
HAL Id: lirmm-01140407
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01140407v1

Submitted on 8 Apr 2015 (v1), last revised 12 Jun 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multigraphs without large bonds are wqo by contraction
Marcin Jakub Kamiński, Jean-Florent Raymond, Théophile Trunck

To cite this version:
Marcin Jakub Kamiński, Jean-Florent Raymond, Théophile Trunck. Multigraphs without large bonds
are wqo by contraction. Journal of Graph Theory, 2017, �10.1002/jgt.22229�. �lirmm-01140407v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01140407v1
https://hal.archives-ouvertes.fr


Multigraphs without large bonds
are wqo by contraction∗

Marcin Kamiński† Jean-Florent Raymond†,‡ Théophile Trunck§

Abstract

We show that the class of multigraphs with at most p connected components
and bonds of size at most k is well-quasi-ordered by edge contraction for all positive
integers p, k. (A bond is a minimal non-empty edge cut.) We also characterize
canonical antichains for this relation and show that they are fundamental.

1 Introduction

A well-quasi-order (wqo for short) is a partial order which contains no infinite de-
creasing sequence, nor infinite collection of pairwise incomparable elements. The
beginnings of the theory of well-quasi-orders go back to the 1950s and some early
results on wqos include that of Higman on sequences from a wqo [7], Kruskal’s Tree
Theorem [9], as well as other (now standard) techniques, for example the minimal
bad sequence argument of Nash-Williams [10].

A recent result on wqos and arguably one of the most significant results in this
field is the theorem by Robertson and Seymour which states that graphs are well-
quasi-ordered by the minor relation [13]. Later, the same authors also proved that
graphs are well-quasi-ordered by the immersion relation [12].

Nonetheless, most of containment relations do not well-quasi-order the class of all
graphs. For example, graphs are not well-quasi-ordered by subgraphs, induced sub-
graphs, or topological minors. Therefore, attention was naturally brought to classes
of graphs where well-quasi-ordering for such relations exists. Damaschke proved that
cographs are well-quasi-ordered by induced subgraphs [1] and Ding characterized
subgraph ideals that are well-quasi-ordered by the subgraph relation [3]. Finally,
Liu and Thomas recently announced that graphs excluding as topological minor any
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graph of a class called “Robertson chain” are well-quasi-ordered by the topological
minor relation [8].

Another line of research is to classify non-wqo containment relations depending
on the type of obstructions they contain. Ding introduced the concepts of canonical
antichain and fundamental antichain aimed at extending the study of the existence of
obstructions of being well-quasi-ordered in a partial order [5]. In particular, he proved
that finite graphs do not admit a canonical antichain under the induced subgraph
relation but they do under the subgraph relation.

In this paper, we consider finite graphs where parallel edges are allowed, but
not loops. Graphs where no edges are parallel are referred to as simple graphs.
An edge contraction is the operation that identifies two adjacent vertices and deletes
the possibly created loops (but keeps multiple edges). A graph H is said to be a
contraction of a graph G, denoted HEG, if H can be obtained from G by a sequence
of edge contractions. A bond is a minimal non-empty edge cut, i.e. a minimal set of
edges whose removal increases the number of connected components (cf. Figure 1).

Figure 1: A bond of size 3 (dashed edges) in the house graph.

Let G denote the class of finite graphs. The contraction relation defines a partial
order on G. This order is not a wqo. An illustration of this fact is the infinite sequence
of incomparable graphs 〈θi〉i∈N , where θk is the graph with two vertices and k edges,
for every positive integer k (cf. Figure 2).

An antichain is a sequence of pairwise incomparable elements of (G,E). Remark
that a class of graphs is well-quasi-ordered by E iff it does not contain infinite an-
tichains. Indeed, every decreasing sequence of graphs is finite since the edge contrac-
tion operation used to define E decreases the number of edges of a graph.

Figure 2: The graph θ5.

For every p, k ∈ N, let Gp,k be the class of graphs having at most p connected
components and not containing a bond of order more than k. Our main result is
the following.

Theorem 1. For every p, k ∈ N, the class Gp,k is well-quasi-ordered by E.

The complement of a simple graph G, denoted G is the graph obtained by replac-
ing every edge by a non-edge and vice-versa in G. Remark that a graph has a bond of
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order k iff it contains θk as contraction, and that it has p connected components iff it
can be contracted to Kp. A class G of graphs is said to be contraction-closed if H ∈ G
whenever H EG for some G ∈ G. As a consequence of our main theorem and of the
fact that each of {θi}i∈N and {Ki}i∈N is an obstruction to be well-quasi-ordered, we
have the following results.

Corollary 1. A class of graphs H is well-quasi-ordered by E iff there are k, p ∈ N

such that for every H ∈ H we have ∀k′ > k, H 6Eθk′ and ∀p′ > p, H 6EKp.

Corollary 2. A contraction-closed class H is well-quasi-ordered by E iff there are
k, p ∈ N such that ∀k′ > k, θk′ 6∈ H and ∀p′ > p, Kp 6∈ H.

Figure 3 presents two infinite antichains for (G,E): the sequence of multiedges
Aθ = {θi}i∈N∗ and the sequence of cocliques AK = {Ki}i∈N. In his study of infinite
antichains for the (induced) subgraph relation, Ding [5] introduced the two following
concepts. An antichain A of a partial order (S,�) is said to be canonical if it is
such that every contraction-closed subclass J of S has an infinite antichain iff J ∩A
is infinite. If Incl(A) = {x ∈ S, x ≺ a for some a ∈ A} has no infinite antichains,
then A is a fundamental antichain. Note that canonical antichains can be used to
characterize the �-closed subclasses of a partial order (S,�) and also to describe the
variety of its antichains.

Aθ =
, ,

. . .

,

. . .

,

. . .

,

. . .

,

. . .

AK =
, , , , , ,

. . .

Figure 3: Two infinite antichains for contractions: multiedges and cocliques.

The following result is a complete characterization of the canonical antichains
of (G,E), which extends the results of Ding on canonical antichains of simple graphs
for the relations of subgraph and induced subgraph [5].

