Keywords: SOA, reengineering, migration, reverse engineering, Object-Oriented, service identification, quality, software reuse, legacy system. I

Migrating towards Service Oriented Architecture SOA has become a major topic of interest during the recent years. Since emerging service technologies have forced non-service based software systems to become legacy, many efforts and researches have been carried out to enable these legacy systems to survive. In this context, several service identification solutions have been proposed. These approaches are either manual, thus considered expensive, or rely on ad-hoc criteria that fail to identify relevant services. In this paper, within the big picture of migrating object-oriented legacy systems towards SOA, we address automatic service identification from source code based on service quality characteristics. To achieve this, we propose a quality measurement model where characteristics of services are refined to measurable metrics.

Service Identification Based on Quality Metrics

Object-Oriented Legacy System Migration Towards SOA Seza Adjoyan * , Abdelhak-Djamel Seriai * , Anas Shatnawi * INTRODUCTION Service Oriented Architecture SOA, whose main bricks are services [START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF], has become a trend [START_REF] Chen | Feature analysis for service-oriented reengineering[END_REF][START_REF] Zhang | Service identification and packaging in service oriented reengineering[END_REF] of computing paradigm to describe business functionalities and application logics. In SOA, a system is structured into a set of loosely coupled [START_REF] Chen | Service Identification via Ontology Mapping[END_REF][START_REF] Nakamura | Extracting service candidates from procedural programs based on process dependency analysis[END_REF][START_REF] Papazoglou | Service oriented architectures: approaches, technologies and research issues[END_REF] and interoperable business services that can be easily composed [START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF], reused [START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF] and shared [START_REF]2.0: Business transformation or train wreck? Oracle Corporation[END_REF] regardless of their physical location. Services could either be all implemented on a single machine, residing on several machines of company's internal network, or even distributed on several systems over internet [START_REF] Brown | Using Service-Oriented Architecture and Component-Based Development to Build Web Service Applications[END_REF]. Moreover, having solid service oriented architecture in place will provide the infrastructure needed to successfully deploy services in cloud environment.

The evolution of service technologies in recent years has led non-service based software systems to become legacy software [START_REF] Chen | Feature analysis for service-oriented reengineering[END_REF][START_REF] Zhang | Service identification and packaging in service oriented reengineering[END_REF]. Any software which has been developed using outdated technology [START_REF] Sneed | Integrating legacy software into a service oriented architecture[END_REF], but still brings great value to the organization that uses it, is considered as a legacy software [START_REF] Stehle | Migration of Legacy Software to Service Oriented Architecture[END_REF][START_REF] Sneed | Integrating legacy software into a service oriented architecture[END_REF]. In order to follow new technological advances and yet to conserve existing business value of current systems, a migration, which is considered as a variation of wrapping methodology [START_REF] Stehle | Migration of Legacy Software to Service Oriented Architecture[END_REF], of legacy system should be carried out. Several approaches for legacy system migration towards SOA have been reported in literature [START_REF] Sneed | Integrating legacy software into a service oriented architecture[END_REF][START_REF] Brown | Using Service-Oriented Architecture and Component-Based Development to Build Web Service Applications[END_REF][START_REF] Chen | Feature analysis for service-oriented reengineering[END_REF][START_REF] Khadka | A structured legacy to SOA migration process and its evaluation in practice[END_REF][START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF][START_REF] Khadka | A method engineering based legacy to SOA migration method[END_REF][START_REF] Cetin | Legacy Migration to Service-Oriented Computing with Mashups[END_REF][START_REF] Channabasavaiah | Migrating to a service-oriented architecture[END_REF][START_REF] Stehle | Migration of Legacy Software to Service Oriented Architecture[END_REF][START_REF] Matos | Migrating Legacy Systems to Service-Oriented Architectures[END_REF][START_REF] O'brien | Supporting Migration to Services using Software Architecture Reconstruction[END_REF]. SOA migration is achieved through two major phases: (1) legacy analysis, where available software artifacts are analyzed to identify provided services and (2) service implementation, that leverages extracted legacy code as usable services, wraps them by interfaces and orchestrates their operations. The first phase (i.e. service identification) is crucial in this process, especially with the unavailability of certain resources (e.g. developers, architects) and poor documentation [START_REF] Khadka | A structured legacy to SOA migration process and its evaluation in practice[END_REF][START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF]. Even more, it is a challenging task, since legacy systems are not necessarily built with the vision of service. Therefore many approaches have been proposed to identify services by analyzing legacy software artifacts. The majority of them are carried out manually [START_REF] Sneed | Integrating legacy software into a service oriented architecture[END_REF][START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF][START_REF] Khadka | A method engineering based legacy to SOA migration method[END_REF]. These solutions are considered as expensive in terms of expertise. Thus, some automatic or quasi-automatic approaches were proposed [START_REF] Chen | Feature analysis for service-oriented reengineering[END_REF][START_REF] Zhang | Service identification and packaging in service oriented reengineering[END_REF][START_REF] Chen | Service Identification via Ontology Mapping[END_REF][START_REF] Matos | Migrating Legacy Systems to Service-Oriented Architectures[END_REF][START_REF] O'brien | Supporting Migration to Services using Software Architecture Reconstruction[END_REF]. Most of these approaches assume the existence of large range of information about legacy systems such as their documentation, architecture and design documents [START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF][START_REF] O'brien | Supporting Migration to Services using Software Architecture Reconstruction[END_REF]. Therefore they are specific to systems where such information is available. They cannot be applied to a large number of systems where only the source code is available [START_REF] Nakamura | Extracting service candidates from procedural programs based on process dependency analysis[END_REF]. In addition, these approaches rely on ad-hoc criteria for evaluating candidate services, hence a gap between identified services and expected ones.

