
HAL Id: lirmm-01140323
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01140323

Submitted on 8 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Service Identification Based on Quality Metrics Object -
Oriented Legacy System Migration Towards SOA

Seza Adjoyan, Abdelhak-Djamel Seriai, Anas Shatnawi

To cite this version:
Seza Adjoyan, Abdelhak-Djamel Seriai, Anas Shatnawi. Service Identification Based on Quality Met-
rics Object - Oriented Legacy System Migration Towards SOA. SEKE: Software Engineering and
Knowledge Engineering, Jul 2014, Vancouver, Canada. pp.1-6, �10.13140/2.1.2980.6723�. �lirmm-
01140323�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01140323
https://hal.archives-ouvertes.fr

Service Identification Based on Quality Metrics
Object-Oriented Legacy System Migration Towards SOA

Seza Adjoyan*, Abdelhak- Djamel Seriai*, Anas Shatnawi*

*
LIRMM, CNRS and University of Montpellier 2

161 rue Ada, Montpellier, France

{adjoyan, seriai, shatnawi}@lirmm.fr

Abstract—Migrating towards Service Oriented Architecture SOA

has become a major topic of interest during the recent years.

Since emerging service technologies have forced non-service

based software systems to become legacy, many efforts and

researches have been carried out to enable these legacy systems

to survive. In this context, several service identification solutions

have been proposed. These approaches are either manual, thus

considered expensive, or rely on ad-hoc criteria that fail to

identify relevant services. In this paper, within the big picture of

migrating object-oriented legacy systems towards SOA, we

address automatic service identification from source code based

on service quality characteristics. To achieve this, we propose a

quality measurement model where characteristics of services are

refined to measurable metrics.

Keywords- SOA; reengineering; migration; reverse

engineering; Object-Oriented; service identification; quality;

software reuse; legacy system.

I. INTRODUCTION

Service Oriented Architecture SOA, whose main bricks are
services [7], has become a trend [3, 5] of computing paradigm
to describe business functionalities and application logics. In
SOA, a system is structured into a set of loosely coupled [6, 13,
20] and interoperable business services that can be easily
composed [7], reused [7] and shared [8] regardless of their
physical location. Services could either be all implemented on a
single machine, residing on several machines of company’s
internal network, or even distributed on several systems over
internet [2]. Moreover, having solid service oriented
architecture in place will provide the infrastructure needed to
successfully deploy services in cloud environment.

The evolution of service technologies in recent years has
led non-service based software systems to become legacy
software [3, 5]. Any software which has been developed using
outdated technology [1], but still brings great value to the
organization that uses it, is considered as a legacy software [18,
1]. In order to follow new technological advances and yet to
conserve existing business value of current systems, a
migration, which is considered as a variation of wrapping
methodology [18], of legacy system should be carried out.
Several approaches for legacy system migration towards SOA
have been reported in literature [1, 2, 3, 4, 7, 9, 10, 14, 18, 19,
21]. SOA migration is achieved through two major phases: (1)
legacy analysis, where available software artifacts are analyzed
to identify provided services and (2) service implementation,
that leverages extracted legacy code as usable services, wraps
them by interfaces and orchestrates their operations. The first

phase (i.e. service identification) is crucial in this process,
especially with the unavailability of certain resources (e.g.
developers, architects) and poor documentation [4, 7]. Even
more, it is a challenging task, since legacy systems are not
necessarily built with the vision of service. Therefore many
approaches have been proposed to identify services by
analyzing legacy software artifacts. The majority of them are
carried out manually [1, 7, 9]. These solutions are considered
as expensive in terms of expertise. Thus, some automatic or
quasi-automatic approaches were proposed [3, 5, 6, 19, 21].
Most of these approaches assume the existence of large range
of information about legacy systems such as their
documentation, architecture and design documents [7, 21].
Therefore they are specific to systems where such information
is available. They cannot be applied to a large number of
systems where only the source code is available [13]. In
addition, these approaches rely on ad-hoc criteria for evaluating
candidate services, hence a gap between identified services and
expected ones.

