
HAL Id: lirmm-01142327
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01142327

Submitted on 15 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Modular Exponentiation Based on Multiple
Multiplications by a Common Operand

Christophe Negre, Thomas Plantard, Jean-Marc Robert

To cite this version:
Christophe Negre, Thomas Plantard, Jean-Marc Robert. Efficient Modular Exponentiation Based on
Multiple Multiplications by a Common Operand. ARITH: Computer Arithmetic, INRIA, Jun 2015,
Lyon, France. pp.144-151, �10.1109/ARITH.2015.24�. �lirmm-01142327�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01142327
https://hal.archives-ouvertes.fr

Efficient Modular Exponentiation Based on Multiple Multiplications by a Common
Operand

Christophe Negre∗, Thomas Plantard†, Jean-Marc Robert∗
∗ Team DALI (UPVD) and LIRMM (UM2, CNRS) , France
†CCISR, SCIT, (University of Wollongong), Australia

Abstract—The main operation in RSA encryption/decryption
is the modular exponentiation, which involves a long sequence
of modular squarings and multiplications. In this paper, we
propose to improve modular multiplications AB,AC which
have a common operand. To reach this goal we modify the
Montgomery modular multiplication in order to share common
computations in AB and AC. We extend this idea to reduce
the cost of multiple modular multiplications AB1, . . . , AB`

by the same operand A. We then take advantage of these
improvements in the Montgomery-ladder and SPA resistant m-
ary exponentiation algorithms. The complexity analysis shows
that for an RSA modulus of size 2048 bits, the proposed
improvements reduce the number of word operations (ADD
and MUL) by 14% for the Montgomery-ladder and by 5%-
8% for the m-ary exponentiations. Our implementations show
a speed-up by 8%-14% for the Montgomery-ladder and by 1%-
8% for the m-ary exponentiations for modulus of size 1024,
2048 and 4048 bits.

Keywords-Montgomery multiplication, word level, common
operand, modular exponentiation.

I. INTRODUCTION

RSA [7] is the most widely used public key cryptosystem.
It is for example used to secure credit card transaction and
to generate SSL/TLS certificates with an RSA signature.
The main operation in RSA protocols is the modular ex-
ponentiation Ge mod N . In order to ensure a sufficient
security level, the modulus N is typically of size 1000-4000
bits. The most widely used method to compute a modular
exponentiation is the square-and-multiply approach, which
consists of a long sequence of a few thousands of squarings
and multiplications modulo N .

In practice, such exponentiation methods can be threat-
ened by side channel analysis. For example, by measuring
several computation times of a modular exponentiation and
exploiting the difference of squaring and multiplication
times, an attacker can recover part of the key (cf. [3]).
An attacker can also monitor the power consumption and
then read the sequence of operations on the power trace
and recover the key bits: this is the Simple Power Analysis
(SPA) [4]. In this paper, we focus on the variants of the
square-and-multiply robust against timing and SPA attacks,
by ensuring a regularity of the sequence of multiplications
and squarings. Specifically, the considered methods are the

Montgomery-ladder [2] and the regular m-ary exponentia-
tions [1].

Let us assume that N is stored in n computer words. A
multiplication modulo N consists of a multi-precision inte-
ger multiplication followed by a reduction modulo N . The
modulus N used in RSA cryptosystem has a random form.
Consequently, the reduction modulo N is generally per-
formed using the Montgomery approach [6]. This reduction
is thus quite costly since an integer multiplication requires
∼= 3n2 word operations (word additions or multiplications)
while the reduction also requires ∼= 3n2 word operations.

In this paper, we present a modified version of the
Montgomery multiplication which performs two multipli-
cations AB,AC with a common operand A. We reduce
the complexity by sharing part of the computations in-
volved in the costly reductions modulo N in AB and AC.
This reduces the overall complexity of AB,AC by 25%.
We extend this idea to improve multiple multiplications
AB1, . . . , AB` by a common operand A: some redundant
operations can be avoided by storing some data in memory
and by subsequently reusing them in the multiplications
ABi, i = 1, . . . , `. For sufficiently large `, this saves ∼= 50%
of word operations per multiplication.

The remaining of the paper is organized as follows.
Section II is a review the word level version of the Mont-
gomery modular multiplication. In Section III, we present an
algorithm which performs two Montgomery multiplications
with a common operand AB,AC, and we extend this
approach to reduce the cost of multiple multiplications by
a common operand A. In Section IV, a modified versions
of the Montgomery-ladder and m-ary exponentiations are
presented, which perform part of the modular multiplications
using the proposed improvement on multiplications with
a common operand. Section V gives a comparison of the
complexity of the proposed approaches with their conven-
tional counterparts and provide implementation results. In
Section VI, we give a few concluding remarks.

II. REVIEW OF MONTGOMERY MODULAR
MULTIPLICATION

We consider an RSA modulus N such that N < 2wn.
Let A and B be two integers in [0, N]. The classical way
to compute Y = A ·B mod N is to perform an Euclidean

division of C = A×B by N

Q← b(A×B)/Nc and Y ← A×B −QN,

and Y satisfies Y < N . In other words, the most significant
bits of C are cleared by subtracting QN . Montgomery in [6]
performs this reduction in a different way: instead of clearing
the most significant bits of C = A×B, one clears the least
significant bits, by first computing

Q← A×B · (−N−1) mod 2wn,

and then computing the following exact division

Y ← (A×B +Q ·N)/2wn.