Our contribution in this paper is to automatically identify services from object-oriented source code. Unlike existing approaches, our service identification process is based on a quality function that measures the semantic correctness of identified services. We introduce a semantic correctness model in order to refine well-known service characteristics to measurable metrics.

The rest of the paper is structured as follows: In section 2, we outline the related works for service identification within migration towards SOA approaches. In section 3, we present our approach of service identification from object-oriented source code by defining quality metrics to evaluate services. In section 4, we evaluate our approach on two case studies. Finally, section 5 concludes the paper and provides some future directions.

II. RELATED WORK

Most of the approaches proposing migration of legacy systems to service-based ones offer only guidelines to identify services [START_REF] Khadka | A structured legacy to SOA migration process and its evaluation in practice[END_REF][START_REF] Khadka | A method engineering based legacy to SOA migration method[END_REF][START_REF] Cetin | Legacy Migration to Service-Oriented Computing with Mashups[END_REF][START_REF] Channabasavaiah | Migrating to a service-oriented architecture[END_REF]. Few of them propose technical steps. In [START_REF] Lewis | Smart: The service-oriented migration and reuse technique[END_REF], authors present a migration approach called Service-Oriented Migration and Reuse Technique (SMART). It defines five steps to achieve the migration of legacy system towards SOA. However, the proposed approach requires several sources of information (e.g. documentation) to support the analysis of the legacy system. Besides, the approach largely relies on human interaction (e.g. system analyst, maintenance programmer, etc.) that gathers information through interviewing stakeholders in order to fill the gap between existing legacy system and target architecture. In [START_REF] Zhang | Service identification and packaging in service oriented reengineering[END_REF], an architecture-based and requirement-driven service-oriented reengineering method is discussed. Services are identified by domain analysis and business function identification. The approach is based on both requirements abstraction and source code levels. This approach needs architectural and requirement information to be avalaible. [START_REF] Sneed | Integrating legacy software into a service oriented architecture[END_REF] proposes an automatic approach to evaluate candidate services. Candidate services are considered as groups of object-oriented classes evaluated in terms of development, maintenance and estimated replacement costs. Other approaches propose to evaluate services either by code pattern matching and graph transformation [START_REF] Matos | Migrating Legacy Systems to Service-Oriented Architectures[END_REF], feature location [START_REF] Chen | Feature analysis for service-oriented reengineering[END_REF] or formal concept analysis [START_REF] Chen | Service Identification via Ontology Mapping[END_REF]. A detailed survey of all service identification methods is discussed in [START_REF] Khadka | Migrating Legacy Applications: Challenges in Service Oriented Architecture and Cloud Computing Environments[END_REF].

