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Multigraphs without large bonds
are wqo by contraction∗

Marcin Kamiński† Jean-Florent Raymond†,‡ Théophile Trunck§

Abstract

We show that the class of multigraphs with at most p connected components
and bonds of size at most k is well-quasi-ordered by edge contraction for all positive
integers p, k. (A bond is a minimal non-empty edge cut.) We also characterize
canonical antichains for this relation.

1 Introduction

A well-quasi-order (wqo for short) is a quasi-order which contains neither infinite
decreasing sequences, nor infinite collections of pairwise incomparable elements. The
beginnings of the theory of well-quasi-orders go back to the 1950s and some early
results on wqos include that of Higman on sequences from a wqo [6], Kruskal’s Tree
Theorem [8], as well as other (now standard) techniques, for example the minimal
bad sequence argument of Nash-Williams [9].

A recent result on wqos and arguably one of the most significant results in this
field is the theorem by Robertson and Seymour which states that graphs are well-
quasi-ordered by the minor relation [11]. Later, the same authors also proved that
graphs are well-quasi-ordered by the immersion relation [10].

Nonetheless, most of containment relations do not well-quasi-order the class of all
graphs. For example, graphs are not well-quasi-ordered by subgraphs, induced sub-
graphs, or topological minors. Therefore, attention was naturally brought to classes
of graphs where well-quasi-ordering for such relations exists. Damaschke proved that
cographs are well-quasi-ordered by induced subgraphs [1] and Ding characterized
subgraph ideals that are well-quasi-ordered by the subgraph relation [2]. Finally, Liu
and Thomas recently announced that graphs excluding any graph of a class called
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“Robertson chain” as topological minor are well-quasi-ordered by the topological
minor relation [7].

An antichain is a collection of non-comparable elements. Another line of research
is to classify non-wqo containment relations depending on the antichains they con-
tain. Ding introduced the concepts of canonical antichain and fundamental antichain
aimed at extending the study of the existence of obstructions of being well-quasi-
ordered in a quasi-order [4]. In particular, he proved that finite graphs do not admit
a canonical antichain under the induced subgraph relation but they do under the
subgraph relation.

In this paper, we consider finite graphs where parallel edges are allowed, but not
loops. Graphs where no edges are parallel are referred to as simple graphs. An edge
contraction is the operation that identifies two adjacent vertices and deletes the loops
that were possibly created (but keeps multiple edges). A graph H is said to be a
contraction of a graph G, denoted HEG, if H can be obtained from G by a sequence
of edge contractions. A bond is a minimal non-empty edge cut, i.e. a minimal set of
edges whose removal increases the number of connected components (cf. Figure 1).

Figure 1: A bond of size 3 (dashed edges) in the house graph.

The contraction relation defines a quasi-order on finite graphs. This is not a wqo,
as witnessed by the following infinite antichains, that are also depicted in Figure 2:
Aθ is the class of connected graphs with two vertices and AK is the class of edgeless
graphs with at least one vertex. For the contraction ordering, infinite antichains are
the only obstructions to well-quasi-ordering as decreasing sequences are always finite.

Aθ =
, ,

. . .

,

. . .

,

. . .

,

. . .

,

. . .

AK =
, , , , , ,

. . .

Figure 2: Two infinite antichains for contractions: multiedges and cocliques.

For every p, k ∈ N, let Gp,k be the class of graphs having at most p connected
components and not containing a bond of order more than k. Our main result is
the following.
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Theorem 1. For every p, k ∈ N, the class Gp,k is well-quasi-ordered by E.

The complement of a simple graph G, denoted G is the graph obtained by replac-
ing every edge by a non-edge and vice-versa in G. Remark that a graph has a bond of
order k iff it contains θk as contraction, and that it has p connected components iff it
can be contracted to Kp. A class G of graphs is said to be contraction-closed if H ∈ G
whenever H EG for some G ∈ G. As a consequence of our main theorem and of the
fact that each infinite subset of Aθ or AK is an obstruction to be well-quasi-ordered,
we have the following characterization.

Corollary 1. A contraction-closed class H is well-quasi-ordered by E iff there are
k, p ∈ N such that ∀k′ > k, θk′ 6∈ H and ∀p′ > p, Kp 6∈ H.

