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Abstract—Floating-point arithmetic may introduce failures of
the numerical reproducibility between a priori similar sequential
and parallel executions of HPC simulation. We present how to
apply some existing techniques to part of hydrodynamic finite
element simulations. We analyze how easy these techniques allow
us to recover its numerical reproducibility.
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I. MOTIVATIONS

Exascale high performance computing will soon allow
us to process 1018 floating-point operations per second
and so to enable the numerical simulation of larger, more
complex and more sensitive physical phenomena. This huge
amount of computing power proceeds from the massive and
heterogeneous parallelism of our machines: current HPC
computers consist in more than one million of computing
units. Failures of the numerical reproducibility of some HPC
simulations have been reported in several sensitive application
domains as is energy [1], dynamical weather science [2],
dynamical molecular [3] or dynamical fluid [4]. Indeed HPC
is performed in a finite precision world where for instance, the
floating-point addition is no more an associative operation. So
computed values depend on the order of the operations and
may be non-reproducible between a priori similar executions.

We illustrate a reproducibility failure case with a HPC code
for the simulation at the industrial scale of free-surface flows
in 1D-2D-3D hydrodynamic. The open Telemac-Mascaret suite
is an integrated set of open source Fortran 90 modules [5]. It
includes more than 300 000 lines of code issue from a 20 years
international collaboration and declares 4000 registered users.
The 2D-simulation of the Malpasset dam break (433 dead
people and huge damage in 1959) is performed with a finite
element resolution of the Saint-Venant equations. Unknowns
are the water depth (H) and its velocity (U,V). The parallel
resolution uses a subdomain decomposition of the triangular

Table I. REPRODUCIBILITY FAILURE OF THE DAM BREAK SIMULATION

The sequential run a 64 procs run a 128 procs run

depth H 0.3500122E-01 0.2748817E-01 0.1327634E-01

velocity U 0.4029747E-02 0.4935279E-02 0.4512116E-02

velocity V 0.7570773E-02 0.3422730E-02 0.7545233E-02

element mesh (26000 elements, 53000 nodes, 2200 seconds
with a 2 sec. time step). Table I exhibits the non-reproducibility
of some randomly chosen point values with respect to the
number of computing units: 1 vs. 64 vs. 128. Most of the
parallel results share nothing more than the order of magnitude
compared to the sequential result.

Numerical reproducibility is necessary to debug or to
validate the computed simulation. Reproducibility may also
be mandatory to satisfy legal agreements. The comparison be-
tween trustful sequential results and parallel ones is a common
practice to check the correctness of the parallel implementa-
tion. How to conclude for our previous example? Of course,
non reproducible executions may be the symptom of remaining
bugs. But how to fix them if errors cannot be reproduced? In
most cases, such failures damage the confidence in the whole
numerical simulation process.

The operation order uncertainty for consecutive executions
of a given binary file explains this non reproducible behavior. It
appears both in parallel or in sequential+vectorized (SIMD) en-
vironments. One source is the parallel loop reduction provided
by SIMD, openMP, MPI or GPU programming. The number
of computing units p modifies the partial computed values
before the reduction. Even for a given p, the computed reduced
value depends on the dynamic scheduling of the reduction
(openMP, MPI, GPU). One other source is the memory data
alignment. This appears both in the parallel and the sequential
case. Different p modifies the data alignment to the cache
line boundary. Hence the vectorized iteration loop and the
prologue or the epilogue parts apply to different numerical
values. Sequential cases where this alignment depends on



external events coming from the operating system have even
been reported [6] .

The reproducibility requirement is not a portability issue.
Portability problems comes when one source code yields dif-
ferent binaries, i.e. binaries with different numerical properties.
In our scope, the main portability parameters are the compilers,
their options, the libraries, the few freedom spaces let by
the IEEE-754 floating-point standard (rounding modes, double
rounding, fused multiply and add operator) and the targeted
computing unit. As mentioned before, reproducibility may fail
for a given set of these portability parameters.