This produces Y which satisfies Y = A × B × 2−wn

mod N and Y < 2N .
When one needs to compute a long sequence of modular

multiplications, the elements modulo N are generally set
in the so-called Montgomery representation Ã = A · 2wn

mod N . Indeed, a Montgomery multiplication computes

Ã · B̃ · 2−wn mod N = (AB) · 2wn mod N

which is the Montgomery representation of the product.
We now review the word level variant of the Montgomery

representation which can be found in [5]. We first review the
two basic operations involved in this algorithm which are the
word-multiplication and the small reduction.

Word-multiplication: We first study the operation a ·B
where a is a w-bit integer and B = (bn−1, . . . , b0)2w is an
nw-bit integer. This operation will be the building block of
most of the algorithms presented in this paper. The basic
method to compute a ·B consists in expanding the product
relatively to B =

∑n−1
j=0 bj2

wj :

a ·B =

n−1∑
j=0

abj2
wj .

Then, the products abj for j = 0, . . . , n−1 are sequentially
computed and added to the intermediate result X as shown
Algorithm 1.

Algorithm 1 Word-multiplication
Require: a,B with B = (bn−1, . . . , b0)2w and 0 ≤ a, bi <

2w

Ensure: X = (xn, . . . , x0)2w with X = a ·B < 2(n+1)w

{v, u} ← a · b0 //u is the lower and v the upper part
x0 ← u, x1 ← v
for j = 1 to n− 1 do
{v, u} ← a · bj //u is the lower and v the upper part
xi ← ADDC(xi, u) // addition with carry
xi+1 ← v

xn ← ADDC(xn, 0) // absorption of the last carry
return X = (xn, . . . , x0)2w

The above Word-multiplication algorithm requires n word
multiplications (MUL) and n word additions (ADD).

Small Montgomery reduction: The small reduction
is a version of the Montgomery modular reduction which
reduces an integer A modulo N by w bits. This method is
depicted in Algorithm 2.

Algorithm 2 SmallRed
Require: A modulus N < 2wn−2 and a positive integer

X = (xn′−1, . . . , x0)2w of n′ words and N ′ = (−N−1)
mod 2w

Ensure: Y = X · 2−w mod N with Y < X/2w +N
1: q ← x0 ·N ′ mod 2w

2: Y ← (X + q ·N)/2w

3: return Y

The complexity of SmallRed with an n′ word input X is
max(n′, n+ 1) + n ADD and n+ 1 MUL. The following
lemma establishes some basic facts concerning the SmallRed
algorithm which will be useful in the sequel.

Lemma 1. Let X ≥ 0 be the input of Algorithm 2. Then,
the output Y satisfies

i) Y < X/2w +N and Y = X2−w mod N .
ii) If X < 2N then Y < 2N .

Proof:
i) By construction, one has (X + q · N) = 0 mod 2w.

Thus the division by 2w (Step 2 of Algorithm 2) is exact
and Y is well defined. This implies that Y 2w = (X +
q ·N) ≡ X mod N and then Y ≡ X · 2−w mod N .
It is also straightforward to get Y = (X + qN)/2w <
X/2w +N since q < 2w.

ii) In the special case X < 2N , one has Y = (X +
qN)/2w < 2N/2w +N < 2N .

Word level Montgomery multiplication: We review
the word level form of a Montgomery multiplication. Let us
consider two integers A and B of size < N . The idea is to
interleave Word-multiplications (Algo. 1) with SmallReds to
maintain the intermediate product Y in the range [0, 2N] at
the end of each loop turn. A final subtraction by N produces
Y < N . This method is detailed in Algorithm 3.

The complexity of Algorithm 3 is evaluated step by step
in Table I by using the complexity of Word-multiplication.

A word level Montgomery squaring can be computed
more efficiently than a Montgomery multiplication. Indeed,
some of the products aiaj are redundant and thus can be
avoided:

A2 =
∑n−1

i=0 ai2
w(2i)(ai + 2

∑n−i−1
j=1 ai+j2

wj)

=
∑n−1

i=0 ai2
w(2i)Ãi.

(1)

The integers Ãi = (ai+2
∑n−i−1

j=1 ai+j2
wj) can be deduced

Algorithm 3 Word level Montgomery multiplication [5]
Require: N < 2wn−2 the modulus, w the word size,

A = (an−1, . . . , a0)2w and B = (bn−1, . . . , b0)2w two
n-word integers in [0, N] and N ′ = (−N−1) mod 2w

Ensure: Y = A ·B · 2−wn mod N
1: Y ← a0 ·B
2: q ← |Y |2w ·N ′ mod 2w

3: Y ← (Y + q ·N)/2w

4: for i = 1 to n− 1 do
5: Y ← Y + ai ·B
6: q ← |Y |2w ·N ′ mod 2w

7: Y ← (Y + q ·N)/2w

8: if Y > N then
9: Y ← Y −N

10: return Y

Table I
COMPLEXITY OF ALGORITHM 3

Operations # ADD # MUL
Step 1 a0 ×B n n
Step 2 |Y |2w ·N ′ 0 1

Step 3 q ×N n n
Y + (qN) n+ 1 0

n− 1 Step 5 ai ×B (n− 1)n (n− 1)n
Y + (aiB) (n− 1)(n+ 1) 0

n− 1 Step 6 |Y |2w ·N ′ 0 n− 1

n− 1 Step 7 q ×N (n− 1)n (n− 1)n
Y + (qN) (n− 1)(n+ 1) 0

Step 9 Y −N n 0
Total 4n2 + 2n− 1 n(2n+ 1)

from A′ = 2A = (a′n−1, . . . , a
′
0)2w as

Ãi = (a′n−1, . . . , a
′
i+2, |2ai+1|2w , ai)2w .