Our contribution in this paper is to automatically identify
services from object-oriented source code. Unlike existing
approaches, our service identification process is based on a
quality function that measures the semantic correctness of
identified services. We introduce a semantic correctness model
in order to refine well-known service characteristics to
measurable metrics.

The rest of the paper is structured as follows: In section 2,
we outline the related works for service identification within
migration towards SOA approaches. In section 3, we present
our approach of service identification from object-oriented
source code by defining quality metrics to evaluate services. In
section 4, we evaluate our approach on two case studies.
Finally, section 5 concludes the paper and provides some future
directions.

II. RELATED WORK

Most of the approaches proposing migration of legacy
systems to service-based ones offer only guidelines to identify
services [4, 9, 10, 14]. Few of them propose technical steps. In
[7], authors present a migration approach called Service-
Oriented Migration and Reuse Technique (SMART). It defines
five steps to achieve the migration of legacy system towards
SOA. However, the proposed approach requires several sources
of information (e.g. documentation) to support the analysis of
the legacy system. Besides, the approach largely relies on
human interaction (e.g. system analyst, maintenance
programmer, etc.) that gathers information through

1

Figure 1. Object-service mapping model.

interviewing stakeholders in order to fill the gap between
existing legacy system and target architecture. In [5], an
architecture-based and requirement-driven service-oriented
reengineering method is discussed. Services are identified by
domain analysis and business function identification. The
approach is based on both requirements abstraction and source
code levels. This approach needs architectural and requirement
information to be avalaible. [1] proposes an automatic
approach to evaluate candidate services. Candidate services are
considered as groups of object-oriented classes evaluated in
terms of development, maintenance and estimated replacement
costs. Other approaches propose to evaluate services either by
code pattern matching and graph transformation [19], feature
location [3] or formal concept analysis [6]. A detailed survey of
all service identification methods is discussed in [11].

Services and software components have several
characteristics in common, in particular, those related to their
quality, nature, structure and behavior. For that obvious reason,
component identification techniques from object oriented
legacy system could be considered as related to this paper. One
of the previous works in our team identifies components from
object-oriented source code based on quality-centric metrics
[22].

As to SOA quality metrics, diverse studies have been
proposed in literature for measuring qualitative properties of
SOA systems. Most of these works either assess systems that
are already service based or evaluate systems only after their
implementation. Unfortunately, such researches are not adapted
to the context of reengineering an object-oriented system
towards service oriented system. [23] proposes a framework to
measure the degree of service orientation in SOA systems. It
focuses on the internal SOA attribute, decomposes selected
attribute to a set of factors and maps each factor to a set of
measurable criteria. Each criterion is typically evaluated by a
set of software metrics, though no dedicated metrics are
defined for each criterion in the paper.

III. PROPOSED APPROACH

We propose a migration technique that identifies services as
groups of classes in the legacy software source code. We base
our legacy system analysis on the source code, since it is the
only resource that is always available, while other resources
such as documentation or architecture could often be missing.
Unlike other approaches that identify candidate services in
source code manually, we propose an automatic identification
method of candidate services. Our approach is based on the
definition of a fitness function that measures semantic
correctness of each group of source code elements to be
considered as a service.

A. Object-to-service mapping model

In order to be capable to identify services from object-
oriented source code, we define a mapping between object
oriented and SOA concepts (see Figure 1). We consider a
service as a group of classes defined in object-oriented source
code. Among these classes, some define the operations
provided by the service, whereas others are inner classes. Inner
classes are those which only have internal connections to other
classes of the same service. Classes that define the operations

provided by the service are the classes that define its interface.
Inner classes do not define operations provided by the service.
Operations provided by the service are class’s public methods.