As already pointed out by [7], the reproducibility
requirement is not a claim for accuracy. Numerical
reproducibility is getting bitwise identical results for
every p-parallel run, p ≥ 1. Full accuracy, or accuracy up
to the computing precision, is getting bitwise exact result.
[7] introduces reproducible but not necessarily accurate
summation algorithms. Of course, improving the computed
result accuracy up to the IEEE-754 correct rounding
guarantees its numerical reproducibility.

In this paper, we study the feasibility issues of numer-
ical reproducibility. Do existing techniques easily provide
reproducibility to large software used for industrial scale
simulations? In Section II we present one test case from the
previously introduced hydrodynamic simulation code Telemac.
In Section III we apply three existing scenarios to recover the
numerical reproducibility of a simulation. A first conclusion
is that all presented solutions succeed. This motivates us to
describe how easy, or not, these reproducible simulations have
been derived from the original code. Some recent algorithms
specifically designed to ensure reproducible summation sur-
prisingly appears to be, at least in our context, both the less
easily applicable solution and the most expensive one. The
chosen test case is a real simulation at the industrial scale. So
the presented results are significant and encouraging. Never-
theless it only covers a small part of a general open Telemac-
Mascaret treatment and a large amount of work remains to be
produced. This also justifies this preliminary study that will
help to identify the best choices for the future steps towards
trustful and reproducible large scale simulations.

II. ONE TEST CASE AND ITS ANALYSIS

A. The test case and the original floating-point computation

We consider Tomawac, the Telemac’s module for the wave
propagation simulation in coastal areas. It solves a transport
equation, a first order PDE changed as ODEs along its char-
acteristic curves [8]. This turns to solve a diagonal linear
system where the second member comes from a finite element
assembly. Unknowns here are the significant wave height, the
mean wave frequency and direction. We solve the Tomawac’s
Nice test case which simulates the effect of high-speed ferry
waves when approaching the Mediterranean Nice harbour. The
relative variations between the sequential execution (FPAss)
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Figure 1. Floating-point assembly. Mean frequency wave, Tomawac (Nice)

and the p-parallel (FPAssp) ones are measured at every mesh
node for every time step for p = 2, 4, 8, 16. The non repro-
ducibility of these computations is illustrated with Figure 1
which displays max |FPAssp-FPAss|/|FPAss|. The dashed line
plots the computing precision (IEEE-754 binary64).

B. Analysis and solutions

The main computing step is the finite element assembly
of the elementary contributions We to every mesh node. For
every mesh element e that contains the i node, it consists in
the accumulation:

X(i) =
∑

elements e

We(i). (1)

The parallel resolution divides the mesh into subdomains
that are distributed over the computing units. Subdomain
decomposition introduces inner and interface nodes, the latter
belonging to a common boundary between several subdomains,
i.e. between several computing units. Inner node values X(i)
are computed as previously while the interface nodes needs a
two step accumulation: Relation (1) applied over the elements
of one subdomain dk gives Xdk

sub(i). Then communications
between the subdomains that contain the interface node i
allows us to compute the final contribution:

X(i) =
∑

subdomains dk

Xdk
sub(i). (2)

The parallel assembly step adds the communication and the
reduction (2) of the subdomain’s Xdk

sub(i) for every interface
node i. In practice, every subdomain uses a local table that
defines its communication scheme. For instance subdomain
dk knows how much, which i and to which dk′ , it has to
send Xdk

sub(i) and to receive X
dk′
sub (i). The Tomawac’s imple-

mentation of this communication scheme introduces a different
accumulation order of a given i according to the subdomains.
For p = 3 subdomains, the d0’s computation of X(i) is:

X(i) = Xd0
sub(i) +Xd1

sub(i) +Xd2
sub(i),

while the d1 and d2 ones are:

X(i) = Xd1
sub(i) +Xd0

sub(i) +Xd2
sub(i),



!"