In his study of infinite antichains for the (induced) subgraph relation, Ding [4]
introduced the two following concepts. An antichain A of a quasi-order (S,�) is
said to be canonical if the following holds for every �-closed subclass J of S: J
has an infinite antichain iff J ∩ A is infinite. Canonical antichains can be used to
characterize the �-closed subclasses of a quasi-order (S,�) and also to describe the
variety of its antichains.

The following result is a complete characterization of the canonical antichains of
E in finite graphs, which extends the results of Ding on canonical antichains of simple
graphs for the relations of subgraph and induced subgraph [4].

Theorem 2. An antichain A of E is canonical iff Aθ ∪ AK \ A is finite.

In other words, an antichain A is canonical iff it contains all but finitely many
graphs fromAθ andAK . As noted in the proof, this implies that a canonical antichain
contains a finite number of graphs that do not belong to Aθ ∪ AK . In the course of
studying antichains, we also obtained general results that are of independent interest.
They are presented in the corresponding section.

Organization of the paper. The notions and tools that are used in this paper
are introduced in Section 2. Theorem 1 is proved in Section 3 and results pertaining
to antichains appear in Section 4.

Conclusion. This work settles the case of multigraph contractions in the study
of well-quasi-ordered subclasses, a problem investigated by Damaschke for induced
subgraphs [1], by Ding for subgraphs [2] and induced minors [3], and by Fellows et
al. for several containment relations [5]. In particular, we give necessary and suffi-
cient conditions for a class of (multi)graphs to be well-quasi-ordered by multigraph
contractions. Furthermore, we characterize canonical antichains for this relation, in
the continuation of Ding’s results for subgraph and contraction relation in [4].

2 Preliminaries

We denote by V (G) the set of vertices of a graph G and by E(G) its multiset of
edges. Given two adjacent vertices u, v of a graph G, multG({u, v}) stands for the
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number of parallel edges between u and v, called multiplicity of the edge {u, v}. We
denote by P<ω(S) the class of finite subsets of a set S and by P(S) its power set.

Definition 1. A model of H in G (H-model for short) is a function µ : V (H) →
P(V (G)) such that:

(M1) µ(u) and µ(v) are disjoint whenever u, v ∈ V (H) are distinct;

(M2) {µ(u)}u∈V (H) is a partition of V (G);

(M3) for every u ∈ V (H), the graph G[µ(u)] is connected;

(M4) for every u, v ∈ V (H), multH({u, v}) =
∑

(u′,v′)∈µ(u)×µ(v) multG({u′, v′}).

Remark that H is a contraction of G iff G has an H-model. Intuitively, an H-
models indicates which connected subgraphs to contract in G in order to obtain a
graph isomorphic to H.

Quasi-orders. A quasi-ordered set (qoset for short) is a pair (Σ,�) where Σ is a
set and � is a binary relation on S which is reflexive and transitive. An antichain
is a sequence of pairwise non-comparable elements. We say that (Σ,�) is a well-
quasi-order (wqo for short), or that its elements are well-quasi-ordered by �, if it has
neither an infinite decreasing sequence, nor an infinite antichain.

Definition 2 (Cartesian production of qosets). If (Σ,�Σ) and (Σ′,�Σ′) are two
qosets, then their Cartesian product (Σ× Σ′,�Σ × �Σ′) is the qoset defined by:

∀(x, x′), (y, y′) ∈ Σ× Σ′, (x, x′) �Σ × �Σ′ (y, y′) if x �Σ y and x′ �Σ′ y′.

Proposition 1 (Higman [6]). If (Σ,�Σ) and (Σ′,�Σ′) are wqo, then so is (Σ×Σ′,�Σ

× �Σ′).

Sequences. We use the notation Σ? for the class of all finite sequences over the
set Σ (including the empty sequence). For any qoset (Σ,�), we define the relation �?
on Σ? as follows: for every r = (r1, . . . , rp) and s = (s1, . . . , sq) of Σ?, we have r �? s
if there is a increasing function ϕ : {1, p} → {1, q} such that for every i ∈ {1, p}
we have ri � sϕ(i). This generalizes the subsequence relation. This order relation
is extended to the class P<ω(Σ) of finite subsets of Σ as follows, generalizing the
subset relation: for every A,B ∈ P<ω(Σ), we write A �? B if there is an injection
ϕ : A→ B such that ∀x ∈ A, x � ϕ(x).