B. Quality Measurement Model of Services

As we have mentioned earlier, a service is identified from a
group of object-oriented classes. Initially, each group of classes
is considered as a candidate service. A qualified service is
selected from candidate ones based on a function that measures
its quality. Similar to the standard for the evaluation of
software quality ISO/IEC 25010:2011 [12], we define this
quality function of services based on a set of characteristics that
are mapped to a set of properties. Each property is later
measured using a set of metrics.

1) Characteristics of Services
We deduct the quality characteristics of services based on

the analysis of the most commonly used definitions of services
in literature.

In literature, there are several definitions of services [2, 5,
13]. According to [5], a service is an abstract resource that
performs a coherent and functional task. [13] considers a
service as a process that has an open interface, self-
containedness and coarse granularity. It can be easily
composed and decomposed to implement various business
workflows. [2] defines the service in terms of its
characteristics: A service is a coarse-grained and discoverable
software entity that interacts with applications and other
services through a loosely coupled, often asynchronous,
message-based communication model. Coarse-grained means
that services implement more than one functionality and
operate on larger data sets. Discoverable means that services
can be found at both design time and run time, not only by
unique identity but also by interface identity and by service
kind. Self-contained refers to the self-sufficiency a service has,
where context or state information is not required from other
services. For loosely coupled, services are connected to other
services and clients using standard, dependency-reducing,
decoupled message-based methods such as XML document
exchanges.

2

 Table I lists the characteristics of services as mentioned in
the definitions above. We have categorized them into two
categories: those related to the structure and behavior of
services and others related to the SOA platform. In order to
measure the semantic correctness of candidate services, we
select from the aforementioned characteristics the ones that
define service structure and behavior: self-containment,
composability and coarse-grained (functionality).

2) Refinement of Service Characteristics
The former selected characteristics are refined to

measurable quality properties.

 A service can be completely self-contained if it does not
require any interface, i.e. it can be deployed as a single
unit without depending on other services [13]. Thus, the
property number of interfaces the service requires gives us
a good indication on the self-containment of the service.

The higher the number of required interfaces is, the less the
service is self-contained.

 A service is subject to composition with other services.
This composition is realized without internal modifications
but through service interface. A decomposition of the
legacy system will be effective with the principle of
composing those services with high cohesion and loose
coupling, i.e. two services are composed with each other if
their interfaces are cohesive. Thus, the average of services’
cohesion within an interface gives us a good indication on
the composability of the service.

 A service is more likely to be coarse-grained and hence
represent complex, rich and high-level business
functionality. However, it may sometimes be fine-grained
and hence represent low-level primitive functionality [14].
Choosing the right level of granularity is the key for a
successful service reuse. The bigger the service grains are,
the less the service becomes reusable. It is relatively
difficult to determine from source code the exact number
of functionalities that the service provides. However,
several factors can help measuring the functionality of a
service. (1) A service that provides several interfaces may

provide numerous functionalities, thus the higher the
number of interfaces is, the more the service provides
functionalities. (2) An interface whose services are highly
cohesive probably provide single functionality. (3) A
group of interfaces with high cohesion are most favorable
to provide single or limited number of functionalities. (4)
When the extracted code of candidate service is highly
coupled, this means that the service probably provides
very few or single functionality. (5) When the extracted
code of candidate service is highly cohesive, this means
that the service probably provides very few or single
functionality. Thus, we suggest binding the functionality
characteristic to properties as indicated in Table II.

3) The Quality Metrics
In our approach, according to the characteristics and

properties of services we have chosen above, we build our
quality metrics to evaluate the quality of candidate services.
This quality will be the factor in distinguishing the extracted
candidate services. The property functionality requires
coupling and cohesion measurements, while composability
only requires a cohesion measurement (see Figure 2). As to
[15], cohesion of a service measures how strong the elements
within this service are related to each other. A service is
considered as highly cohesive, if it performs a set of closely
related functions and cannot be split into finer elements. The
metric LCC Loose Class Cohesion proposed by [16] measures
the overall connectedness of the class. It is calculated by:

Coupling means the degree of direct and indirect
dependence of a class on other classes in the system. Here, two
measures are counted: method calls and parameter use, i.e. two
classes are considered coupled to each other if the methods of
one class use the methods or attributes of the other class. In our
approach, measures the internal coupling of the

TABLE I. CHARACTERISTICS OF SERVICES

Characteristic

Type

Structural and

Behavioral
SOA platform

coarse-grained

 =

functionality



discoverable 

self-contained

=

loosely-coupled



dynamic-binding 

composable 

message-based 

asynchronous 

TABLE II. BINDING FUNCTIONALITY CHARACTERISTIC TO

PROPERTIES

Functionality Characteristic Property

A service that provides several interfaces may

provide numerous functionalities, thus the

higher the number of interfaces is, the more the

service provides functionality.

Number of provided

interfaces

An interface whose services are highly

cohesive probably provide single functionality.

Average of service’s

interface cohesion

within the interface

A group of interfaces with high cohesion are

most favorable to provide single or limited

number of functionality.

Cohesion between

interfaces

When the extracted code of candidate service is

highly coupled, this means that the service

probably provides very few or single

functionality.

Coupling inside a

service

When the extracted code of candidate service is

highly cohesive, this means that the service

probably provides very few or single

functionality.

Cohesion inside a

service

3

Figure 2. Refinement model of service characteristics.

Figure 3. Dendrogram with set of services.

candidate service and is calculated by the ratio between
number of classes inside the service that are internally called to
the total number of classes within the candidate service .
 measures the coupling of the candidate service
with other services. It is calculated as
 .

4) Fitness Function Definition

We define a fitness function for an identified

candidate service as a linear combination between the 3

characteristics of services previously defined, for

functionality, for composability and for self-

containment as follows:

Where are coefficient weights for each

characteristic that are determined by software architect

and .

 The characteristics functionality , composability

 and self-containment are measured according to

their definition as follows:

Where refers to number of provided interfaces,

 refers to the average of service’s interface cohesion
within the interface, refers to the cohesion between
interfaces, refers to the coupling inside a service,
and refers to the cohesion inside a service.

 ; where i refers to interface

C. Clustering Process

In order to recover services from OO legacy code, we group
classes based on their dependencies. For that purpose, we
propose a hierarchical agglomerative clustering algorithm. This
algorithm groups together the classes with the maximized value
of the fitness function. At the outset, every class is considered
as a single cluster. Next, we measure the fitness function
between all pairs of clusters. The algorithm merges the pair of
clusters with the highest fitness function value into a new
cluster. Then, we measure the fitness function between the new
formed cluster and all other clusters and successively merge the
pair with the highest fitness function value. These steps are
repeated as long as the number of clusters is bigger than one, as
illustrated in Pseudo code 1. As a result, the legacy system is
expressed in hierarchical view presented in a dendrogram, as
illustrated in Figure 3.

To obtain a partition of disjoint clusters, the resulting
hierarchy needs to be cut at some point. To determine the best
cutting point we employ the standard depth first search (DFS)
algorithm. Initially on the root node, we compare the similarity
of the current node to the similarity of it child nodes. If the
current node’s similarity value exceeds the average of
similarity value of its children, then the current node is a
cutting point, otherwise, the algorithm continues recursively
through its children.

By applying the aforementioned clustering algorithm, we
evaluate the legacy system and represent its classes in coarse-
grained and loose-coupled disjoint set of services. An example
of partitioning legacy system’s classes to services is illustrated
in Figure 3.

PSEUDO CODE 1: AGGLOMERATIVE HIERARCHICAL CLUSTERING

Input: OO source code classes;

Output: A hierarchy of clusters (dendrogram);

1: let each class be a cluster;

2: compute fitness function of pair classes;

3: repeat

4: merge two “closest” clusters based fitness function

value;

5: update list of clusters;

6: until only one cluster remains

7: return dendrogram

4

IV. EVALUATION

The proposed approach has been evaluated on two realistic
case studies: Java Calculator Suite

1
 which is a small system

with 17 classes and MobileMedia
2
 which is a medium sized

system with 51 classes. Table III gives the number of classes
and LOC (Line of Code) of these two case studies.