Services and software components have several characteristics in common, in particular, those related to their quality, nature, structure and behavior. For that obvious reason, component identification techniques from object oriented legacy system could be considered as related to this paper. One of the previous works in our team identifies components from object-oriented source code based on quality-centric metrics [START_REF] Kebir | Quality-Centric Approach for Software Component Identification from Object-Oriented Code[END_REF].

As to SOA quality metrics, diverse studies have been proposed in literature for measuring qualitative properties of SOA systems. Most of these works either assess systems that are already service based or evaluate systems only after their implementation. Unfortunately, such researches are not adapted to the context of reengineering an object-oriented system towards service oriented system. [START_REF] Aldris | Measuring the Degree of Service Orientation in Proprietary SOA Systems[END_REF] proposes a framework to measure the degree of service orientation in SOA systems. It focuses on the internal SOA attribute, decomposes selected attribute to a set of factors and maps each factor to a set of measurable criteria. Each criterion is typically evaluated by a set of software metrics, though no dedicated metrics are defined for each criterion in the paper.

III. PROPOSED APPROACH

We propose a migration technique that identifies services as groups of classes in the legacy software source code. We base our legacy system analysis on the source code, since it is the only resource that is always available, while other resources such as documentation or architecture could often be missing. Unlike other approaches that identify candidate services in source code manually, we propose an automatic identification method of candidate services. Our approach is based on the definition of a fitness function that measures semantic correctness of each group of source code elements to be considered as a service.

A. Object-to-service mapping model

In order to be capable to identify services from objectoriented source code, we define a mapping between object oriented and SOA concepts (see Figure 1). We consider a service as a group of classes defined in object-oriented source code. Among these classes, some define the operations provided by the service, whereas others are inner classes. Inner classes are those which only have internal connections to other classes of the same service. Classes that define the operations provided by the service are the classes that define its interface. Inner classes do not define operations provided by the service. Operations provided by the service are class's public methods.

B. Quality Measurement Model of Services

As we have mentioned earlier, a service is identified from a group of object-oriented classes. Initially, each group of classes is considered as a candidate service. A qualified service is selected from candidate ones based on a function that measures its quality. Similar to the standard for the evaluation of software quality ISO/IEC 25010:2011 [START_REF]Systems and software engineering -Systems and software Quality Requirements and Evaluation (SQuaRE) -System and software quality models[END_REF], we define this quality function of services based on a set of characteristics that are mapped to a set of properties. Each property is later measured using a set of metrics.

1) Characteristics of Services

We deduct the quality characteristics of services based on the analysis of the most commonly used definitions of services in literature.

In literature, there are several definitions of services [START_REF] Brown | Using Service-Oriented Architecture and Component-Based Development to Build Web Service Applications[END_REF][START_REF] Zhang | Service identification and packaging in service oriented reengineering[END_REF][START_REF] Nakamura | Extracting service candidates from procedural programs based on process dependency analysis[END_REF]. According to [START_REF] Zhang | Service identification and packaging in service oriented reengineering[END_REF], a service is an abstract resource that performs a coherent and functional task. [START_REF] Nakamura | Extracting service candidates from procedural programs based on process dependency analysis[END_REF] considers a service as a process that has an open interface, selfcontainedness and coarse granularity. It can be easily composed and decomposed to implement various business workflows. [START_REF] Brown | Using Service-Oriented Architecture and Component-Based Development to Build Web Service Applications[END_REF] defines the service in terms of its characteristics: A service is a coarse-grained and discoverable software entity that interacts with applications and other services through a loosely coupled, often asynchronous, message-based communication model. Coarse-grained means that services implement more than one functionality and operate on larger data sets. Discoverable means that services can be found at both design time and run time, not only by unique identity but also by interface identity and by service kind. Self-contained refers to the self-sufficiency a service has, where context or state information is not required from other services. For loosely coupled, services are connected to other services and clients using standard, dependency-reducing, decoupled message-based methods such as XML document exchanges.