Proposition 2 (Higman [6]). If (Σ,�) is a wqo, then so is (Σ?,�?).

Labeled graphs as defined below will allow us to focus on 2-connected graphs.

Definition 3 (labeled graph). Let (Σ,�) be a qoset. A (Σ,�)-labeled graph is a
pair (G,λ) where λ : V (G) → P<ω(Σ) is a function, referred to as the labeling of
the graph. If H is a class of (unlabeled) graphs, lab(Σ,�)(H) denotes the class of
(Σ,�)-labeled graphs of H.
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For simplicity, we will use the same symbol G to refer to a labeled graph and its
underlying unlabeled graph and we will denote by λG its labeling function. Remark
that any unlabeled graph can be seen as a ∅-labeled graph.

The contraction relation is extended to labeled graphs by additionally allowing to
relabel by l′ any vertex labeled l whenever l′ � l. In terms of models, this corresponds
to the following extra requirement for µ to be a model of H in G:

(M5) ∀v ∈ V (H), λH(v) �?
⋃
u′∈µ(u) λG(u′).

3 Small bonds and well-quasi-ordering

We first show that we can focus on (labeled) 2-connected graphs.

Lemma 1. Let H be a class of graphs and let H′ denote the class of graphs of H
that are connected. If (H′,E) is a wqo, then so is (H,E).

Proof. Every disconnected graph of H can be seen as a sequence of graphs of H′.
Then the result follows by an application of Higman’s Lemma (Proposition 2).

Lemma 2. Let H be a class of connected graphs and let H(2) be the subclass of 2-
connected graphs of H. If for every wqo (Σ,�), the qoset (lab(Σ,�)(H(2)),E) is a wqo,
then so is (H,E).

Proof. This proof is very similar to the induced minor case proved in [5]. We deal
here with rooted graphs, that are graphs with a distinguished vertex called root.
We denote the root of a rooted graph G by root(G). The contraction relation is
extended to this setting by requiring roots to be contracted to roots. Formally,
root(G) ∈ µ(root(H)) for every model of H in G. Assuming that (H,E) is not a
wqo, we consider the class Hr of all graphs that can be obtained by choosing a root
in a graph of H. Clearly, this class is not well-quasi-ordered by E.

In a sequence of graphs, (H,G) is a good pair if H appear before G and H EG.
We use the concept of bad sequence, that are infinite sequences with no good pair.
The absence of bad sequences in a class of graphs is equivalent to this class being
well-quasi-ordered (see [9]). Towards a contradiction, we suppose the existence of a
bad sequence. We consider a minimal one, in the following sense. Let (Gi)i∈N be a
bad sequence of graphs of Hr such that for every i ∈ N, there is no contraction G of
Gi (distinct from Gi) such that a bad sequence starts with G0, . . . , Gi−1, G.

For every i ∈ N, let Ai be the maximal 2-connected subgraph of Gi which contains
root(Gi). Let Ci the set of cutvertices of Gi that belong to Ai. For each cutvertex
c ∈ Ci, let Bi

c be the connected component of Gi \ (V (Ai) \Ci) turned into a rooted
graph by setting root(Bi

c) = c. Note that we have Bi
c E Gi. Let us denote by B

the family of rooted graphs B = {Bi
c : c ∈ Ci, i ∈ N}. We will show that (B,E)

is a wqo. Let (Hj)j∈N be an infinite sequence in B and for every j ∈ N choose an
i = ϕ(j) ∈ N for which Hj E Gi. Pick a j with smallest ϕ(j), and consider the
sequence G1, . . . , Gϕ(j)−1, Hj , Hj+1, . . . . By minimality of (Gi)i∈N and by our choice
of j, since HjEGϕ(j) and Hj 6= Gϕ(j), this is not a bad sequence so it contains a good
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pair (G,G′). Now, if G is among the first ϕ(j)− 1 elements, then as (Gi)i∈N is bad
we must have G′ = Hj′ for some j′ ≥ j and so we have Gi′ = GEG′ = Hj′ EGϕ(j′),
a contradiction. So there is a good pair in (Hi)i≥j and hence the infinite sequence
(Hj)j∈N has a good pair, so (B,E) is a wqo.