Theorem 2. Every antichain A of (G,E) is canonical iff each of the following sets
are finite:

Aθ \ A; AK \ A; and A \ {Aθ ∪ AK}.

In other words, an antichain A is canonical iff it contains all but finitely many
graphs from Aθ, all but finitely many graphs from AK and a finite number of graphs
that do not belong to Aθ ∪ AK . Two straightforward consequences are that (G,E)
has infinite antichains and the following result.

Corollary 3. Every canonical antichain of (G,E) is fundamental.
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Organization of the paper. The notions and tools that are used in this paper
are introduced in Section 2, in particular notions related to well-quasi-ordering and to
rooted graphs. Then, Section 3 deals with rooted graphs in order to build large wqos
from small ones. Finally, Theorem 1 is proven in Section 4 and results on canonical
antichains appear in Section 5.

Conclusion. This work settles the case of multigraph contractions in the study
of well-quasi-ordered subclasses, a problem investigated by Damaschke for induced
subgraphs [1], by Ding for subgraphs [3] and induced minors [4], and by Fellows et
al. for several containment relations [6]. In particular, we give necessary and suffi-
cient conditions for a class of (multi)graphs to be well-quasi-ordered by multigraph
contractions. Furthermore, we characterize canonical antichains for this relation and
show that they are fundamental, in the continuation of Ding’s results for subgraph
and contraction relation in [5].

2 Preliminaries

We denote by V(G) the set of vertices of a graph G and by E(G) its multiset of edges.
Given two adjacent vertices u, v of a graph G, multG({u, v}) stands for the number
of parallel edges between u and v, called multiplicity of the edge {u, v}. We denote
by P<ω(S) the class of finite subsets of a set S, by P(S) its power set and by Ji, jK
the interval of integers {i, . . . , j}, for all integers i ≤ j. A maximally 2-connected
subgraph is called a block. In this paper, we will have to handle many objects with
several indices, and we find more convenient to use the dot notation A.b, informally
meaning “object b related to object A”.

2.1 Tree-decompositions and models.

A tree decomposition of a graph G is a pair (T,X ) where T is a tree and X a family
(Xt)t∈V(T ) of subsets of V(G) (called bags) indexed by elements of V(T ) and such
that:

(i)
⋃

t∈V (T ) Xt = V(G);

(ii) for every edge e of G there is an element of X containing both ends of e;

(iii) for every v ∈ V(G), the subgraph of T induced by {t ∈ V(T ), v ∈ Xt} is
connected.

The torso of a bag Xt of a tree decomposition (T, {Xt}t∈V(T )) is the underlying
simple graph of the graph obtained from G[Xt] by adding all the edges {x, y} such
that x, y ∈ Xt ∩Xt′ for some neighbor t′ of t in T .

A model of H in G (H-model for short) is a function µ : V(H) → P(V(G))
such that:

M1: µ(u) and µ(v) are disjoint whenever u, v ∈ V(H) are distinct;

M2: {µ(u)}u∈V(H) is a partition of V(G);
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M3: for every u ∈ V(H), the graph G[µ(u)] is connected;

M4: for every u, v ∈ V(H), multH(u, v) =
∑

(u′,v′)∈µ(u)×µ(v) multG(u
′, v′).

Remark that H is a contraction of G iff G has a H-model. When µ is a H-model in
G, we write H Eµ G.

For every i ∈ {2, 3} we denote by H
(i)
k the class of all i-connected graphs in a

class H. Now we state several results that we will use. The first one is a decomposition
theorem for 2-connected graphs by Tutte.

Proposition 1 ([14], see also [2, Exercise 20 of Chapter 12]). Every 2-connected
simple graph has a tree-decomposition (T,X ) such that |Xt ∩Xt′ | = 2 for every edge
{t, t′} ∈ T and all torsos are either 3-connected or a cycle.

Proposition 2 ([11]). For every k ∈ N there is an ζk ∈ N such that every 3-connected
simple graph of order at least ζk contains a wheel of order k or a K3,k as minor.

2.2 Sequences, posets and well-quasi-orders

In this section, we introduce basic definitions and facts related to the theory of well-
quasi-orders. In particular, we recall that being well-quasi-ordered is preserved by
several operations including union, Cartesian product, and application of a mono-
tone function.

A sequence of elements of a set A is an ordered countable collection of ele-
ments of A. Unless otherwise stated, sequences are finite. The sequence of elements
s1, . . . , sk ∈ A in this order is denoted by 〈s1, . . . , sk〉 . We use the notation A⋆ for
the class of all finite sequences over A (including the empty sequence).

A partially ordered set (poset for short) is a pair (A,�) where A is a set and � is
a binary relation on S which is reflexive, antisymmetric and transitive. An antichain
is a sequence of pairwise non-comparable elements. In a sequence 〈xi〉i∈I⊆N

of a poset
(A,�), a pair (xi, xj), i, j ∈ I is a good pair if xi � xj and i < j. A poset (A,�) is a
well-quasi-order (wqo for short), and its elements are said to be well-quasi-ordered by
�, if every infinite sequence has a good pair, or equivalently, if (A,�) has neither an
infinite decreasing sequence, nor an infinite antichain. An infinite sequence containing
no good pair is called an bad sequence.

Union and product. If (A,�A) and (B,�B) are two posets, then

• their union (A ∪B,�A ∪ �B) is the poset defined as follows:

∀x, y ∈ A∪B, x�A ∪ �B y if (x, y ∈ A and x �A y) or (x, y ∈ B and x �B y);

• their Cartesian product (A×B,�A × �B) is the poset defined by:

∀(a, b), (a′, b′) ∈ A×B, (a, b) �A × �B (a′, b′) if a �A a′ and b �B b′.
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Remark 1 (union of wqos). If (A,�A) and (B,�B), are two wqos, then so is (A∪B,�A

∪ �B). In fact, for every infinite antichain S of (A∪B,�A ∪ �B), there is an infinite
subsequence of S whose all elements belong to one of A and B (otherwise S is finite).
But then one of (A,�A) and (B,�B) has an infinite antichain, a contradiction with
our initial assumption. Similarly, every finite union of wqos is a wqo.