Table I lists the characteristics of services as mentioned in the definitions above. We have categorized them into two categories: those related to the structure and behavior of services and others related to the SOA platform. In order to measure the semantic correctness of candidate services, we select from the aforementioned characteristics the ones that define service structure and behavior: self-containment, composability and coarse-grained (functionality).

2) Refinement of Service Characteristics

The former selected characteristics are refined to measurable quality properties.  A service can be completely self-contained if it does not require any interface, i.e. it can be deployed as a single unit without depending on other services [START_REF] Nakamura | Extracting service candidates from procedural programs based on process dependency analysis[END_REF]. Thus, the property number of interfaces the service requires gives us a good indication on the self-containment of the service.

The higher the number of required interfaces is, the less the service is self-contained.

 A service is subject to composition with other services. This composition is realized without internal modifications but through service interface. A decomposition of the legacy system will be effective with the principle of composing those services with high cohesion and loose coupling, i.e. two services are composed with each other if their interfaces are cohesive. Thus, the average of services' cohesion within an interface gives us a good indication on the composability of the service.

 A service is more likely to be coarse-grained and hence represent complex, rich and high-level business functionality. However, it may sometimes be fine-grained and hence represent low-level primitive functionality [START_REF] Channabasavaiah | Migrating to a service-oriented architecture[END_REF].

Choosing the right level of granularity is the key for a successful service reuse. The bigger the service grains are, the less the service becomes reusable. It is relatively difficult to determine from source code the exact number of functionalities that the service provides. However, several factors can help measuring the functionality of a service. (1) A service that provides several interfaces may provide numerous functionalities, thus the higher the number of interfaces is, the more the service provides functionalities. (2) An interface whose services are highly cohesive probably provide single functionality. (3) A group of interfaces with high cohesion are most favorable to provide single or limited number of functionalities. (4) When the extracted code of candidate service is highly coupled, this means that the service probably provides very few or single functionality. (5) When the extracted code of candidate service is highly cohesive, this means that the service probably provides very few or single functionality. Thus, we suggest binding the functionality characteristic to properties as indicated in Table II.

3) The Quality Metrics

In our approach, according to the characteristics and properties of services we have chosen above, we build our quality metrics to evaluate the quality of candidate services. This quality will be the factor in distinguishing the extracted candidate services. The property functionality requires coupling and cohesion measurements, while composability only requires a cohesion measurement (see Figure 2). As to [START_REF] Patidar | Coupling and Cohesion Measures in Object Oriented Programming[END_REF], cohesion of a service measures how strong the elements within this service are related to each other. A service is considered as highly cohesive, if it performs a set of closely related functions and cannot be split into finer elements. The metric LCC Loose Class Cohesion proposed by [START_REF] Bieman | Cohesion and Reuse in an Object-Oriented System[END_REF] measures the overall connectedness of the class. It is calculated by: Coupling means the degree of direct and indirect dependence of a class on other classes in the system. Here, two measures are counted: method calls and parameter use, i.e. two classes are considered coupled to each other if the methods of one class use the methods or attributes of the other class. In our approach, measures the internal coupling of the

Functionality Characteristic Property

A service that provides several interfaces may provide numerous functionalities, thus the higher the number of interfaces is, the more the service provides functionality.

Number of provided interfaces

An interface whose services are highly cohesive probably provide single functionality.

Average of service's interface cohesion within the interface

A group of interfaces with high cohesion are most favorable to provide single or limited number of functionality.

Cohesion between interfaces

When the extracted code of candidate service is highly coupled, this means that the service probably provides very few or single functionality.

Coupling inside a service

When the extracted code of candidate service is highly cohesive, this means that the service probably provides very few or single functionality. candidate service and is calculated by the ratio between number of classes inside the service that are internally called to the total number of classes within the candidate service . measures the coupling of the candidate service with other services. It is calculated as .

Cohesion inside a service

4) Fitness Function Definition

We define a fitness function for an identified candidate service as a linear combination between the 3 characteristics of services previously defined, for functionality, for composability and for selfcontainment as follows:

Where are coefficient weights for each characteristic that are determined by software architect and .