Java Calculator Suite is an open-source calculator
implemented in Java. It performs basic mathematical
operations, has a graphic interface and supports Booleans, large
numbers, machine numbers, and about 25 different operations.
MobileMedia is an open-source Java application used for
managing media (photo, music, and video) on mobile devices.

A. Service Identification

1) Results
 In this phase, we partition the source code of each case

study into a set of clusters. Each cluster is composed of one or
more classes. Each resulting cluster corresponds to one service.
Table IV shows the results in terms of number of obtained
services for each case study and the corresponding average
service quality value for each of the three characteristics:
functionality, composability and self-containment. The
distribution rate of classes to services is 17/7= 2.4 classes per
service for Java Calculator Suite and 3.9 for MobileMedia.
Even more, we notice that almost all classes of same service
are grouped to offer single functionality. For example,
“Entries”, “GuiCommandLine” and “ResultList” handle I/O
issues.

2) Validation and Discussion
We validate the consistency of our proposed approach

either by comparing resulting services with the known
architectural design or by analyzing the relevance of the
identified services.

In Java Calculator Suite, we notice that lexically relevant
classes were grouped in one cluster. We document the resulting
components by assigning a name based on the most frequent
tokens in their classes’ names. In Table V, we display service
identification results in terms of clusters’ names and their
composing classes.

1
 http://sourceforge.net/projects/bfegler/

2
 http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08/

MobileMedia has a known architecture model. In [17], the
authors presented aspect oriented architecture for
MobileMedia. We manually compare our extracted services
with the modules of this design, after excluding aspect
modules. We have found out that some services were directly
mapped to one corresponding module in the architecture, such
as the service that includes two classes “MediaListScreen” and
“MediaData” was mapped to the module named
“MediaListScreen”. In total, 5 services were successfully
mapped to 5 modules. Some other extracted services could be
mapped to more than one module. This category can be divided
to two types. The first type is one module with closely related
functionalities such as the service named “Video Media Util
Screen Play Capture Music” was mapped to three modules
“PlayMediaScreen”, “VideoAccessor” and
“VideoAlbumData”. These three modules are in fact
functionally related and the resulted service was more coarse-
grained than the architecture design. The second type is
modules that are weakly related. For this case, we have found
two services that each of them was mapped to respectively 3
and 4 modules of the architecture. Some services that are
functionally closely related (in our case study, 4 services
related to the functionality of transferring media via SMS) were
mapped to many modules of the architecture (in our case study,
2 modules related to media transfer functionality). These
extracted services were finer-grained than their corresponding
modules. Finally, one service that groups exception classes is
missing from the architectural design since in the architecture,
non-functional modules are not represented.

The results show that 77% (10/13) of extracted services
were successfully mapped in the architectural design.

B. Example of Service Deployment

We deployed identified services as Web services using
Apache Axis2 on Apache Tomcat Web server and then
wrapped these Web services by generating their WSDL
interfaces. For example, in MobileMedia case study, the
configuration file services.xml (Figure. 4) describes the
"mapping" between Web service “Video Media Util Screen

TABLE III. CASE STUDIES INFORMATION

Case study Number of classes LOC

Java Calculator Suite 17 2360

MobileMedia 51 3016

TABLE IV. SERVICE IDENTIFICATION RESULTS

Case study Number

of

services

Functionality Composability Self-

containment

Java Calculator
Suite

7 0.73 0.88 0.41

MobileMedia 13 0.60 0.79 0.59

TABLE V. SERVICE IDENTIFICATION RESULTS

Cluster

Number

Cluster Name Composing Classes

1 Calc Machine Number CalcMachineNumber

2 Operator Center Control OperatorControlCenter

3 Calculator jcalc_applet
Gui Results jcalc Entries
Command

Calculator
CalculatorException,
CalculatorTester

 Jcalc
jcalc_applet

4 E variable_interface

jcalc_math jcalc_trig

E

jcalc_math
jcalc_trig
variable_interface

5 Variable operator
Checker Table

VariableTable, operatorChecker

6 PI PI

7 Gui Line Results Entries
Command List

Entries
GuiCommandLine
ResultsList

5

Play Capture Music” and the Java classes composing this
service.