With the formulation (1), we derive the word level Mont-
gomery squaring shown in Algorithm 4.

The overall complexity of Algorithm 4 is obtained by
adding the contribution of each step: thus, one has 3n2 +
5n− 1 ADD and 3n2

2 + 5n
2 − 1 MUL.

Table II gathers all the complexities of the algorithms
reviewed in this section: SmallRed, Montgomery multiplica-
tion (Algorithm 3) and Montgomery squaring (Algorithm 4).

Table II
COMPLEXITIES FOR MONTGOMERY MULTIPLICATION AND SQUARING

Operation # ADD # MUL
SmallRed (Algo. 2)

max(n′, n+ 1) + n n+ 1with an n′-word input

MontSqu (Algo. 4) 3n2 + 5n− 1 3n2

2
+ 5n

2
− 1

MontMul (Algo. 3) 4n2 + 2n− 1 2n2 + n

Algorithm 4 Word level Montgomery Squaring
Require: A, with A = (an−1, . . . , a0)2w with 0 ≤ ai < 2w

where w is the word size, N ′ = −N−1 mod 2w

Ensure: Y ≡ A2 × 2−wn mod N and X < N
1: A′ ← A+A // n ADD
2: Ã0 ← (a′n−1, . . . , a

′
2, |2a1|2w , a0)2w // 1 ADD

3: Y ← Ã0 · a0 // n ADD and n MUL
4: q ← |Y |2w ·N ′ mod 2w // 1 MUL
5: Y ← (Y + q ·N)/2w // 2n+ 1 ADD and n MUL
6: for i = 1 to (n− 1) do
7: Ãi ← (a′n−1, . . . , a

′
i+2, |2ai+1|2w , ai)2w //n−1 ADD

8: Y ← Y + Ãi · ai · 2wi // n2 − 1 ADD
9: // and (n−1)n

2 MUL
10: q ← |Y |2w ·N ′ mod 2w // n− 1 MUL
11: Y ← (Y + q ·N)/2w // (n− 1)(2n+ 1) ADD
12: // and (n− 1)n MUL
13: if Y > N then
14: Y ← Y −N // n ADD
15: return Y

III. IMPROVED MONTGOMERY MULTIPLICATIONS WITH
A COMMON OPERAND

In this section, we present some improvements of multiple
Montgomery multiplications with a common operand. We
first deal with the case A ·B,A ·C and then generalize this
result to A ·Bi, i = 1, . . . , `.

A. Improved combined multiplications A ·B,A · C
We present in this section an algorithm which takes as

input A, B, C and N , and outputs ABR−1 mod N and
ACR−1 mod N with R = 2w(n+1). Our goal is to share
some common computations performed in the Montgomery
products ABR−1 mod N and A CR−1 mod N . To reach
this goal, the product ABR−1 relatively to B are expanded
as follows:

ABR−1 = (

n−1∑
j=0

bj2
wj) ·A · 2−w(n+1) mod N

=

n−1∑
j=0

bjA · 2−w(n+1−j) mod N

=

n−1∑
j=0

bj(A · 2−w(n−1−j) mod N)2−2w mod N

= (

n−1∑
j=0

bjA
(j)) · 2−2w mod N (2)

where A(j) = A2−w(n−1−j) mod N for j = 0, . . . , n− 1.
With the same for A · C ·R−1, one obtains

A · C ·R−1 = (

n−1∑
j=0

cjA
(j)) · 2−2w mod N. (3)

We notice that the expression in (2) for ABR−1 and the
expression in (3) for ACR−1 contain the terms A(j) =
A2−w(n−1−j) mod N, j = 0, 1, . . . , n − 1. To compute
A(j), we start from A(n−1) = A and we apply a sequence
of n− 1 SmallReds as follows:

SmallRed(A(n−1)) = A · 2−w mod N
= A(n−2),

SmallRed(A(n−2)) = (A · 2−w) · 2−w mod N
= A(n−3),

...
...

SmallRed(A(1)) = (A · 2−w(n−2)) · 2−w mod N
= A · 2−w(n−1) = A(0).

Therefore, one computes AB and AC as follows: the terms
A(j) are computed and then bjA

(j) and cjA
(j) are accumu-

lated in Y and Z for j = 0, . . . , n − 1. From Lemma 1, if
A < 2N , then all the values A(j), j = 0, . . . , n− 1, satisfy
A(j) < 2N . The resulting accumulation

∑n−1
j=0 bjA

(j) <
2Nn2w in Y is reduced to a value < 2N by performing
two consecutive SmallReds. At the same time, these two
SmallReds produce the missing factor 2−2w in (2). The
same is done for Z to get (3). This approach is depicted
in Algorithm 5. Its complexity is evaluated step by step in
Table III.

