm4

) − cos(π4 )(τctm1
− τctm2

− τctp1
+ τctp2

− Q1 + Q2)

Taking into account the configuration of the motor and disk, the inertial counter torque produced

by the disk along the roll axis is then expressed by:

cos(π4 )(− Jdisk
Gratio

ω̇disk + Jmω̇disk) = τroll

We extract from this last equation the acceleration ω̇disk to be applied in order to compensate the

effects induced on the roll and stabilize it. However, in many underwater vehicles, (this is the case

of the AC-ROV for instance) size constraints do not allow the disk’s axis to be parallel to the x axis

of the vehicle. This implies a coupled effect on roll and pitch. This problem is overcome thanks to

the proposed feedforward described hereafter.

4.3 Feedforward Compensation of Pitch and Yaw Disturbances

The vector τdes ∈ R
3 is described in (7). The vector of angular velocitiesω can therefore be deduced

from (1) and it will be used for the computation of the feedforward control to be summed with τdes

in order to compensate the disturbing effects induced by the motors, the propellers, and the disk.

Similarly to the compensation of the roll performed above, we compute the torques needed on the

pitch and yaw:

• Feedforward for the pitch control input:

τ f f θ = −sin(π4 )(−τctm1
+ τctm2

− τctp1
+ τctp2

+ τctdisk − Q1 + Q2)

• Feedforward for the yaw control input:

τ f f ψ = −τctp3
− τctp4

+ Q3 + Q4

All the terms have been detailed in the previous section. It is worth to note that τctdisk is the counter

torque induced by the disk’s rotor. We will finally get:

τ f f = [0 τ f f θ τ f f ψ]T and the final expression of the control input becomes τdes f = τdes + τ f f .
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(a) Scenario 1: Nonlinear state
feedback applied on yaw and pitch
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(b) Scenario 2: Nonlinear state
feedback applied on yaw and pitch
with roll stabilization
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(c) Scenario 3: Proposed Controller

Figure 4: Time history of the measured orientation angles in blue as well as the desired trajectories
in yaw and pitch in dotted red lines for the three scenarios.

(a) (b) (c)

Figure 5: Angular velocities of the motors in (a) the first scenario, (b) the second scenario and (c)
the third scenario.

5 Numerical Simulations

The efficiency of the proposed control scheme is put at stake in the following numerical simulations

by displaying the time history of the orientation angles. Three scenarios have then been tested,

namely: nonlinear state feedback applied on yaw and pitch, nonlinear state feedback applied on

yaw and pitch with disk-based roll stabilization, and finally the proposed controller including disk-
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based roll stabilization and feedforward compensation. The input model parameters used in the

numerical simulations are summarized in table 1. Simulations have been performed in Matlab

software with the well-proven mss simulator [14]. The obtained results are displayed in Fig. 4

along with the control inputs being the torques of the motors (cf. Fig. 5). A desired oscillating

trajectory in yaw is generated to put upfront the disturbances on the roll and pitch. These latter two

degrees of freedom are stabilized around 0 deg. In a fourth scenario, we finally study the influence

of the gyroscopic effect and we focus on its dependance with respect to the disk’s size.

Table 1: Input model parameters values used in simulations.

Parameter Description Value

Jm Rotor inertia 5.7 × 10−7kg.m2

Jp Propeller inertia 1.59 × 10−6kg.m2

Kq Propeller torque coefficient 9.25 × 10−8N.m.rad−1.s
Jdisksmall Small disk inertia 3.52 × 10−5kg.m2

Jdiskmedium Medium disk inertia 4.56 × 10−5kg.m2

Jdiskbig Big disk inertia 5.1 × 10−5kg.m2

5.1 Scenario 1: Nonlinear State Feedback applied on the yaw and pitch

The aim of this scenario is to show the induced effects of the motors and propellers on the roll and

pitch when the roll is not controlled. The pitch is controlled to remain stable around 0 deg while

a desired trajectory oscillating from −45 deg to +45 deg is imposed on the yaw. This persistent

oscillation is intentionally made to observe the induced disturbances on the remaining degrees of

freedom in orientation. Fig. 3(a) displays the evolution of the three orientation angles under study.

In this example, we observe that the yaw follows the desired trajectory in closed-loop under the

nonlinear state feedback controller, while the pitch despite being controlled, exhibits some minor

residual oscillations ranging from −0.6 deg to +0.6 deg. Due to the configuration of the thrusters,

the roll is not actuated. However, thanks to the positive metacentric distance, the roll angle remains
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naturally stable with oscillations varying from −4 to +4.5 deg. Fig. 4(a) shows the torques of the

motors. Motors 1 and 2 controlling the yaw have an angular velocity of around 1100 rad/s whereas

motors 3 and 4 stabilizing the pitch have angular velocities of around 300 rad/s. In this scenario

the disk’s motor is kept off.