<service name="VideoMediaUtilScreenPlayCaptureMusic"

scope="application">

 <description>

 Video Media Util Screen Play Capture Music

 </description>

 <messageReceivers>

 <messageReceiver

 mep="http://www.w3.org/2004/08/wsdl/in-only"

class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiv

er"/>

 <messageReceiver

 mep="http://www.w3.org/2004/08/wsdl/in-out"

 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

 </messageReceivers>

 <parameter name="ServiceClass">

 sample.pojo.service.VideoMediaUtilScreenPlayCapture

Music

 </parameter>

</service>

Figure 4. Services.xml file.

V. CONCLUSION

The main contribution of the work presented in this paper is
the extraction of services from legacy source code based on
service quality characteristics. For this purpose, we first set a
mapping model between object and service concepts. Then,
unlike most ad-hoc identification approaches, we introduced a
fitness function that measures the quality of identified services.
The measurement metrics of fitness function are based on a
refinement model of service’s semantic characteristics. It is
worthy to note that this approach is especially applicable to
modernize legacy systems for which no software assets but the
source code is available. Finally, to demonstrate the
applicability of our proposed approach, we have applied it on
two Java OO applications and obtained satisfying results. As a
part of future work, we plan to apply our proposed on more
complex case studies.

REFERENCES

[1] Sneed, H.M., "Integrating legacy software into a service oriented

architecture," Proceedings of the 10th European Conference on Software
Maintenance and Reengineering, 2006. CSMR 2006. pp.11 pp.,14, 22-24
March 2006.

[2] Brown, A; Johnston, S.; & Kelly, K. “Using Service-Oriented

Architecture and Component-Based Development to Build Web Service
Applications”. Santa Clara, CA: Rational Software Corporation, 2002.

[3] Feng Chen; Shaoyun Li; Yang, H.; Ching-Huey Wang; Chu, W.C.-C.,

"Feature analysis for service-oriented reengineering," 12th Asia-Pacific
Software Engineering Conference, 2005. APSEC '05, pp. 201-208, 15-17
Dec. 2005.

[4] Khadka, R., Saeidi, A., Jansen, S., Hage, J, “A structured legacy to SOA

migration process and its evaluation in practice”, Proceedings of the 7th
International Symposium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems (MESOCA 2013).

[5] Zhang, Z., Liu, R., Yang, H., “Service identification and packaging in

service oriented reengineering”. Proceedings of the Seventeenth

International Conference on Software Engineering and Knowledge
Engineering SEKE'2005, Taipei, Taiwan, Republic of China, July 14-16,
2005.

[6] Feng Chen; Zhuopeng Zhang; Jianzhi Li; Jian Kang; Yang, H., "Service

Identification via Ontology Mapping," 33rd Annual IEEE International

Computer Software and Applications Conference COMPSAC '09, vol.1,
pp.486,491, 20-24 July 2009.

[7] G. Lewis, E. Morris, L. O’Brien, D. Smith, L. Wrage, “Smart: The

service-oriented migration and reuse technique,” CMU/SEI, Tech. Rep.

CMU/SEI-2005-TN-029, Sept 2005, Available from:
http://www.sei.cmu.edu/reports/05tn029.pdf

[8] Oracle Corporation, 2008. Business process management, service-

oriented architecture, and web 2.0: Business transformation or train

wreck? Oracle Corporation, White Paper, available online from

http://viewer.media.bitpipe.com /934318651-120/1252521184-
411/SOA-US-EN-WP-BPMSOA2.0.pdf.