Algorithm 5 CombinedMontMul(A,B,C)
Require: the modulus N < 2wn−2, three integers

A = (an−1, . . . a0)2, B = (bn−1, . . . b0)2, C =
(cn−1, . . . c0)2 such that A,B,C < 2N , w the word
size, R = 2w(n+1) the Montgomery constant.

Ensure: Y = A · B · R−1 mod N and Z = A · C · R−1
mod N

1: X ← A
2: Y ← bn−1 ·X, Z ← cn−1 ·X
3: for j = n− 2 downto 0 do
4: q ← |X|2wN ′ mod 2w

5: X ← (X+q·N)/2w // = A(j) for j = n−2, . . . , 0
6: Y ← Y + bj ·X, Z ← Z + cj ·X
7: Y ← SmallRed(Y), Z ← SmallRed(Z)
8: Y ← SmallRed(Y), Z ← SmallRed(Z)
9: return Y and Z

B. Multiple multiplications with a common operand

In this subsection, we extend the idea used in the Com-
binedMontMul algorithm to multiple multiplications by a
common operand. Specifically, given a fixed element A ∈
{0, . . . , N −1} and a sequence of Bi, i = 1, . . . , `, we want

Table III
COMPLEXITY OF ALGORITHM 5

Operations # ADD # MUL
Step 2 bn−1 ·X n n
Step 2 cn−1 ·X n n

(n− 1) Step 4 |X|2w ·N ′ 0 n− 1

(n− 1) Step 5 q ·N (n− 1)n (n− 1)n
X + (qN) (n− 1)(n + 1) 0

(n− 1) Step 6 bj ·X (n− 1)n (n− 1)n
Y + (bjX) (n− 1)(n + 2) 0

(n− 1) Step 6 cj ·X (n− 1)n (n− 1)n
Z + (cjX) (n− 1)(n + 2) 0

Step 7 2× SmallRed
4n + 4 2n + 2with n′ = n + 2

Step 8 2× SmallRed
4n + 2 2n + 2with n′ = n + 1

Total 6n2 + 9n + 1 3n2 + 4n + 3

to compute:

Y1 = A ·B1 · 2−w(n+1) mod N,
Y2 = A ·B2 · 2−w(n+1) mod N,

...
Y` = A ·B` · 2−w(n+1) mod N.

As in Subsection III-A, we expand each multiplication A·Bi·
2−w(n+1) mod N relatively to Bi and rewrite the product
as follows:

A ·Bi · 2−w(n+1) = (

n−1∑
j=0

bi,j2
wj) ·A−w(n+1) mod N

= (

n−1∑
j=0

bi,jA
(j)) · 2−2w mod N. (4)

One may notice that the above expression of A·Bi·2−w(n+1)

contains A(j) = A ·2−w(n−1−j) mod N for j = 0, . . . , n−
1. We propose to precompute these n terms A(j) and store
them in memory. They are computed through a sequence of
n− 1 SmallReds as shown Algorithm 6.

Algorithm 6 PrecompMultByComOp(A)
Require: A,N ∈ Z with A < 2N and N < 2nw−2, a

precomputed value N ′ = (−N−1) mod 2w.
Ensure: A(0), . . . , A(n−1) such as A(j) = 2−w(n−1−j) · A

mod N and A(j) < 2N
1: A(n−1) ← A mod N
2: for j = n− 2 downto 0 do
3: A(j) ← SmallRed(A(j+1))

4: return A(0), . . . , A(n−1)

Complexity of Algorithm 6. This algorithm consists of n−1
SmallReds, all with an n-word input. Using the complexity
of SmallRed shown in Table II, we obtain the complexity of
Algorithm 6, which is (2n+ 1)(n− 1) ADD and (n2 − 1)
MUL.

Now, with the n precomputed terms A(0), . . . , A(n−1),
one can compute any of the products A · Bi · 2−w(n+1)

mod N for i = 1, . . . , ` using (4). Indeed, one computes
Y =

∑n−1
j=0 bi,jA

(j) through the sequence Y ← Y +bi,jA
(j)

for j = 0, 1, . . . , n−1, and Y satisfies Y = A·Bi ·2−w(n−1)

and Y < 2Nn2w. One needs two final SmallReds in
order to reduce Y to a value < 2N and also to multiply
Y by 2−2w resulting in Y = ABi2

−w(n+1) mod N, as
required. In Algorithm 7, this strategy is used to compute
A·B ·2−(w(n+1) mod N for an arbitrary input B in [0, 2N].

Algorithm 7 MultByComOp(B,A(0), . . . , A(n−1))

Require: the modulus N < 2wn−2, an integer B =
(bn−1, . . . b0)2w such that B < 2N and A(j) =
2−w(n−1−j) ·A mod N for j = 0, . . . , n− 1

Ensure: Y = A ·B · 2−w(n+1) mod N with Y < 2N
1: Y ← b0 ·A(0)

2: for j = 1 to n− 1 do
3: Y ← Y + bj ·A(j)

4: Y ← SmallRed(Y)
5: Y ← SmallRed(Y)
6: return Y

The complexity of Algorithm 7 is evaluated step by step
in Table IV.