!"#
$$#

%&#

"!#

"#
&# '

'#
()*+,'-#

+#
*+#

for idp = 1, ndp
for ielem = 1, nelem

i = IKLE(ielem,idp)
X(i) = X(i) + W(ielem, idp)

Figure 2. Assembly step at the inner node i and its associated numberings.

and
X(i) = Xd2

sub(i) +Xd0
sub(i) +Xd1

sub(i).

Hence the floating-point computed X(i) may differ over the
subdomains. Let us remark that the dynamic scheduling of
classical reductions may also generate the same differences.
To ensure the solution continuity between the subdomains,
Tomawac introduces one more communication step to share
the maximum value of every X(i) (this choice being justified
by physical reasons). As a side effect, this ensures the repro-
ducibility between repeated simulations at a given p (which is
not the case with the dynamic reduction). Nevertheless this
is not enough to recover the simulation reproducibility for
different p: in the previous relations, X(i) depends on the
value p.

Before introducing three possible scenarios to ensure the
numerical reproducibility, we present a practical but impor-
tant assembly step feature. The well known implementation
difficulty of these steps comes from the management of the
node numbering. Finite element assembly introduces several
numberings for a given node and tables to map from one to
another. Figure 2 describes it: every triangular element ielem
has ndp=3 nodes. Assembly loops over the domain or the
subdomain elements, and then over the element nodes. The
IKLE table returns the global number i of the node related to
the contribution We(i) in (1). Let us note it defines indirect
accumulations, i.e. two consecutive iterations of the inner loop
do not apply to the same i value.

III. EVALUATION OF THREE REPRODUCIBLE SOLUTIONS

We propose to evaluate the following three existing tech-
niques that provide reproducibility of this assembly step.
Since here this latter is not ill-conditioned, the compensated
summation of [9] yields a correctly rounded accumulation, and
so an accurate and reproducible computation. Another choice
are recent Demmel and Nguyen’s reproducible sums [7]. The
latest Telemac release introduces integer conversions and so
exact accumulations [5].

We use the following notations to measure the accuracy and
the reproducibility of these solutions. As denotes a sequen-
tial assembly algorithm and Ap its p-parallel version. With

maxrel(A1, A2) = |A1 − A2|/|A2|, the measures of the Ap

accuracy compared to the original sequential FPAsss and of the
reproducibility between parallel executions are respectively:

acc = maxrel(Ap,FPAsss),

rep = maxrel(Ap, As).

A. Accurate compensated assembly

Compensated summation consists in computing every
rounding error generated by the successive floating-point ad-
ditions and to accumulate them in an error term. The addition
rounding error is actually a floating-point number that can be
exactly computed with the Knuth-Moller’s 2Sum algorithm or
(in base 2) with the Dekker-Kahan’s Fast2Sum one, e.g. see
[10]. The rounding-error accumulation is performed in parallel
along the main accumulation. Hence the computation of the
error term does not need the knowledge of the whole sum
entries to start. This error term accumulation performed in
floating-point arithmetic again generates rounding-errors but
the same principle iteratively applies if necessary. Finally this
error term is added to the main sum value and so compensates
it. Ogita-Rump-Oishi prove that one compensation iteration
improves the sum’s accuracy as if this sum was computed in
twice the computing precision u [9]. For condition numbers
less than 1/u and reasonable sum lengths, the compensated
algorithm returns a correctly rounded sum. It is our case here.