Proposition 3 (Higman [7]). If (A,�A) and (B,�B) are wqo, then so is (A×B,�A

× �B).

Sequences. For any partial order (A,�), we define the relation �⋆ on A⋆ as
follows: for every r = 〈r1, . . . , rp〉 and s = 〈s1, . . . , sq〉 of A⋆, we have r �⋆ s if
there is a increasing function ϕ : J1, pK → J1, qK such that for every i ∈ J1, pK we
have ri � sϕ(i). This generalizes the subsequence relation. This order relation is
extended to the class P<ω(A) of finite subsets of A as follows, generalizing the subset
relation: for every B,C ∈ P<ω(A), we write B �⋆ C if there is an injection ϕ : B → C

such that ∀x ∈ B, x � ϕ(x).

Proposition 4 (Higman [7]). If (A,�) is a wqo, then so is (A⋆,�⋆).

Corollary 4. If (A,�) is a wqo, then so is (P<ω(A),�⋆).

In order to stress that domain and codomain of a function are posets, we some-
times use, in order to denote a function ϕ from a poset (A,�A) to a poset (B,�B),
the following notation: ϕ : (A,�A) → (B,�B).

Monotonicity. A function ϕ : (A,�A) → (B,�B) is said to be monotone if it
satisfies the following property:

∀x, y ∈ A, x �A y ⇒ f(x) �B f(y).

A function ϕ : (A,�A) → (B,�B) is a poset epimorphism (epi for short) if it
is surjective and monotone. We introduce poset epimorphisms because they have
the following interesting property, which we will use to show that some posets are
well-quasi-ordered.

Remark 2 (epi from a wqo). Any epi ϕ maps a wqo to a wqo. Indeed, for any pair
x, y of elements of the domain of ϕ such that f(x) and f(y) are incomparable, x and
y are incomparable as well (by monotonicity of ϕ). Therefore, and as ϕ is surjective,
any infinite antichain of the codomain of ϕ can be translated into an infinite antichain
of its domain.

Remark 3 (componentwise monotonicity). Let (A,�A), (B,�B), and (C,�C) be
three posets and let f : (A×B,�A × �B) → (C,�C) be a function. If we have both

∀a ∈ A, ∀b, b′ ∈ B, b �B b′ ⇒ f(a, b) �C f(a, b′) (1)

and ∀a, a′ ∈ A, ∀b ∈ B, a �A a′ ⇒ f(a, b) �C f(a′, b) (2)
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then f is monotone. Indeed, let (a, b), (a′, b′) ∈ A × B be such that (a, b) �A × �B

(a′, b′). By definition of the relation �A × �B, we have both a � a′ and b � b′.

From (1) we get that f(a, b) �C f(a, b′) and from (2) that f(a, b′) �C f(a′, b′), hence
f(a, b) �C f(a′, b′) by transitivity of �C . Thus f is monotone. Note that this remark
can be generalized to functions with more than two arguments.

2.3 Roots and labels

Labeled graphs. Let (Σ,�) be a poset. A (Σ,�)-labeled graph is a pair (G,λ)
where λ : V(G) → P<ω(Σ) is a function, referred to as the labeling of the graph.
For simplicity, we will denote by G the labeled graph (G,λ) and by G.λ its labeling
function. If H is a class of (unlabeled) graphs, labΣ(H) denotes the class of Σ-labeled
graphs of H. Remark that any unlabeled graph can be seen as a ∅-labeled graph.

The contraction relation is extended to labeled graphs by additionally allowing to
relabel by l′ any vertex labeled l whenever l′ � l. In terms of model, this corresponds
to the following extra requirement for µ to be a model of H in G:

∀v ∈ V(H), H.λ(v) �⋆
⋃

u′∈µ(u)

G.λ(u′).

When such a requirement is met, the model µ is said to be label-preserving.

Rooted graphs. A rooted graph is a couple (G, r) where G is a graph and r is
a vertex of G. Given two rooted graphs (G, r) and (H, r′), we say that (H, r′) is a
contraction of (G, r), what we denote by (H, r′) E (G, r), if there is a model µ of
H in G such that r′ ∈ µ(r). Such a model is said to be root-preserving. For the
sake of simplicity, we sometimes denote by G the rooted graph (G, r) and refer to
its root by G.r. For every rooted graph G, we define root(G) = G.r. If H is a class
of graphs, we define its rooted closure, denoted Hr as the class of rooted graphs
Hr = {(G, v) : G ∈ H, v ∈ G}. Note that H is wqo under E whenever Hr is wqo
under E.

We define a 2-rooted graph in a very similar way. A 2-rooted graph is a triple
(G, r, s) where G is a graph and r and s are two distinct vertices of G. Given two
2-rooted graphs (G, r, s), (H, r′, s′), we say that (H, r′, s′) is a contraction of (G, r, s),
what we denote by (H, r′, s′) E (G, r, s), if there is a model µ of H in G such that
r′ ∈ µ(r) and s′ ∈ µ(s′). For the sake of simplicity, we sometimes denote by G

the 2-rooted graph (G, r, s) and refer to its first (respectively second) root by G.r

(respectively G.s). For every rooted graph G, we define root(G) = {G.r,G.s}. A
2-rooted graph G is edge-rooted if {G.r,G.s} ∈ E(G).

The operation of attaching a 2-rooted graph H on the pair of vertices (u, v) of
graph G, denoted G⊕v

uH, yields the graph rooted in (G.r,G.s) obtained by identifying
u with H.r and v with H.s in the disjoint union of G and H (see Figure 4 for an
illustration). If both G and H are (Σ,�)-labeled (for some poset (Σ,�)), then the
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G.r

u

G.s

v

H.r H.s

J.r

J.s

⊕v
u =

G H J = G⊕v
u H

Figure 4: Attaching H to vertices (u, v) of G (roots are the white vertices).

labeling function λ of the graph G⊕v
u H is defined as follows:

λ :















V(G⊕v
u H) → P<ω(Σ)

w 7→ G.λ(w) if w ∈ V(G) \ {u, v}
w 7→ H.λ(w) if w ∈ V(H) \ {H.r,H.s}
w 7→ G.λ(w) ∪H.λ(w) otherwise, i.e. when w ∈ {u, v}.