Table IV
COMPLEXITY OF ALGORITHM 7

Operations # ADD # MUL
Step 1 b0 ·A(0) n n

Step 3 bj ·A(j) (n− 1)n (n− 1)n

×(n− 1) Y + (bjA
(j)) (n− 1)(n+ 2) 0

Step 5 SmallRed
2n+ 2 n+ 1with n′ = n+ 2

Step 6 SmallRed
2n+ 1 n+ 1with n′ = n+ 1

Total 2n2 + 5n+ 1 n2 + 2n+ 2

The computation of ` multiplications A · Bi · 2−w(n+1)

mod N for i = 1, . . . , ` consists of one execution of
Algorithm 6 and ` executions of Algorithm 7. The cost for
` multiplications using this strategy is then `(2n2 + 5n +
1) + (2n+ 1)(n− 1) ADD and `(n2 + 2n+ 2) + (n2 − 1)
MUL.

C. Complexity comparison

In Table V, we report the complexity of the proposed
CombinedMontMul and MultByComOp approaches. We
also provide the complexities of the usual approaches which
perform two independent MontMuls for AB,AC and one
MontMul and one MontSqu for AB,A2. For ` multiplica-
tions by a common operand, we provide the complexity of
` MontMuls.

Table V
COMPLEXITY COMPARISON FOR AB,AC AND AB,A2 AND MULTIPLE

MULTIPLICATIONS BY A

Operation Algorithm # ADD # MUL
AB,AC Two MontMuls 8n2 + 4n− 2 4n2 + 2n

AB,A2 MontMul and
7n2 + 7n− 2 7

2
n2 + 7

2
n− 1MontSqu

AB,AC CombinedMontMul 6n2 + 9n+ 1 3n2 + 4n+ 3

ABi, ` MontMuls `(4n2 + 2n− 1) `(2n2 + n)
i = 1, . . . , `

ABi, `× MultByComOp `(2n2 + 5n+ 1) `(n2 + 2n+ 2)
i = 1, . . . , ` and one +(2n+ 1)(n− 1) +(n2 − 1)

PrecomMultByComOp

One can check that our proposed CombinedMontMul for
AB,AC is better by 25% than the classical approach of two
independent MontMuls. For AB,A2, the CombinedMont-
Mul approach reduces the complexity by 13% compared to
MontMul and MontSqu.

For ` multiplications AB1, . . . , AB`, we notice that when
` ≥ 2, the proposed approach is more efficient by 25% com-
pared to ` independent MontMuls. When ` ≥ n and when
n is large enough, the complexity of our approach tends to
be 50% less than the one of ` independent MontMuls.

IV. EXPONENTIATION WITH IMPROVED
MULTIPLICATIONS BY A COMMON OPERAND

In this section, we consider modular exponentiation al-
gorithms which are robust against SPA and timing at-
tacks: Montgomery-ladder [2] and regular m-ary exponen-
tiation [1]. We use the approaches presented in the previ-
ous section to improve these exponentiations modulo N .
Specifically, we show that the Montgomery-ladder and the
right-to-left m-ary exponentiation can take advantage of
the CombinedMontMul algorithm and that the left-to-right
exponentiation can take advantage of the MultByComOp
algorithm.

A. Montgomery-ladder with CombinedMontMul

The Montgomery-ladder (cf. [2]) computes an expo-
nentiation Ge mod N through a sequence of operations
of the form A · B,A · A. These operations can be
performed using the CombinedMontMul algorithm since
CombinedMontMul(A,B,A) returns A · B and A · A.
Based on the complexities reported in Table V, the use
of CombinedMontMul is more efficient than the classical
approach based on MontMul and MontSqu. This will reduce
the complexity of the Montgomery-ladder. The resulting
modified Montgomery-ladder is given Algorithm 8.

Complexity of Algorithm 8. The operations performed in
Algorithm 8 consist of two Montgomery multiplications,
two SmallReds and k CombinedMontMul (in the for loop).

Algorithm 8 Montgomery-ladder with CombinedMontMul
Require: N < 2wn−1 and G ∈ {0, . . . , N − 1} and an

exponent e = (ek−1, . . . e0)2, w the word size and R =
2w(n+1) the Montgomery constant.

Ensure: Ge mod N
1: X0 ← R mod N
2: //conversion X1 ← G ·R2 ·R−1 mod N
3: X1 ← MontMul(G,R2 mod N)
4: X1 ← SmallRed(X1)
5: for i = k − 1 downto 0 do
6: X1−ei , Xei ← CombinedMontMul(Xei , X1−ei , Xei)

7: // conversion X0 ← (Ge ·R) ·R−1 mod N
8: X0 ← MontMul(X0, 1), X0 ← SmallRed(X0)
9: return X0

Using the complexities of Table V, one has:

#ADD = k(6n2 + 9n+ 1) + (8n2 + 8n),
#MUL = k(3n2 + 4n+ 3) + (4n2 + 4n+ 2).

B. Right-to-left 2t-ary exponentiation with CombinedMont-
Mul

We first review the right-to-left m-ary method for modular
exponentiation Ge mod N . Let us assume that the exponent
e is recoded as e = (ek−1, . . . , e0)m where ei ∈ {1, . . . ,m}
and m = 2t using the method of [1]. The right-to-left version
of the m-ary exponentiation is based on the following
expression of Ge mod N :

Ge mod N =
∏i=k−1

i=0,ei=1 G
mi ·

∏i=k−1
i=0,ei=2 G

2·mi · · ·
· · ·

∏i=k−1
i=0,ei=m Gm·mi

mod N

=
∏m

j=1 Y
j
j mod N

where Yj =
∏i=k−1

i=0,ei=j G
mi

mod N .
Consequently, Ge mod N is computed through a se-

quence Xi ← Gmi

mod N followed by Yei ← Yei ·Xi for
i = 0, . . . , k − 1. At the end, one gets Yj for j = 1, . . . ,m.
The final result Ge =

∏m
j=1 Y

j
j is computed as follows with

2(m− 1) multiplications:
Z ← Ym

for i = m− 1 downto 1 do
Yi ← Yi · Yi+1 mod N
Z ← Z · Yi mod N

And at the end, one has Z = Ge mod N .