We will now find a good pair in (Gi)i∈N to show a contradiction. The idea is
to label the graph family A = {Ai}i∈N so that each cutvertex c of a graph Ai gets
labeled by their corresponding connected component Bi

c, and the roots are preserved
under this labeling. More precisely, for each Ai we define a labeling σi that assigns
to every vertex v ∈ V (Gi) a label {(σ1

i (v), σ2
i (v))} defined as follows:

• σ1
i (v) = 1 if v = root(Gi) and σ1

i (v) = 0 otherwise;

• σ2
i (v) = Bi

v if v ∈ Ci and σ2
i (v) is the one-vertex rooted graph otherwise.

The labeling σ of A is then {σi : i ∈ N}. Let us define a quasi-ordering � on
the set of labels Σ assigned by σ. For two labels (s1

a, s
2
a), (s

1
b , s

2
b) ∈ Σ we define

(s1
a, s

2
a) � (s1

b , s
2
b) iff s1

a = s1
b and s2

a E s2
b . Note that in this situation, s2

a and s2
b are

rooted graphs, so E compares rooted graphs. Observe that since (B,E) is wqo, then
(Σ,�) is wqo. For every i ∈ N, let A′i be the (Σ,�)-labeled rooted graph (Ai, σi). We
now consider the infinite sequence (A′i)i∈N. By our initial assumption, (labΣ(A),E)
is wqo (as A consists only in 2-connected graphs), so there is a good pair (A′i, A

′
j) in

the sequence (A′i)i∈N.
To complete the proof, we will show that A′i E A′j ⇒ Gi EGj . Let µ be a model

of A′i in A′j . Then for each cutvertex c ∈ Ci, µ(c) contains a vertex d ∈ Cj with

Bi
c EBj

d. Let µc denote a model of Bi
c onto Bi

d. We construct a model g as follows:

ν :


V (Gi) → P(V (Gj))

v 7→ µ(v) if v ∈ Ai \ Ci
v 7→ µc(v) if v ∈ Bi

c \ Ci
v 7→ µ(v) ∪ µv(v) if v ∈ Ci

We now prove that ν is a model of Gi onto Gj . First note that by definition of
µ and each µc, we have ν(u) ∩ ν(v) = ∅ for any pair of distinct vertices u and v in
Gi, and also every vertex of Gj is in the image of some vertex of Gi (items (M1) and
(M2) in the definition of a model). If u ∈ Ci, then µ(u) contains a vertex v ∈ Cj
for which Bi

u E Bj
v, and v is also contained in µv(v) since µv preserves roots. Thus,

Gj [ν(u)] is connected when u ∈ Ci (item (M3)). This is obviously true when u 6∈ Ci
again by the definitions of µ and each µc. Moreover, the endpoints of every edge of
Gi belong either both to Ai, or both to Bi

c, so item (M4) follows from the properties
of µ and each µc. Finally, as the labeling σ ensures that root(Gj) ∈ ν(root(Gi)), we
establish that Gi EGj . So (Gi)i∈N has a good pair (Gi, Gj), a contradiction.

Then we show that removing a maximum bond in a 2-connected graphs yields
a graphs with smaller maximum bonds. This will be used in the inductive proof of
Theorem 1.