Compensated assembly steps are easy to derive for both
inner and interface node assembly steps. Accumulation (1) is
now written as:

[X(i), E(i)] = Compensated Sumelements eWe(i),

where E(i) is the accumulated error term associated to∑
elements eWe(i). The compensated assembly of an inner node

is:
X(i) + E(i),

while the interface node communications encompass the pairs
[Xdk

sub(i), E
dk(i)]. The compensated assembly of an interface

node now is:
X(i) +G(i),

where the error term G(i) carefully takes into account the
two step accumulation as follows. i) F k,k

′
(i) is the rounding

error generated by the partial accumulation in (2) over two
consecutive subdomains dk and dk′ that share the interface
node i: Xdk

sub(i) +X
dk′
sub (i). ii) The whole error term in (2) is

then computed, according to the parenthesis order, as:

G(i) =
∑

subdomains dk,dk′

(Edk(i) + Edk′ (i)) + F k,k
′
(i).

This compensated assembly fits well the existing one. It
follows the iteration flow defined in Figure 2 for the inner
nodes (Relation (1)) and for the interface ones (Relation (2)).
We already noted the very slight modification of the commu-
nications between the computing units that now exchange the
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Figure 3. Compensated assembly. Mean frequency wave, Tomawac (Nice)

pair of floating point value [Xdk
sub(i), E

dk(i)], and not only its
first one. Nevertheless no supplementary communication step
is introduced here.

Tomawac recovers numerical reproducibility with this com-
pensated assembly. Figure 3 exhibits that all parallel execu-
tions return the same simulation results up to the computing
precision (rep for p = 2, 4, 8, 16). Since compensation also
improves the accuracy, the acc plot actually measures the
original accuracy of the floating point assembly FPAsss. It
measures about one digit enhancement which is consistent with
the error bound of the classical floating point accumulation.
Compensation introduces a small amount of supplementary
computation but we did not measure any significant increase
of the whole simulation time.

B. Reproducible algorithm based assembly

Demmel and Nguyen have recently introduced algorithms
to compute reproducible sums, i.e. bitwise identical results
independently on the summation order [7]. These solutions
derive from Rump-Ogita-Oishi’s AccSum and FastAccSum
algorithms [11]. A pre-rounding step returns K shrunks over
the entries such that the floating-point sum of each shrunk
is exact. Defining the right shrunk cutting width is the key-
point of this error-free vector transformation of the entries:
it depends on the maximum absolute value of the entries
and of their numbers. These ReproSum and FastReprodSum
algorithms are parallel K-fold processes where K is a priori
chosen; the larger K, the more accurate sum. In practice, they
introduce two reductions (max and sum).

The main difficulty to integrate these algorithms within
the assembly step in Tomawac is the need for maxima of the
inner point and the interface point contributions, respectively
maxeWe(i) in (1), and one other maximum value for (2)
we detailled a few lines further. As we already mentioned
it, the assembly loop (Figure 2) consists in indirect accu-
mulations. In this scope, ReprodSum and FastReprodSum
introduces a significant volume of supplementary computations
and communications. One more previous run of the assembly
double loop is necessary to identify the maximum values for
every inner node i (and also generates some extra-storage
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Figure 4. Reproducible based assembly. Mean frequency wave, Tomawac
(Nice)
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Figure 5. Accuracy of the reproducible based assembly for K = 1, 2
compared to the compensated one. Mean frequency wave, Tomawac (Nice)

on every computing unit). The interface node assembly is
even more costly since every computing unit needs to use the
same maximum value before computing both Relation (1) and
Relation (2). For every subdomain dk, maxek∈dk Wek(i) is first
identified and reduced over the domain before computing every
Xdk

sub(i) with Relation (1). Relation (2) is finally computed after
a last classical communication step of the Xdk

sub(i). Hence the
interface node assembly adds one other previous run similar
to the Relation (2) implementation and the reduction of the
identified partial maximum values.

Nevertheless the reproducibility failure of the floating point
assembly is thus repaired for all considered parallel executions.
Figure 4 exhibits it for K = 1 and K = 2. Figure 5 presents
the accuracy behavior of these solutions for K = 1 and 2
compared to the accurate compensated assembly. As expected,
the K = 1 case provides less accurate results, without being
here significantly interesting even compared to the original
floating point ones. It also illustrates that no difference appears
for K = 2 between the ReprodSum based assembly and the
accurate compensated one.