3 Raising well-quasi-orders

This section is devoted to building larger wqos from smaller ones in classes of labeled
graphs that are rooted by two vertices. Step by step, we will construct wqos that will
be directly used in the proof of the main result. Labels will be used to reduce the study
of (unlabeled) graphs to the case of 2-connected graphs with labels (by the virtue
of Lemma 5), whereas roots enable us to construct graphs using the operation ⊕. In
this section, (Σ,�) be any poset.

Lemma 1. Let H,H ′, G,G′ be four (Σ,�)-labeled 2-rooted graphs. If H E H ′ and
GEµ G′, then for every distinct u, v in V(G) and u′ ∈ µ(u), v′ ∈ µ(v) we have

G⊕v
u H EG′ ⊕v′

u′ H ′.

Proof. Let µH : V(H) → P(V(H ′)) (respectively µG : V(G) → P(V(G′))) be a model
of H in H ′ (respectively of G in G′). We consider the following function:

ν :















V(G⊕v
u H) → P(V(G′ ⊕v′

u′ H
′))

v 7→ µH(v) if v ∈ H \ root(H)
v 7→ µG(v) if v ∈ G \ {u, v}
v 7→ µH(v) ∪ µG(v) otherwise.

Let us check that ν is a model of G ⊕v
u H in G′ ⊕v′

u′ H
′. First, observe that for

every x ∈ V(G⊕v
uH), the subgraph induced in G′ ⊕v′

u′ H
′ by ν(x) is connected (M3):

either ν(x) = µH(x) or ν(x) = µG(x) (and in these cases it follows from the fact that
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µH and µG are models) or ν(x) = µH(x)∪µG(x) (if x ∈ {u, v}) and (G′ ⊕v′

u′ H ′)[ν(x)]
is connected because both µH(x) and µG(x) induce a connected subgraph and both
contain the root of H ′. Furthermore, the images through ν of two distinct vertices
are always disjoint (M1), and every vertex of G′ ⊕v′

u′ H
′ belongs to the image of a

vertex (M2), again because µH and µG are models. Let us now show point M4. For
every distinct x, y ∈ V(G⊕v

u H),

• either x, y ∈ V(H) and {x, y} 6= root(H) and then

multG⊕v
uH(x, y) =

∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕v
uH

′(x′, y′)

as µH is a model (and symmetrically for the case x, y ∈ V(G) and {x, y} 6=
{u, v});

• or x ∈ V(H)\ root(H) and y ∈ V(G)\{u, v}: there are no edges between x and
y because every edge of G⊕v

u H is either an edge of H or an edge of G, neither
between ν(x) and ν(y) since ν(x) ⊆ V(H) \ root(H) and ν(y) ⊆ V(G) \ {u, v},
therefore we get

multG⊕v
uH

(x, y) =
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕v
uH

′(x′, y′) = 0;

• or {x, y} = {u, v} = root(H):

multG⊕v
uH(x, y) = multG(x, y) + multH(x, y) (by definition of ⊕)

=
∑

(x′,y′)∈µG(x)×µG(y)

multG′(x′, y′) +
∑

(x′,y′)∈µH (x)×µH (y)

multH′(x′, y′)

=
∑

(x′,y′)∈ν(x)×ν(y)

multG′⊕v
uH

′(x′, y′).

Besides, as a consequence that µG is root-preserving, ν also has this property.
Last, let us check that ν is label-preserving. Let x ∈ V(G ⊕v

u H). If x 6∈ {u, v},
then (G ⊕v

u H).λ(x) = G.λ(x) or (G ⊕v
u H).λ(x) = H.λ(x) (depending whether

x ∈ V(G) \ {u, v} or x ∈ H \ root(H)) and in these cases labels are preserved, since
µG and µH are label-preserving. If x ∈ {u, v}, then, as µG and µH are label-preserving
we have:

(G⊕v
u H).λ(x) = G.λ(x) ∪H.λ(y)

�⋆
⋃

x′∈µG(x)

G′.λ(x′) ∪
⋃

x′∈µH (x)

H ′.λ(x′)

�⋆
⋃

x′∈ν(x)

(G′ ⊕v
u H

′).λ(x′)

and thus ν is label-preserving as well. We just proved that ν is a model of G ⊕v
u H

in G′ ⊕v
u H

′. Consequently, G⊕v
u H EG′ ⊕v

u H
′, as desired.
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Corollary 5. Let l ∈ N
∗, let J be a (Σ,�)-labeled 2-rooted graph and 〈(ui, vi)〉i∈J1,lK

be a sequence of pairs of distinct vertices of J. Let H be a class of (Σ,�)-labeled
2-rooted graphs, 〈G1, . . . , Gl〉 , 〈H1, . . . ,Hl〉 ∈ Hl and let G (respectively H) be the
graph constructed by attaching Gi (respectively Hi) to the vertices (ui, vi) of J, for
every i ∈ J1, lK .

If 〈H1, . . . ,Hl〉E
l 〈G1, . . . , Gl, 〉 then H EG.

Proof. By induction on l. The case l = 1 follows from Lemma 1. If l ≥ 2, then, let
G′ (respectively H ′) be the graph constructed by attaching Gi (respectively Hi) to
the vertices (ui, vi) of J, for every i ∈ J1, l − 1K . By induction hypothesis, we have
H ′EG′. Since H (respectively G) is isomorphic to H ′⊕vl

ul
Hl (respectively G′⊕vl

ul
Gl),

and Hl EGl, by Lemma 1, we have H EG as desired.

Lemma 2. Let H be a family of (Σ,�)-labeled 2-rooted connected graphs, let J be a
(Σ,�)-labeled 2-rooted graph, and let HJ be the class of (Σ,�)-labeled 2-rooted graphs
that can be constructed by attaching a graph H ∈ H to (u, v) for every u, v ∈ V(J).
If (H,E) is a wqo, then so is (HJ ,E).