Lemma 3. If B ⊆ E(G) is a bond of maximum order in a 2-connected graph G,
then none of the components of G \B has a bond of order |B|.
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Proof. By contradiction, let us assume that one component of G \ B has a bond C
with |C| = |B|. Let {X,Y, Z} be a partition of V (G) be such that G[X] and G[Y ∪Z]
are the connected components of G\B and G[Y ] and G[Z] are those of G[Y ∪Z]\C,
while no edge of C is incident with a vertex of X.
First case: B is incident with vertices of both Y and Z. Let B′ be the set of the edges
of B that are incident with vertices of Y . Then observe that G[X ∪ Z] is connected
and is a connected component of G \ (B′ ∪C), the other one being G[Y ]. Therefore,
B′∪C is a cut and |B′∪C| > |B|, which contradicts the maximality of B. Therefore
this case is not possible.
Second case: B is incident to vertices of exactly one of Y and Z. Without loss of
generality, let us assume that this set is Y . Let x ∈ X and y ∈ Z. AsG is 2-connected,
there are two paths Q1 and Q2 connecting x to y and sharing only their endpoints.
Let Q′1 and Q′2 be minimal subpaths of Q1 and Q2, respectively, containing exactly
one edge from B and C. Let D be a minimum cut of G[Y ] separating the internal
vertices of Q1 from that of Q2. As G[Y ] is connected, D 6= ∅. For every i ∈ {1, 2},
let Yi be the connected component of G[Y ] \D containing the internal vertices of Q′i
and let Bi (resp. Ci) be the edges of B (resp. C) that have an endpoint in Yi. As
{B1, B2} is a partition of B, there is an i ∈ {1, 2} such that |Bi| ≥ |B|/2. Similarly,
there is a j ∈ {1, 2} such that |Cj | ≥ |C|/2 = |B|/2. Let B′ = Bi ∪Cj ∪D and let us
show that it is a bond. As |B′| > |B|, this would provide the desired contradiction
to the maximality of B. If i = j, then B′ separates Yi from X ∪ Y3−i ∪ Z. The
subgraph G[Yi] is connected by definition of Yi, and G[X ∪Y3−i∪Z] is because of the
path Q′3−i. If i 6= j, then B′ separates Yi∪Z from X ∪Y3−i. There vertex sets induce
connected subgraphs thanks to the paths Q′i and Q′3−i, respectively. Therefore B′ is
a bond and we are done.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Our goal is to show that for every p, k ∈ N, the class Gp,k is
well-quasi-ordered by E. Lemma 2 allows us to focus on labeled 2-connected graphs.
We call G′p,k the class of graphs of Gp,k that are 2-connected. Also, according to

Lemma 1, if
(
G′1,k,E

)
is a wqo, then so is

(
G′p,k,E

)
. Therefore we only need to

consider the case where p = 1 (the case p = 0 being trivial).
The proof then goes by induction on k. When k = 0, then G′1,k is empty, so

lab(Σ,�)

(
G′1,k

)
is trivially well-quasi-ordered, for every wqo (Σ,�). Let us now as-

sume that k > 0 and that for and every wqo (Σ,�), the class lab(Σ,�)

(
G′1,k−1

)
is well-

quasi-ordered by E (induction hypothesis). By the remarks above,
(
lab(Σ,�) (Gp,k−1) ,E

)
is a wqo, for every p ∈ N.

Let (Σ,�) be a wqo. By contradiction, we assume that lab(Σ,�) (G1,k) is not a
well-quasi-order. Let {Gi}i∈N be an infinite antichain in lab(Σ,�) (G1,k) such that, for
some k′ ≤ k and for every i ∈ N, a largest bond Bi in Gi has order k′. As no graphs
of G1,k has a bond of order more than k, such antichain always exist.
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We may also assume that, if we respectively denote by {x1
i , . . . , x

k′
i } and {y1

i , . . . , y
k′
i }

the endpoints of the edges of Bi in the two connected components of Gi \ Bi, the
bipartite graph between {x1

i , . . . , x
k′
i } and {y1

i , . . . , y
k′
i } is the same for every i. We

mean here that multGi({xli, yl
′
i }) = multGj ({xlj , yl

′
j }) for every l, l′ ∈ {1, k′}. This is

possible as there is a finite number of bipartite graphs on k edges and at most 2k
vertices.

For every i ∈ N, let G′i = Gi \ Bi. Let Hi be a copy of G′i (with the same vertex

set) that we label as follows. Let v ∈ V (Hi). If v = xji (resp. v = yji ) for some
j ∈ {1, k′}, then we set λHi(v) = (λG′

i
(v), j) (resp. λHi(v) = (λG′

i
(v), 2j)), otherwise

we set λHi(v) = (λG′
i
(v), 0).