When m = 2t, we can take advantage of the Com-
binedMontMul algorithm to improve the right-to-left m-ary
method. Indeed, the operations Yei ← Yei ·Xi and Xi+1 ←
X2t

i can be performed by first computing Yei , Xi+1 ←
CombinedMontMul(Xi, Yei , Xi) and afterwards by comput-
ing t − 1 Montgomery squarings Xi+1 ← MontSqu(Xi+1)
followed by SmallRed(Xi+1).

The final reconstruction Z =
∏m

j=1 Y
j
j can also take

advantage of the CombinedMontMul algorithm. Indeed, it
consists of a sequence of two multiplications with a common
operand: Yi ·Yi+1 mod N and Z ·Yi mod N. This can also
be performed using a sequence of 2t − 2 CombinedMont-
Muls.

The resulting improved right-to-left 2t-ary exponentiation
is shown in Algorithm 9. Its complexity is evaluated step by
step in Table VI.

Algorithm 9 Right-to-left regular 2t-ary exponentiation with
CombinedMontMul
Require: N < 2wn−2 the modulus, an integer 0 ≤ G < N ,

an exponent e = (ek−1, . . . , e0)2t with ei ∈ {1, . . . , 2t},
R = 2w(n+1) the Montgomery constant.

Ensure: Ge mod N
1: // X = G ·R mod N
2: X ← MontMul(G,R2 mod N), X ← SmallRed(X)
3: for i = 1 to 2t do
4: Yi ← R mod N

5: for i = 0 to k − 1 do
6: Yei , X ← CombinedMontMul(X,Yei , X)
7: for j = 1 to t− 1 do
8: X ← MontSqu(X), X ← SmallRed(X)

9: // Final reconstruction
10: Z ← Y2t

11: Y2t−1 ← MontMul(Y2t−1, Y2t)
12: Y2t−1 ← SmallRed(Y2t−1)
13: for i = 2t − 1 downto 2 do
14: Z, Yi−1 ← CombinedMontMul(Yi, Z, Yi−1)

15: Z ← MontMul(Z, Y1), Z ← SmallRed(Z)
16: Z ← MontMul(Z, 1), Z ← SmallRed(Z)
17: return Z

Table VI
COMPLEXITY OF ALGORITHM 9

Op. # ADD # MUL

Step 2 MM 4n2 + 2n− 1 2n2 + n
SR 2n + 1 n + 1

k Step 6 CMM k(6n2 + 9n + 1) k(3n2 + 4n + 3)

(t− 1)k MS (t− 1)k(3n2 + 5n− 1) (t− 1)k(3n2

2 + 5n
2 − 1)

Step 8 SR (t− 1)k(2n + 1) (t− 1)k(n + 1)

Step 11 MM 4n2 + 2n− 1 2n2 + n
Step 12 SR 2n + 1 n + 1

(2t − 2) CMM (2t − 2)(6n2 + 9n + 1) (2t − 2)(3n2 + 4n + 3)
Step 14

Step 15 MM 4n2 + 2n− 1 2n2 + n
SR 2n + 1 n + 1

Step 16 MM 4n2 + 2n− 1 2n2 + n
SR 2n + 1 n + 1

tk(3n2 + 7n) tk(3n2

2 + 7n
2)

Total +k(3n2 + 2n + 1) +k(3n2

2 + n
2 + 3)

+2t(6n2 + 9n + 1) +2t(3n2 + 4n + 3)
+4n2 − 2n− 2 +2n2 − 2

CMM=CombinedMontMul, MM=MontMul, MS=MontSqu, SR=SmallRed

C. Left-to-right 2t-ary exponentiation using MultByComOp

In this subsection, we present an improved version of
the left-to-right 2t-ary exponentiation using the multiple
multiplications by the same operand (Subsection III-B). The
left-to-right exponentiation consists in first precomputing
Gi = Gi mod N, i = 1, . . . , 2t and then in computing
X = Ge mod N through the sequence of operations
X ← X2t ·Gei for i = k − 1, . . . , 0.

One can take advantage of the MultByComOp algorithm
as follows:
• At the very beginning, one gets G(0), . . . , G(n−1) with

PrecomMultByComOp(G) in order to compute effi-
ciently the 2t − 1 multiplications Gi ← G · Gi−1
mod N .

• Then for each Gi, one gets G
(j)
i = Gi · 2−w(n−1−j)

mod N for j = 0, . . . , n − 1 by computing
PrecompMultByComOp(Gi).

• In the main loop, which sequentially computes
X ← X2t · Gei for i = k − 1, . . . , 0,
each multiplication by Gei is done as X ←
MultByComOp(X,G

(0)
ei , . . . , G

(n−1)
ei).