Proof. Let (u1, v1), . . . , (ul, vl) be an enumeration of all the pairs of distinct vertices
of J . In this proof, we will design an epi that constructs graphs of HJ from a tuple
of l graphs of H. Let f : (Hl,El) → (HJ ,E) be the function that, given a tuple
(H1, . . . ,Hl) of l graphs of H, returns the graph constructed from J attaching Hi to
(ui, vi) for every i ∈ J1, lK. This function is clearly surjective. Let us show that it is
monotone.

Let (G1, . . . , Gl), (H1, . . . ,Hl) ∈ Hl be two tuples such that (H1, . . . ,Hl)E
l(G1, . . . , Gl).

According to Remark 3, it is enough to deal with the cases where these two sequences
differ only in one coordinate. Since all parameters of f play a similar role, we only
look at the case whereH1EG1 and ∀i ∈ J2, lK , Hi = Gi. Let J

′ be the graph obtained
from J by attaching Gi to (ui, vi), for every i ∈ J2, lK . Remark that f(H1, . . . ,Hl)
(respectively f(G1, . . . , Gl)) can be obtained by attaching H1 (respectively G1) to
(u1, v1) in J ′. By Lemma 1 and since H1 E G1, we have J ⊕v1

u1
H1 E J ⊕v1

u1
G1 and

thus f(H1, . . . ,Hl) E f(G1, . . . , Gl). Consequently, f is monotone and surjective: f

is an epi. In order to show that HJ is a wqo, it suffices to prove that the domain of
f is a wqo (cf. Remark 2). As a finite Cartesian product of wqos, (Hl,El) is a wqo
by Proposition 3. This concludes the proof.

Lemma 3. Let H be a family of (Σ,�)-labeled 2-rooted connected graphs and let H◦

be the class of (Σ,�)-labeled graphs that can be constructed from a cycle by attaching
a graph of H to either (u, v) or (v, u) for every edge {u, v}, after deleting the edge
{u, v}. If (H,E) is a wqo, then so is (H◦,E).

Proof. Again, this proof relies on the property of epimorphisms to send wqos on
wqos: we will present a epi that maps sequences of graphs of (H,E) to graphs of
(H◦,E). Let H′ = H ∪ {(H, s, r), (H, r, s) ∈ H}, i.e. H′ contains graphs of H with
the roots possibly swapped. As the union of two wqos, (H′,E) is a wqo (Remark 1).
We consider the function f : (H′⋆,E⋆) → (H◦,E) that, given a sequence 〈H1, . . . ,Hk〉
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of graphs of (H′,E) (for some integer k ≥ 2), returns the graph obtained from the
cycle on vertices v0, . . . , vk−1 (in this order) by deleting the edge {vi, v(i+1) mod k}
and attaching Hi to (vi, v(i+1) mod k), for all i ∈ J1, kK . Observe that by definition
of H◦ and H′, the function f is surjective. We now show that f is monotone. Let
G = 〈G0, . . . , Gk−1〉 and H = 〈H0, . . . ,Hl−1〉 ∈ H′⋆ be two sequences such that
GE⋆H. For the sake of readability, we will refer to the vertices of f(G) (respectively
f(H)) and of the graphs of G (respectively H) by the same names. By definition of
the relation E⋆, there is an increasing function ρ : J0, k − 1K → J0, l − 1K such that
for every i ∈ J0, k − 1K , we have Gi EHρ(i).

A crucial remark here is that since the graphs of H′ are connected, each of
them can be contracted to an edge between its two roots. Therefore, for every
graph Hi of the sequence H (for some i ∈ J0, l − 1K) we can first contract Hi to
an edge in f(H), and then contract this edge. That way we obtain a graph similar
to f(H) except that Hi has been deleted and its roots merged: this is the graph
f(〈H0, . . . ,Hi−1,Hi+1, . . . ,Hl−1〉). By applying this operation on every subgraph of
f(H) belonging to {Hi, i ∈ J1, lK \ ρ(J0, kK)}, we obtain the graph f(

〈

Hρ(i)

〉

i∈J1,kK
),

and we thus have f(
〈

Hρ(i)

〉

i∈J1,kK
) E f(H). Now, recall that the function ρ is such

that for every i ∈ J0, k − 1K , we have Gi EHρ(i). Furthermore, the graphs f(G) and
f(
〈

Hρ(i)

〉

i∈J1,kK
) are both constructed by attaching graphs to the same graph (a cycle

on k vertices). By Corollary 5, we therefore have f(G) E f(
〈

Hρ(i)

〉

i∈J1,kK
), hence

f(G)E f(H) by transitivity of E. We just proved that f is an epi. The domain of f
is a wqo (as a set of finite sequences from a wqo, cf. Proposition 4), so its codomain
(H◦,E) is a wqo as well according to Remark 2, and this concludes the proof.

Lemma 4. Let k ∈ N and let H be a class of 2-rooted graphs, none of which having
more than k edges between the two roots. Let H− be the class of graphs of H where all
edges between the two roots have been removed. If (H,E) is a wqo, then so is (H−,E).

Proof. Let us assume that (H,E) is a wqo. For every i ∈ J0, kK , let Hi be the
subclass of graphs of H having exactly i edges between the two roots. Each class
Hi (i ∈ J0, kK) is a subclass of H which is well-quasi-ordered by E, therefore it is
well-quasi-ordered by E as well. Let f be the function that, given a 2-rooted graph
G, returns a copy of G where all edges between the roots have been deleted. The
rest of the proof draws upon the following remark.

Remark 4. Let G,H be two edge-rooted graphs where the edge between the roots
has the same multiplicity. Then H E G ⇔ f(H) E f(G) (every model of H in G is
also a model of f(H) in f(G), and vice-versa).