The characteristics functionality , composability and self-containment are measured according to their definition as follows:

Where refers to number of provided interfaces, refers to the average of service's interface cohesion within the interface, refers to the cohesion between interfaces, refers to the coupling inside a service, and refers to the cohesion inside a service.

; where i refers to interface

C. Clustering Process

In order to recover services from OO legacy code, we group classes based on their dependencies. For that purpose, we propose a hierarchical agglomerative clustering algorithm. This algorithm groups together the classes with the maximized value of the fitness function. At the outset, every class is considered as a single cluster. Next, we measure the fitness function between all pairs of clusters. The algorithm merges the pair of clusters with the highest fitness function value into a new cluster. Then, we measure the fitness function between the new formed cluster and all other clusters and successively merge the pair with the highest fitness function value. These steps are repeated as long as the number of clusters is bigger than one, as illustrated in Pseudo code 1. As a result, the legacy system is expressed in hierarchical view presented in a dendrogram, as illustrated in Figure 3.

To obtain a partition of disjoint clusters, the resulting hierarchy needs to be cut at some point. To determine the best cutting point we employ the standard depth first search (DFS) algorithm. Initially on the root node, we compare the similarity of the current node to the similarity of it child nodes. If the current node's similarity value exceeds the average of similarity value of its children, then the current node is a cutting point, otherwise, the algorithm continues recursively through its children.

By applying the aforementioned clustering algorithm, we evaluate the legacy system and represent its classes in coarsegrained and loose-coupled disjoint set of services. An example of partitioning legacy system's classes to services is illustrated in Figure 3.

IV. EVALUATION

The proposed approach has been evaluated on two realistic case studies: Java Calculator Suite 1 which is a small system with 17 classes and MobileMedia 2 which is a medium sized system with 51 classes. Table III gives the number of classes and LOC (Line of Code) of these two case studies. Java Calculator Suite is an open-source calculator implemented in Java. It performs basic mathematical operations, has a graphic interface and supports Booleans, large numbers, machine numbers, and about 25 different operations.

MobileMedia is an open-source Java application used for managing media (photo, music, and video) on mobile devices.

A. Service Identification 1) Results

In this phase, we partition the source code of each case study into a set of clusters. Each cluster is composed of one or more classes. Each resulting cluster corresponds to one service. Table IV shows the results in terms of number of obtained services for each case study and the corresponding average service quality value for each of the three characteristics: functionality, composability and self-containment. The distribution rate of classes to services is 17/7= 2.4 classes per service for Java Calculator Suite and 3.9 for MobileMedia. Even more, we notice that almost all classes of same service are grouped to offer single functionality. For example, "Entries", "GuiCommandLine" and "ResultList" handle I/O issues.

2) Validation and Discussion

We validate the consistency of our proposed approach either by comparing resulting services with the known architectural design or by analyzing the relevance of the identified services.

In Java Calculator Suite, we notice that lexically relevant classes were grouped in one cluster. We document the resulting components by assigning a name based on the most frequent tokens in their classes' names. In Table V, we display service identification results in terms of clusters' names and their composing classes. MobileMedia has a known architecture model. In [START_REF] Figueiredo | Evolving software product lines with aspects: an empirical study on design stability[END_REF], the authors presented aspect oriented architecture for MobileMedia. We manually compare our extracted services with the modules of this design, after excluding aspect modules. We have found out that some services were directly mapped to one corresponding module in the architecture, such as the service that includes two classes "MediaListScreen" and "MediaData" was mapped to the module named "MediaListScreen". In total, 5 services were successfully mapped to 5 modules. Some other extracted services could be mapped to more than one module. This category can be divided to two types. The first type is one module with closely related functionalities such as the service named "Video Media Util Screen Play Capture Music" was mapped to three modules "PlayMediaScreen", "VideoAccessor" and "VideoAlbumData". These three modules are in fact functionally related and the resulted service was more coarsegrained than the architecture design. The second type is modules that are weakly related. For this case, we have found two services that each of them was mapped to respectively 3 and 4 modules of the architecture. Some services that are functionally closely related (in our case study, 4 services related to the functionality of transferring media via SMS) were mapped to many modules of the architecture (in our case study, 2 modules related to media transfer functionality). These extracted services were finer-grained than their corresponding modules. Finally, one service that groups exception classes is missing from the architectural design since in the architecture, non-functional modules are not represented.