The resulting improved modular exponentiation is given in
Algorithm 10. The reader may notice that in the sequence
of squarings for the computation of X2t , each Montgomery
squaring or multiplication is followed by a SmallRed, in
order to have the correct Montgomery factor R = 2−w(n+1).

Algorithm 10 Left-to-right regular 2t-ary exponentiation
with MultByComOp
Require: N < 2wn−1 the modulus, an integer 0 ≤ G <

N , an exponent e = (ek−1, . . . , e0)2 with ek−1 ∈
{1, . . . ,m}, R = 2w(n+1) the Montgomery constant.

Ensure: Ge mod N
1: // G1 = G · 2w(n+1) mod N
2: G1 ← MontMul(G,R2 mod N)
3: G1 ← SmallRed(G1)
4: X ← R
5: G

(0)
1 , . . . , G

(n−1)
1 ← PrecompMultByComOp(G1)

6: for i = 2 to 2t do
7: Gi ← MultByComOp(Gi−1, G

(0)
1 , . . . , G

(n−1)
1)

8: G
(0)
i , . . . , G

(n−1)
i ← PrecompMultByComOp(Gi)

9: for i = k − 1 downto 0 do
10: for j = 1 to t do
11: // X ← X2 · 2−w(n+1) mod N
12: X ← MontSqu(X), X ← SmallRed(X)

13: X ← MultByComOp(X,G
(0)
ei , . . . , G

(n−1)
ei)

14: // X ← X · 2−w(n+1) mod N
15: X ← MontMul(X, 1), X ← SmallRed(X)
16: return X

We point out that this left-to-right version requires a large
memory, i.e., ∼= n× 2t × nw bits, to store the n× 2t terms

Table VII
COMPLEXITY OF ALGORITHM 10

Op. # ADD # MUL
Step 2 MM 4n2 + 2n− 1 2n2 + n
Step 3 SR 2n + 1 n + 1

Step 5 PMBCO 2n2 − n− 1 n2 − 1

(2t − 1) MBCO (2t − 1)(2n2 + 5n + 1) (2t − 1)(n2 + 2n + 2)
Step 7

(2t − 1) PMBCO (2t − 1)(2n2 − n− 1) (2t − 1)(n2 − 1)
Step 8

tk MS tk(3n2 + 5n− 1) tk(3n2

2 + 5n
2 − 1)

Step 12 SR tk(2n + 1) tk(n + 1)

k Step 13 MBCO k(2n2 + 5n + 1) k(n2 + 2n + 2)

Step 15 MM 4n2 + 2n− 1 2n2 + n
SR 2n + 1 n + 1

tk(3n2 + 7n) tk(3n2

2 + 7n
2)

Total +k(2n2 + 5n + 1) +k(n2 + 2n + 2)
+2t(4n2 + 4n) +2t(2n2 + 2n + 1)
+6n2 + 3n− 1 +3n2 + 2n

PMBCO=PrecompMulByComOp, MBCO=MulByComOp,
MM=MontMul, MS=MontSqu, SR=SmallRed

G
(j)
i .

V. COMPLEXITY AND IMPLEMENTATION

A. Complexity comparison

In Table VIII, we provide the complexities of the
three considered approaches: Montgomery-ladder, right-to-
left and left-to-right 2t-ary exponentiations. For each expo-
nentiation method, we first give the complexities without
any optimization, i.e., using regular Montgomery multipli-
cation and squaring. We then report the complexities of
the proposed improved exponentiations, i.e., Algorithm 8,
Algorithm 9 and Algorithm 10.

Table VIII
COMPLEXITIES OF MODULAR EXPONENTIATION ALGORITHMS

ADD MUL

Mont-ladder k(7n2 + 7n− 2) k(7n2

2 + 7n
2 − 1)

+8n2 + 4n− 2 +4n2 + 2n

Mont-ladder k(6n2 + 9n + 1) k(3n2 + 4n + 3)
with CMM +(8n2 + 8n) +(4n2 + 4n + 2)

tk(3n2 + 5n− 1) tk(3n2

2 + 5n
2 − 1)

Right-to-left +k(4n2 + 2n− 1) +k(2n2 + n)
+2t(8n2 + 4n− 2) +2t(4n2 + 2n)

tk(3n2 + 7n) tk(3n2

2 + 7n
2)

Right-to-left +k(3n2 + 2n + 1) +k(3n2

2 + n
2 + 3)

with CMM +2t(6n2 + 9n + 1) +2t(3n2 + 4n + 3)
+4n2 − 2n− 2 +2n2 − 2

tk(3n2 + 5n− 1) tk(3n2

2 + 5n
2 − 1)

Left-to-right +k(4n2 + 2n− 1) +k(2n2 + n)
+2t(4n2 + 2n− 1) +2t(2n2 + n)
+4n2 + 2n− 1 +2n2 + n

tk(3n2 + 7n) tk(3n2

2 + 7n
2)

Left-to-right +k(2n2 + 5n + 1) +k(n2 + 2n + 2)
with MBCO +2t(4n2 + 4n) +2t(2n2 + 2n + 1)

+6n2 + 3n− 1 +3n2 + 2n

We first consider the Montgomery-ladder: the improve-
ment provided by the CombinedMontMul reduces the lead-
ing term of the ADD complexity from 7kn2 to 6kn2 and

the leading of the MUL complexity from 3.5kn2 to 3kn2.
This represents an improvement of 14%.