Let i ∈ J0, kK , let H−
i = {f(H), H ∈ Hi}, and let 〈f(Gi)〉i∈N be an infinite

sequence of H−
i . By an observation above, (Hi,E) is a wqo, hence 〈Gi〉i∈N has a good

pair (Gi, Gj) (with i, j ∈ N, i < j). According to Remark 4, (f(Gi), f(Gj)) is a good
pair of 〈f(Gi)〉i∈N . Every infinite sequence of (H−

i ,E) has a good pair, therefore this
poset is a wqo. Remark that (H−,E) is the union of the k+1 wqos {(H−

i ,E)}i∈J0,kK,
therefore it is a wqo as well (cf. Remark 1) and this concludes the proof.
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Lemma 5. Let H be a class of connected graphs and let H(2) be the subclass of 2-
connected graphs of H. If for every wqo (Σ,�), the poset (lab(Σ,�)(H

(2)),E) is a wqo,
then so is (H,E).

Proof. This proof is very similar to induced minor case proved in [6] and we will pro-
ceed by induction. Assuming that (H,E) is not a wqo, we will reach a contradiction
by showing that its rooted closure (Hr,E) is a wqo.

Let 〈Gi〉i∈N be a bad sequence in Hr such that for every i ∈ N, there is no
GEGi such that a bad sequence starts with G0, . . . , Gi−1, G (a so-called minimal bad
sequence). For every i ∈ N, let Ai be the block of Gi which contains root(Gi). Let
Ci the set of cutvertices of Gi that are included in Ai. For each cutvertex c ∈ Ci, let
Bi

c the connected component in Gi \ (V (Ai) \ Ci), and made into a rooted graph by
setting root(Bi

c) = c. Note that we have Bi
c EGi.

Let us denote by B the family of rooted graphs B = {Bi
c : c ∈ Ci, i ∈ N}. We

will show that (B,E) is a wqo. Let 〈Hj〉j∈N be an infinite sequence in B and for
every j ∈ N choose an i = ϕ(j) ∈ N for which Hj EGi. Pick a j with smallest ϕ(j),
and consider the sequence G1, . . . , Gϕ(j)−1,Hj ,Hj+1, . . . . By minimality of 〈Gi〉i∈N
and by our choice of j, since Hj E Gϕ(j) and Hj 6= Gϕ(j), this sequence is good
so contains a good pair (G,G′). Now, if G is among the first ϕ(j) − 1 elements,
then as 〈Gi〉i∈N is bad we must have G′ = Hj′ for some j′ ≥ j and so we have
Gi′ = GEG′ = Hj′ EGϕ(j′), a contradiction. So there is a good pair in 〈Hi〉i≥j and
hence the infinite sequence 〈Hj〉j∈N has a good pair, so (B,E) is a wqo.

We will now find a good pair in 〈Gi〉i∈N to show a contradiction. The idea is
to label the graph family A = {Ai}i∈N so that each cutvertex c of a graph Ai gets
labeled by their corresponding connected component Bi

c, and the roots are preserved
under this labeling. More precisely, for each Ai we define a labeling σi that assigns
to every vertex v ∈ V(Gi) a label {(σ1

i (v), σ
2
i (v))} defined as follows:

• σ1
i (v) = 1 if v = root(Gi) and σ1

i (v) = 0 otherwise;

• σ2
i (v) = Bi

v if v ∈ Ci and σ2
i (v) is the one-vertex rooted graph otherwise.

The labeling σ of A is then {σi : i ∈ N}. Let us define a quasi-ordering � on
the set of labels Σ assigned by σ. For two labels (s1a, s

2
a), (s

1
b , s

2
b) ∈ Σ we define

(s1a, s
2
a) � (s1b , s

2
b) iff s1a = s1b and s2a E s2b . Note that in this situation, s2a and s2b are

rooted graphs, so E compares rooted graphs. Observe that since (B,E) is wqo, then
(Σ,�) is wqo. For every i ∈ N, let A′

i be the (Σ,�)-labeled rooted graph (Ai, σi). We
now consider the infinite sequence 〈A′

i〉i∈N. By our initial assumption, (labΣ(A),E)
is wqo (as A consists only in 2-connected graphs), so there is a good pair (A′

i, A
′
j) in

the sequence 〈A′
i〉i∈N.

To complete the proof, we will show that A′
iEA′

j ⇒ GiEGj . Let µ be a model of

A′
i in A′

j. Then for each cutvertex c ∈ Ci, µ(c) contains a vertex d ∈ Cj with Bi
cEB

j
d.

Let µc denote a root-preserving model of Bi
c onto Bi

d. We construct a model g as
follows:
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ν :















V (Gi) → P(V (Gj))
v 7→ µ(v) if v ∈ Ai \ Ci

v 7→ µc(v) if v ∈ Bi
c \ Ci

v 7→ µ(v) ∪ µv(v) if v ∈ Ci

We now prove that ν is a model of Gi onto Gj . First note that by definition of µ
and each µc, we have ν(u) ∩ ν(v) = ∅ for any pair of distinct vertices u and v in Gi,
and also every vertex of Gj is in the image of some vertex of Gi (points M1 and M2
in the definition of a model). If u ∈ Ci, then µ(u) contains a vertex v ∈ Cj for which

Bi
u E B

j
v, and v is also contained in µv(v) since µv preserves roots. Thus, Gj [ν(u)]

is connected when u ∈ Ci (point M3). This is obviously true when u 6∈ Ci again by
the definitions of µ and each µc. Moreover, the endpoints of every edge of Gi belong
either both to Ai, or both to Bi

c, so point M4 follows from the properties of µ and
each µc. Finally, as the labeling σ ensures that root(Gj) ∈ ν(root(Gi)), we establish
that Gi EGj . So 〈Gi〉i∈N has a good pair (Gi, Gj), a contradiction.

Proposition 1 provides an interesting description of the structure of 2-connected
simple graphs. The two following easy lemmas show that it can easily be adapted to
multigraphs.

Lemma 6. Let G be a graph and let G′ be its underlying simple graph. The graph
G is 2-connected iff G′ is 2-connected or G = θk for some integer k ≥ 2.