[9] Khadka, R.; Reijnders, G.; Saeidi, A.; Jansen, S.; Hage, J., "A method

engineering based legacy to SOA migration method," 2011 27th IEEE

International Conference on Software Maintenance (ICSM), pp.163,172,
25-30 Sept. 2011 doi: 10.1109/ ICSM.2011.6080783

[10] Cetin, S.; Ilker Altintas, N.; Oguztuzun, H.; Dogru, A.H.; Tufekci, O.;

Suloglu, S., "Legacy Migration to Service-Oriented Computing with

Mashups," International Conference on Software Engineering Advances
ICSEA 2007, pp.21, 25-31 Aug. 2007.

[11] R. Khadka, A. Saeidi, A. Idu, J. Hage, S. Jansen, “Legacy to SOA

evolution- a systematic literature review,” in Migrating Legacy

Applications: Challenges in Service Oriented Architecture and Cloud

Computing Environments, A. D. Ionita, M. Litoiu, and G. Lewis,
Eds.IGI Global, 2012, pp. 40–71.

[12] ISO/IEC 25010:2011, Systems and software engineering - Systems and

software Quality Requirements and Evaluation (SQuaRE) - System and
software quality models, 2011.

[13] Nakamura, M.; Igaki, H.; Kimura, T.; Matsumoto, K.-i., "Extracting

service candidates from procedural programs based on process

dependency analysis," IEEE Asia-Pacific Services Computing
Conference, APSCC 2009, pp.484,491, 7-11 Dec. 2009.

[14] Channabasavaiah, K., Holley, K., Edward M. Tuggle, Jr., “Migrating to

a service-oriented architecture”, White Paper, IBM Corporation -
Software Group, April 2004.

[15] Patidar, M. K., Gupta, R., & Chandel, G. S., “Coupling and Cohesion

Measures in Object Oriented Programming”. International Journal of

Advanced Research in Computer Science and Software Engineering,
Volume 3, Issue 3, March 2013, ISSN: 2277 128X.

[16] Bieman, James M.; Kang, Byung-Kyoo: Cohesion and Reuse in an

Object-Oriented System. In Proc. Int'l Symp. Software Reusability, 1995,
S. 259-262.

[17] E. Figueiredo et al., “Evolving software product lines with aspects: an
empirical study on design stability”, Proc. of ICSE, pp. 261-270, 2008.

[18] Stehle, E., Piles, B., Max-Sohmer, J., & Lynch, K. "Migration of Legacy

Software to Service Oriented Architecture" Department of Computer
Science Drexel University Philadelphia, PA 19104 (2008): 2-5.

[19] Matos, Carlos M. P. ; Heckel, Reiko, “Migrating Legacy Systems to
Service-Oriented Architectures” In ECEASST’16 .2008.

[20] Mike P. Papazoglou ; Willem-Jan Heuvel, “Service oriented

architectures: approaches, technologies and research issues”. The VLDB
Journal, vol.16, n.3, July 2007, pp. 389-415.

[21] O'Brien, L.; Smith, D.; Lewis, G., "Supporting Migration to Services

using Software Architecture Reconstruction," 13th IEEE International
Workshop on Software Technology and Engineering Practice, 2005,
pp.81,91.

[22] Kebir, S.; Seriai, A.-D.; Chardigny, S.; Chaoui, A., "Quality-Centric

Approach for Software Component Identification from Object-Oriented

Code," Joint Working IEEE/IFIP Conference on Software Architecture
(WICSA) and European Conference on Software Architecture (ECSA),
pp.181,190, 20-24 Aug. 2012

[23] Aldris, A.; Nugroho, A.; Lago, P.; Visser, J., "Measuring the Degree of

Service Orientation in Proprietary SOA Systems," IEEE 7th
International Symposium on Service Oriented System Engineering
(SOSE), pp.233,244, 25-28 March 2013

6

http://pubzone.org/pages/publications/showVenue.do?venueId=9336
http://pubzone.org/pages/publications/showVenue.do?venueId=9336