Let Σ′ = Σ× {0, 2k − 1}, let �′ be the Cartesian product of � and = and notice
that, as a Cartesian product of wqos, (Σ′,�′) is a wqo (Proposition 1). According
to Lemma 3, the graph Hi belong to lab(Σ′,�′) (G2,k−1). By induction hypothesis,
{Hi}i∈N is wqo by E. Let i and j be distinct integers such that HiEHj and let µ be
a model of Hi in Hj . Let us show that µ is also a model of Gi in Gj . The properties
(M1), (M2), and (M3) follow from the definition of µ, as well as (M4) when u and v
belong to the same connected component of Hi. Also, as V (Gi) = V (Hi), µ seen as
model of Gi in Gj satisfies (M5). Therefore we only need to prove that (M4) holds
when u and v belong to distinct connected components of Hi.

Let l ∈ {1, k′}. Since λGi(x
l
i) is only comparable with the labels that have l as

their second coordinate, and that xlj is the only vertex of Gj with that property, we

get xlj ∈ µ(xli). Similarly, ylj ∈ µ(yli). The image of µ consists of disjoint subsets,

thus we have that if v ∈ V (Gi) is not of the form xli or yli for some l ∈ {1, k′},
then µ(v) ∩

⋃k′

l=1{xlj , ylj} = ∅. As the possible edges in Gj between two vertices u, v
that belong to distinct connected components of Hi are the edges of Bi, we deduce
that if one of u, v is not of the form xli or yli for some l ∈ {1, k′}, then there is no
edge between a vertex of µ(u) and one of µ(v). This proves (M4) in this case. The
case where u = xli and v = yl

′
j for some l, l′ ∈ {1, k′} follows from our choice of the

antichain {Gi}i∈N with the property that multGi({xli, yl
′
i }) = multGj ({xlj , yl

′
j }).

4 On canonical antichains

We present in this section general lemmas on antichains and prove Theorem 2. If S is
the subset of a qoset (Σ,�), the �-closure of S is defined as {x, x � y for some y ∈
S}. For every A ⊆ Σ, we define Incl�(A) = {x ∈ Σ, x ≺ a for some a ∈ A}. An
antichain A of (Σ,�) is said to be a fundamental antichain if Incl�(A) has no infinite
antichains. This concept was introduced by [4] in its study of canonical antichains.

Lemma 4. Let (Σ,�) be a qoset and let A be an antichain. If A is canonical, then
A is fundamental.

Proof. Let C = Incl�(A). As C is �-closed, it contains infinite antichains iff C ∩ A
is infinite. However, for every x ∈ C there is a element y ∈ A such that x ≺ y.
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Therefore, if x ∈ C ∩A, then A contains two distinct elements that are comparable.
We deduce C ∩A = ∅. Therefore C has no infinite antichains: A is canonical.

A consequence of Lemma 4 and Theorem 2 is that every antichain A of E such
that Aθ ∪AK \ A is finite is fundamental. In the following lemma, we formalize and
extend observations on canonical antichains made in [4].

Lemma 5. Let (Σ,�) be a qoset and let A,B be two infinite antichains:

(i) if A and B are canonical, A \B and B \A are finite;

(ii) if A is canonical and A \B is finite then B is canonical and B \A is finite.

Proof. Proof of (i). We consider D = (B \A)∪ Incl(B \A), the �-closure of B \A. If
B \A is infinite, then D contains an infinite antichain. Therefore, as A is canonical,
D ∩ A is infinite. However, A ∩ Incl(B) is finite because B, being canonical, is
fundamental (Lemma 4). Hence A ∩ (B \A) is infinite, a contradiction.
Proof of (ii). By definition, for every �-closed class C, C has an infinite antichain iff
C ∩ A is infinite. As A \ B is finite, C ∩ A is infinite iff C ∩ A ∩ B is infinite. This
implies that C ∩B is infinite. On the other hand, if C ∩B is infinite, then C clearly
has an infinite antichain. Therefore B is a canonical antichain. Applying (i) we get
that B \A is finite.

Theorem 2 is a consequence of Lemma 5 applied with A and Aθ ∪ AK which is,
as a consequence of Corollary 1, a canonical antichain.
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