Proof. It is clear that G is 2-connected whenever G′ is. Let us now assume that G is
2-connected but G′ is not, and let u, v ∈ V(G′) be two distinct vertices of G′ such that
there is no pair of internally disjoint paths from u to v in G′. Since G is 2-connected,
there are two internally disjoint paths P and Q in G linking u to v. Remark that if
P and Q are edge-disjoint, then the corresponding paths in G′ are internally disjoint
and link u to v, a contradiction with the choice of these two vertices. Therefore P and
Q share an edge (which has multiplicity at least two). Since these paths are internally
disjoint, their ends must be the ends of the edge that they share: {u, v} is an edge
with multiplicity at least two. Removing the edge {u, v} in G yields two connected
components, one, Gu, containing u and the other, Gv , containing v. Since every path
from vertices of Gu to vertices of Gv in G contains u, the graph Gu contains only the
vertex u (otherwise G is not 2-connected) and by symmetry V(Gv) = {v}. Therefore
G = θk, for some integer k ≥ 2, as required.

Lemma 7 (extension of Proposition 1 to graphs). Every 2-connected graph has a
a tree-decomposition (T,X ) such that |Xt ∩ Xt′ | = 2 for every edge {t, t′} ∈ T and
where every torso is either 3-connected or a cycle.

Proof. Let G be a 2-connected graph and G′ be its underlying simple graph. If G′

is 2-connected, then by Proposition 1 it has a tree-decomposition (T,X ) such that
|Xt ∩Xt′ | = 2 for every edge {t, t′} ∈ T and where every torso is either 3-connected,
or a cycle. Noticing that (T,X ) is also a tree-decomposition of G concludes this case.
If G′ is not 2-connected, then by Lemma 6 we have G = θk for some integer k ≥ 2.
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If k = 2 the graph G is a cycle, and if k > 2 it is 3-connected, therefore it has a
trivial tree-decomposition with one bag, which satisfies the properties required in the
statement of the lemma.

We call such a tree decomposition a Tutte decomposition.

4 Well-quasi-ordering graphs without big bonds

The main result is proved in three steps. First, we show that for every k ∈ N, the
class of labeled 2-connected graphs of G1,k is well-quasi-ordered by E. Then, we use
Lemma 5 to extend this result to all graphs of G1,k, i.e. all connected graphs not
containing a bond of size more than k. Last, we adapt this result to classes of graphs
with a bounded number of connected components.

Lemma 8. For every k ∈ N, and for every wqo (Σ,�), the poset (lab(Σ,�)(G
(2)
1,k),E)

is a wqo.

Proof. Let k ∈ N, and let (Σ,�) be a wqo. By contradiction, let us assume that

(lab(Σ,�)(G
(2)
1,k),E) is not a wqo. We consider the edge-rooted closureH of lab(Σ,�)(G

(2)
1,k),

i.e. the class of all edge-rooted graphs whose underlying non-rooted graphs belongs

to lab(Σ,�)(G
(2)
1,k). Clearly, (H,E) is not a wqo, as a consequence of our initial as-

sumption. We will show that this leads to a contradiction.
Let {Ai}i∈N be an infinite minimal (wrt. E) bad sequence of (H,E): for every

i ∈ N, Ai is a minimal graph (wrt. E) such that there is an infinite bad sequence
starting with A0, . . . , Ai. For every i ∈ N, Ai has a Tutte decomposition (Lemma 7)
which has a bag containing the endpoints of the edge {Ai.r, Ai.s} (because it is a
tree decomposition). Let Ai.X be the torso of some (arbitrarily chosen) bag in such
a decomposition which contains Ai.r and Ai.s.

For every edge x, y ∈ V(Ai.X), let Ai.Vx,y be the vertex set of the (unique) block
which contains both x and y in the graph obtained from Ai by deleting vertices
V(Ai.X) \ {x, y} and adding the edge {x, y} with multiplicity 2.

Let us consider graphs obtained by contracting all the edges of Ai that does not
have both endpoints in Ai.Vx,y in a way such that Ai.r gets contracted to x and Ai.s

gets contracted to y. Remark that for fixed i and (x, y), these graphs differ only by
the multiplicity of the edge between the two roots x and y. For every i ∈ N and
x, y ∈ V(Ai.X), we denote by Ai.Cx,y an arbitrarily chosen such graph. Eventually,
we set Ai.C = {Ai.Cx,y, x, y ∈ V(Ai.X)}. Remark that every graph of Ai.C belongs

to G
(2)
1,k and is a contraction of Ai.

Claim 1. C = ∪i∈NAi.C is wqo by E.

Proof. By contradiction, assume that (C,E) has an infinite bad sequence {Bi}i∈N. By
definition of C, for every i ∈ N there is a j = ϕ(i) ∈ N such that Bi EAj. Let i0 ∈ N

be an integer with ϕ(i0) minimum. Let us consider the following infinite sequence:

A0, . . . , Aϕ(i0)−1, Bi0 , Bi0+1, . . . .
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Remark that this sequence cannot have a good pair of the form Ai E Aj , 0 ≤ i <

j < ϕ(i0) (respectively Bi E Bj , i0 ≤ i < j) since {Ai}i∈N (respectively {Bi}i∈N)
is an antichain. Let us assume that there is a good pair of the form Ai E Bj , for
some i ∈ J0, ϕ(i0)− 1K , j ≥ i0. Then we have Ai E Bj E Aϕ(j). By the choice of
i0 we have ϕ(i0) ≤ ϕ(j), hence i < ϕ(j) so (Ai, Aϕ(j)) is a good pair of {Ai}i∈N,
a contradiction. Therefore, this sequence is an infinite bad sequence of (H,E) and
we have Bi0 E Aϕ(i0) and Bi0 6= Aϕ(i0). This contradicts the minimality of {Ai}i∈N,
therefore (C,E) is a wqo.

Let C− be the class of 2-rooted graphs obtained from graphs of C by deleting the
edge between the roots. We set C+ = {H ⊕H.s

H.r θi, i ∈ J0, kK , H ∈ C−}. In other
words C+ is the class of graphs that can be constructed by possibly replacing the
edge at the root of a graph of C by an edge of multiplicity i, for any i ∈ J1, kK.