5.2 Scenario 2: Nonlinear State Feedback applied on yaw and pitch with disk-based roll

stabilization

In this scenario, the objective is to control all the degrees of freedom pertaining to the orientation.

The desired trajectory in yaw is the same as the previous scenario, while the pitch is stabilized

around 0 deg. These two degrees of freedom are controlled using the nonlinear state feedback

controller. The roll is stabilized thanks to the effect of the disk’s acceleration. This latter cancels

out the disturbances caused by the coupled effects of the thursters. Fig. 3(b) displays the evolution

of the orientation angles. In this example, we can clearly see that the amplitude of the oscillations

in pitch is increased in the closed loop response (from −1.2 deg to +1.3 deg) in comparison with the

previous scenario. This is due to the effects induced by the disk and its associated motor. However,

one observes that the effects on the roll were reduced by half compared to the previous scenario,

that is, current oscillations are ranging from −1.7 deg to +2.5 deg. The rotational velocities of the

motors 1 and 2 in this scenario are similar to the previous case (cf. Fig. 4(b)), motors 3 and 4

controlling the pitch have an increased rotational velocity of 500 rad/s. The motor’s disk saturates

at the maximum allowed rotational velocity, being 1500 rad/s.

5.3 Scenario 3: Proposed Control Scheme Including Disk-based Roll Stabilization and

Feedforward Compensation

The results of the proposed control scheme, detailed in section 4, are displayed in Fig. 3(c). The

difference with respect to the previous scenario is that a feedforward has been added on the pitch

and yaw. The roll angle exhibits a similar behavior compared to the previous case and the yaw
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angle still follows the desired trajectory. However, the pitch angle is stabilized close to 0 deg. The

thrusters’ effects are therefore completely compensated on this latter degree of freedom with the

addition of the feedforward. The motors have a very similar consumption compared to the previous

scenario (cf. Fig. 4(c)). The rotational velocities of motors 3 and 4 increase to 600 rad/s.

5.4 Scenario 4: Disk Size and Gyroscopic Effect
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Figure 6: Time history of the roll angle depending on the disk’s size (neglecting gyroscopic effect)

It has to be noticed that with a bigger disk a better stabilization of roll can be expected. Fig. 6

shows the evolution of the roll angle for three different disk sizes. It was stated in section 3 that

the gyroscopic effects are negligible, which was applicable in the absence of the internal disk or in

the presence of a small one. However, with a bigger sized disk turning at a more important angular

velocity, the gyroscopic effect cannot be neglected anymore. Fig. 7 displays the roll angle when

the proposed control law was applied in the case of a small disk (cf. Fig. 7(a) ) and a big disk

(cf. Fig. 7(b)). The red dotted lines in Fig. 7 refer to the case with gyroscopic effect in the model,

and the blue solid lines refer to the case when these effects are neglected. When the gyroscopic

effect is taken into account, we observe that the peak to peak amplitude of the roll angle remains

unchanged in the case of a small-sized disk (peak to peak amplitude of 4 degrees), even though the

oscillations are shifted. However, in the case of a big-sized disk, we notice that the peak to peak
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Figure 7: Roll angle in presence of a small disk (a) and a big disk (b) with overlapping plots both
neglecting or not the gyroscopic effects.

amplitude of the roll angle becomes five times larger than when neglectig gyroscopic effect (the

oscillations varying from −0.3 deg to +0.3 deg increase to −1.8 deg to +1.2 deg). This observation

is important and should be considered when choosing the disk. Indeed, there is no optimal choice

for the dimension and weight of the disk. The choice depends on both technological constraints

(allowed power, size, and load) and application related requirements. As can be seen on Fig. 7,

although a bigger disk decreases the error bounds, the gyroscopic effect involves high frequency

oscillations, which could be a problem for example for imaging or manipulation purposes. The

best way to proceed is to set the desired bounds for the roll error and to choose the smallest

sized disk accordingly. For this purpose, the maximal dynamical effects induced by thrusters (see

section 3) have to be computed according to the motors’ features. Then, knowing the maximal

acceleration allowed by the disk’s motor, one can easily compute the minimal value of the disk’s

inertia. Choosing this value will limit the undesirable oscillations induced by the gyroscopic effect.
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Conclusion

This paper introduces a novel concept for roll stabilization of an underactuated underwater vehicle.

A new control architecture for the orientation of an underactuated underwater vehicle is presented.

It is based on a nonlinear state feedback controller augmented by a feedforward control for the

pitch and yaw. The unactuated roll is stabilized using the inertial counter torques induced by

an internal disk actuated by a motor. A complete study of the disturbances emanating from the

motors and affecting the robot’s orientation was presented. Numerical simulations have shown the

effectiveness of the proposed scheme through the obtained promising results. Future work will be

focused on implementing this approach on the prototype of an underwater vehicle. We will also

study the influence of the disk’s size on the traking performance in pitch.
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