For the right-to-left 2t-ary exponentiation, the leading
terms for both ADD and MUL complexities correspond to kt
and are due to the sequence of squarings which are roughly
the same for right-to-left and right-to-left with CMM. How-
ever, concerning the terms in k and 2t, a reduction by ∼= 25%
is observed.

Finally, for the left-to-right methods, the leading terms
in tk and in 2t are roughly the same for left-to-right and
left-to-right with MulByComOp. However, a reduction by
∼= 50% for the term in k is observed.

As example, for a modulus N of 2048 bits, which is com-
monly used in RSA cryptosystems, we provide the explicit
complexities of the modular exponentiations in Table IX.
The improvement is around 13% for the Montgomery-
ladder, 4% for the right-to-left exponentiation and 8% for
the left-to-right exponentiation.

Table IX
COMPLEXITIES OF MODULAR EXPONENTIATION FOR 2048 BITS

ML ML R-to-L R-to-L L-ro-R L-to-R
CMM CMM MBCO

#ADD/103 15143 13183 8595 8253 8466 7804
Improv. 12.9% 4% 7.9%

#MUL/103 7506 6564 4296 4120 4232 3896
Improv. 12.6% 4.1% 7.9%

ML=Montgomery-ladder, R-to-L= Right-to-left, L-to-R=Left-to-right

B. Software implementation results

The three considered exponentiation algorithms were
coded in C, compiled with gcc 4.8.2 and run on an
Intel Core i7r-4770 CPU @ 3.4GHz. We used the low level
functions performing word-multiplications and additions of
the GMP library (GMP 6.0.0, https://gmplib.org)
as building blocks of our codes. The timings were obtained
by deactivating turbo-boost and hyperthreading options and
by averaging the times of a few hundred executions with
random inputs. The resulting timings are reported in Table X.

Table X
MODULAR EXPONENTIATION TIMINGS (103 CYCLES)

Algorithm
1024 bits 2048 bits 4096 bits

#CC/103 Imp. #CC/103 Imp. #CC/103 Imp.
ratio ratio ratio

Mont-ladder 3068
9.0%

20643
9.1%

153443
14.6%Mont-ladder 2793 18773 131011with CMM

Right-to-left 1857
0.1%

11796
1.7%

87081
4.0%Right-to-left

with CMM 1855 11596 83599

Left-to-right 1858
-1%

11734
3.1 %

83354
8.3 %Left-to-right

with MBCO 1877 11368 77745

The reported timings show significant improvements for
the Montgomery ladder for all considered sizes. For the
right-to-left exponentiation, the improvement ratio is low as
expected, but close to the theoretical ratio for 4096 bits.
Finally, the left-to-right exponentiation with MBCO shows
an improved timings only for 2048 and 4096 bits. Thus, the
influence of the large memory space (256KB for 2048 bits
and 1MB for 4096 bits) seems to be negligible in our tests,
probably due to the fact that it is smaller than the L3 cache
memory size.

VI. CONCLUSION

In this paper, we considered modular exponentiations for
sizes corresponding to practical implementations of RSA.
Multiplications and squarings modulo N are performed with
the costly method of Montgomery [6] due to the random
form of the modulus N . We showed that for multiplica-
tions which share a common operand, one can save some
redundant computations. Indeed, the proposed approach re-
duces by 25% the computation of two products AB,AC.
Extending this idea to a large number of multiplications by
a common operand A, the complexity of each multiplication
is improved by ∼= 50%. Based on these optimized modular
multiplications, we improved modular exponentiations pro-
tected against simple power analysis and timing attacks. In
particular we improved the Montgomery-ladder by 9− 14%
compared to usual implementation involving word level
Montgomery multiplication and squaring.
Acknowledgement. This work is partly supported by the
PAVOIS project (ANR 12 BS02 002 01) and by the Thelx-
inoë Erasmus Mundus European project.

REFERENCES

[1] M. Joye and M. Tunstall. Exponent Recoding and Regular
Exponentiation Algorithms. In AFRICACRYPT 2009, volume
5580 of LNCS, pages 334–349, 2009.

[2] M. Joye and S.-M. Yen. The Montgomery Powering Ladder.
In CHES 2002, volume 2523 of LNCS, pages 291–302, 2002.

[3] P.C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In CRYPTO’96,
volume 1109 of LNCS, pages 104–113, 1996.

[4] P.C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis.
In CRYPTO’99, volume 1666 of LNCS, pages 388–397, 1999.

[5] A. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.

[6] P. Montgomery. Modular Multiplication Without Trial Divi-
sion. Math. Computation, 44:519–521, 1985.

[7] R.L. Rivest, A. Shamir, and L. Adleman. A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems.
Communications of the ACM, 21:120–126, 1978.

	Introduction
	Review of Montgomery modular multiplication
	Improved Montgomery multiplications with a common operand
	Improved combined multiplications AB, AC
	Multiple multiplications with a common operand
	Complexity comparison

	Exponentiation with improved multiplications by a common operand
	Montgomery-ladder with CombinedMontMul
	Right-to-left 2t-ary exponentiation with CombinedMontMul
	Left-to-right 2t-ary exponentiation using MultByComOp

	Complexity and Implementation
	Complexity comparison
	Software implementation results

	Conclusion
	References