C. Integer converted assembly

The last solution towards reproducible assembly step is the
integer conversion the latest Telemac release provides [5]. It



consists in one 8 byte integer conversion of every floating
point value concerned by assembly computations. Integer
accumulations are exact as long as no overflow occurs and their
conversions back to floating point values yield reproducible
computed results.

This 8 byte integer conversion is simple. We denote
max(INTK8) the maximum of these 8 byte integer values. A
N -length floating point vector X is converted into the integer
vector:

IX = INT (X ×Q8(X,N)), (3)

where the scaling factor Q8 is chosen to avoid the overflow
while summing X . We have [5]:

Q8(X,N) =
max(INTK8)

N ×max(|X|)
.

This conversion introduces two approximation levels. The
first one comes from the difference between the floating-
point discretisation and the integer one. We illustrate it with
one example in decimal. Let N = 10 and X ∈ [102, 106[
(componentwisely); so max(X) = 106. Let IX ∈ [0, 108[
(componentwisely) thus max(IX) = 108. The conversion
IX = X × Q applies here with Q = 10. So every floating
point value with more than one fractional digit suffers from
a 10−1 absolute error of conversion. This corresponds to a
relative error from 10−3 to 10−7 for the whole X range that
acts as data errors before the summation. Even if the sum
is exactly computed, cancellation is well known to magnify
the data errors. Hence no accuracy bound better than 10−4

can be expected after such (fancy) conversion. The floating
point evaluation of the scaling factor Q8 introduces a second
approximation level. Indeed evaluation (3) suffers from round-
ing errors in the Q8 evaluation, in the multiplication and then
in the division on the way back to floating point values. Of
course, these errors are smaller than the previous discretisation
ones but occur in every conversion (3). Nevertheless changing
Q8 to its next larger power of the base, i.e. to 2α with
2α−1 < Q8 ≤ 2α, in binary arithmetic, is a slight modification
that avoids this approximation error. In this case, it is clear that
no difference appears between the exact floating-point sum and
its integer counterpart as long as X × 2α ∈ INT K8.

There is no difficulty to apply this integer conversion to the
assembly process in Tomawac. The pre and post conversions
are applied on-the-fly while accumulating inner nodes in (1).
Interface assembly step only needs to communicate the integer
values to evaluate (2).

Integer conversion yields the expected reproducibility of
the simulation as exhibited with Figure 6. It does not appear a
significant loss of accuracy compared to the previous solutions.
The Tomawac computation is a favourable case for this integer
conversion strategy. Indeed few terms are accumulated for
every node i and their ranges remain small enough to avoid
suffering a lot from the discretisation error.
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Figure 6. Integer assembly. Mean frequency wave, Tomawac (Nice)

IV. CONCLUSION AND FUTURE WORK

We have been able to recover the numerical reproducibility
of the Tomawac simulation with the three presented solutions.
In this context we can summarize their current feasibility as
follows. The compensated solution appears to be the easiest
one to apply and provides accurate results for a low computing
over-cost. The integer conversion provided in Tomawac is also
easy to derive and introduces a low over-cost. Even if it is
definitely not redhibitory here, this solution may introduce a
risky loss of accuracy in other cases. A careful error analysis
should be performed before other applications. The solution
that uses the reproducible sums is efficient but applies less
easily to our case and introduces a significant communication
over-cost. Let us mentioned that the latest evolution of these
algorithms only introduces one reduction step [12] and so
should introduce less communication cost in our context.

A preliminary step has been to identify what parts of
such large computation generate failures of the numerical
reproducibility while changing the number of computing re-
sources. Assembly is an inevitable step in the ubiquitous finite
element resolution. The chosen simulation was simple enough
to successfully only focus on this assembly step. Future work
will tackle the linear system resolution which is the second
main step of such simulations. The efficiency, in term of
computing time overcost, will be of most interest for this next
stage.
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