The results show that 77% (10/13) of extracted services were successfully mapped in the architectural design.

B. Example of Service Deployment

We deployed identified services as Web services using Apache Axis2 on Apache Tomcat Web server and then wrapped these Web services by generating their WSDL interfaces. For example, in MobileMedia case study, the configuration file services.xml (Figure . 4) describes the "mapping" between Web service "Video Media Util Screen

V. CONCLUSION

The main contribution of the work presented in this paper is the extraction of services from legacy source code based on service quality characteristics. For this purpose, we first set a mapping model between object and service concepts. Then, unlike most ad-hoc identification approaches, we introduced a fitness function that measures the quality of identified services. The measurement metrics of fitness function are based on a refinement model of service's semantic characteristics. It is worthy to note that this approach is especially applicable to modernize legacy systems for which no software assets but the source code is available. Finally, to demonstrate the applicability of our proposed approach, we have applied it on two Java OO applications and obtained satisfying results. As a part of future work, we plan to apply our proposed on more complex case studies.

Figure 1 .

 1 Figure 1. Object-service mapping model.

Figure 2 .

 2 Figure 2. Refinement model of service characteristics.

Figure 3 .

 3 Figure 3. Dendrogram with set of services.

PSEUDO CODE 1 :

 1 AGGLOMERATIVE HIERARCHICAL CLUSTERINGInput: OO source code classes;Output: A hierarchy of clusters (dendrogram); 1: let each class be a cluster; 2: compute fitness function of pair classes;

 1 http://sourceforge.net/projects/bfegler/ 2 http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/

Figure 4 .

 4 Figure 4. Services.xml file.

TABLE I

 I

	.	CHARACTERISTICS OF SERVICES	
		Type		
	Characteristic	Structural and Behavioral	SOA platform	
	coarse-grained			
	=			
	functionality			
	discoverable			
	self-contained			
	=			
	loosely-coupled			
	dynamic-binding			
	composable		TABLE II.	BINDING FUNCTIONALITY CHARACTERISTIC TO
	message-based			PROPERTIES
	asynchronous			

TABLE III

 III

	Play Capture Music" and the Java classes composing this service.	TABLE V. SERVICE IDENTIFICATION RESULTS
						Cluster	Cluster Name	Composing Classes
	<service name="VideoMediaUtilScreenPlayCaptureMusic"	Number
	scope="application"> <description>				1	Calc Machine Number	CalcMachineNumber
	Video Media Util Screen Play Capture Music	2	Operator Center Control	OperatorControlCenter
	. <messageReceivers> </description> <messageReceiver CASE STUDIES INFORMATION		3	Calculator jcalc_applet Gui Results jcalc Entries	Calculator CalculatorException,
	mep="http://www.w3.org/2004/08/wsdl/in-only"	Command	CalculatorTester
	Case study class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiv Number of classes LOC	Jcalc
	Java Calculator Suite er"/> MobileMedia <messageReceiver 17 51 mep="http://www.w3.org/2004/08/wsdl/in-out" 2360 3016 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>	4	E jcalc_math jcalc_trig variable_interface	jcalc_applet E jcalc_math
	</messageReceivers>				jcalc_trig
	<parameter name="ServiceClass">			variable_interface
	sample.pojo.service.VideoMediaUtilScreenPlayCapture </parameter> Music	5	Variable Checker Table	operator	VariableTable, operatorChecker
	</service>					6	PI	PI
						7	Gui Line Results Entries	Entries
						Command List	GuiCommandLine
						ResultsList
	TABLE IV.	SERVICE IDENTIFICATION RESULTS
	Case study	Number	Functionality Composability Self-
		of			containment
		services			
	Java Calculator	7	0.73	0.88	0.41
	Suite				
	MobileMedia	13	0.60	0.79	0.59