Remark 5. It follows from Lemma 4 that both (C−,E) and (C+,E) are wqos.

Notice that for every i ∈ N and {x, y} ∈ E(Ai.X), the graph Ai[Ai.Vx,y] rooted
in (x, y) belongs to C+. As explained thereafter, this property enables us to see Ai

as a graph built from graphs of C+.
According to Lemma 7, for every i ∈ N, the graph Ai.X (which is the torso of a

bag of a Tutte decomposition) is either a 3-connected graph (and thus |V(Ai.X)| < ζk
by Proposition 2), or a cycle (of any length). Therefore we can partition {Ai}i∈N into
at most ζk subsequences depending on the type of Ai.X, where this type can be either
“cycle”, or one type for each possible value of |V(Ai.X)| when Ai.X is 3-connected.
Let us show that each of these subsequences are finite.

First case: {Ai}i∈N has an infinite subsequence {Di}i∈N such that for every i ∈ N,

Di.X is a cycle. Then each graph of {Di}i∈N can be constructed by attaching a graph
of the wqo (C+,E) to each edge of a cycle after deleting this edge. By Lemma 3,
these graphs are wqo by E, a contradiction.

Second case: for some positive integer n < ζk, {Ai}i∈N has an infinite subsequence
{Di}i∈N such that for every i ∈ N, |V(Di.X)| = n. Then every graph of {Di}i∈N
can be constructed by attaching a graph of the wqo (C+,E) to each pair of distinct
vertices of Kn. By Lemma 2, {Di}i∈N has a good pair, which is contradictory since
it is an bad sequence.

We just proved that {Ai}i∈N can be partitioned into a finite number of subse-
quences each of which is finite. Hence {Ai}i∈N is finite as well, a contradiction.

Therefore our initial assumption is false and (lab(Σ,�)(G
(2)
1,k),E) is a wqo.

Corollary 6. For every k ∈ N, the class G1,k is well-quasi-ordered by E.

Proof. According to Lemma 8, for every wqo (Σ,�), the class of Σ-labeled 2-connected
graphs of G are wqo by E. By Lemma 5, this implies that (G1,k,E) is a wqo and we
are done.

Proof of Theorem 1. Let p, k ∈ N
∗. Let us consider the function defined as follows.

f :

{

(Gp
1,k,E

p) → (Gp,k,E)

(G1, . . . , Gp) 7→
⋃p

i=1Gi
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Given a tuple of p connected graphs not having a bond of size more than k (possibly
containing the graph with no vertex), the function f returns their disjoint union.
Clearly, the resulting graph has at most p connected components and do not contain
a bond of size more than k. Conversely, let G ∈ Gp,k and let G1, . . . , Gi, (i ≤ p) be
an enumeration of its connected components taken in an arbitrary order. For every
j ∈ Ji+ 1, pK , let Gj be the graph with no vertices. Remark that G is isomorphic
to f(G1, . . . , Gp). Therefore f is surjective. Furthermore, for every pair of tuples
(G1, . . . , Gp) and (H1, . . . ,Hp) such that (G1, . . . , Gp)E

p (G1 . . . , Gp), we clearly have
f((H1, . . . ,Hp))E f(G1, . . . , Gp): f is monotone.

We just proved that f is an epi. Its domain is a wqo since it is the Cartesian prod-
uct of the wqo (G1,k,E) (cf. Proposition 3 and Corollary 6), therefore its codomain
is a wqo as well, by the virtue of Remark 2.

5 Canonical antichains of (G,E)

This section is devoted to the proof of the two results related to antichains of (G,E)
and stated in Section 1: Theorem 2 and Corollary 3. The closure of a graph class
G is defined as the class {H, H E G for some G ∈ G}. Notice that any closure is
contraction-closed.

Remark 6. Every canonical antichain of (G,E) is infinite.

Proof of Theorem 2. “⇒”: LetA be a canonical antichain of (G,E) and let us assume
for contradiction that B = Aθ \ A (respectively B = AK \ A) is infinite. Let B+ be
the closure of B and remark that B+ = B ∪ {K1} (respectively B+ = B). Then
the contraction-closed class B+ has finite intersection with A whereas it contains the
infinite antichain B. This is a contradiction with the fact that A is canonical, hence
both Aθ \ A and AK \ A are finite.

Let us now assume that C = A \ {Aθ ∪ AK} is infinite and let C+ be the closure
of C. Being a subset of an antichain, C is an antichain as well and consequently C+ is
a contraction-closed class that is not well-quasi-ordered. By Corollary 2, C+ contains
infinitely many elements of Aθ∪AK . Notice that besides being infinite, C+∩(Aθ∪AK)
is also disjoint from A ∩ (Aθ ∪ AK), otherwise A would contain an element from C
contractible to an element of A∩ (Aθ ∪AK). But then one of Aθ \ A and AK \ A is
infinite, a contradiction with our previous conclusion. Therefore C is finite.

“⇐”: Let A be an antichain such that each of Aθ \A, AK \A, and A\{Aθ∪AK}
is finite, and let us show that A is canonical. Let F be a contraction-closed class of G.

If F∩A is infinite, then F trivially contains the infinite antichain F∩A. On the other
hand, if F ∩ A is finite then by Corollary 2 the class F is well-quasi-ordered, hence
by definition it does not contain an infinite antichain. Consequently, A is canonical,
as required.

Proof of Corollary 3. Let A be a canonical antichain of (G,E). Observe that we have
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the following:

Incl(A) = Incl(A ∩Aθ) ∪ Incl(A ∩AK) ∪ Incl(A \ (Aθ ∪ AK)).

Now, is is easy to notice that:

• Incl(A ∩Aθ) ⊆ Incl(Aθ) = {K1};

• Incl(A ∩AK) ⊆ Incl(AK) = ∅;

• Incl(A\ (Aθ ∪AK)) is finite, because A\ (Aθ ∪AK) is finite by Theorem 2 and
since A is canonical.

Therefore, Incl(A) is finite as well and hence cannot contain an infinite antichain;
this proves that A is fundamental.
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