
�>���G �A�/�, �H�B�`�K�K�@�y�R�R�9�d�3�N�3

�?�i�i�T�b�,�f�f�?���H�@�H�B�`�K�K�X�+�+�b�/�X�+�M�`�b�X�7�`�f�H�B�`�K�K�@�y�R�R�9�d�3�N�3

�a�m�#�K�B�i�i�2�/ �Q�M �R �C�m�M �k�y�k�R

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

���m�i�Q�K���i�B�+ �.�Q�+�m�K�2�M�i���i�B�Q�M �Q�7 �(�J�B�M�2�/�) �6�2���i�m�`�2
�A�K�T�H�2�K�2�M�i���i�B�Q�M�b �7�`�Q�K �a�Q�m�`�+�2 �*�Q�/�2 �1�H�2�K�2�M�i�b ���M�/

�l�b�2�@�*���b�2 �.�B���;�`���K�b �r�B�i�? �i�?�2 �_�1�o�S�G�A�L�1 ���T�T�`�Q���+�?
�_���ö�6���i ���?�K���/ ���H�@�J�b�B�2�ö�.�2�2�M�- �J���`�B���M�M�2 �>�m�+�?���`�/�- ���#�/�2�H�?���F�@�.�D���K�2�H �a�2�`�B���B�-

�*�?�`�B�b�i�2�H�H�2 �l�`�i���/�Q�- �a�v�H�p���B�M �o���m�i�i�B�2�`

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�_���ö�6���i ���?�K���/ ���H�@�J�b�B�2�ö�.�2�2�M�- �J���`�B���M�M�2 �>�m�+�?���`�/�- ���#�/�2�H�?���F�@�.�D���K�2�H �a�2�`�B���B�- �*�?�`�B�b�i�2�H�H�2 �l�`�i���/�Q�- �a�v�H�@
�p���B�M �o���m�i�i�B�2�`�X ���m�i�Q�K���i�B�+ �.�Q�+�m�K�2�M�i���i�B�Q�M �Q�7 �(�J�B�M�2�/�) �6�2���i�m�`�2 �A�K�T�H�2�K�2�M�i���i�B�Q�M�b �7�`�Q�K �a�Q�m�`�+�2 �*�Q�/�2
�1�H�2�K�2�M�i�b ���M�/ �l�b�2�@�*���b�2 �.�B���;�`���K�b �r�B�i�? �i�?�2 �_�1�o�S�G�A�L�1 ���T�T�`�Q���+�?�X �A�M�i�2�`�M���i�B�Q�M���H �C�Q�m�`�M���H �Q�7 �a�Q�7�i�r���`�2
�1�M�;�B�M�2�2�`�B�M�; ���M�/ �E�M�Q�r�H�2�/�;�2 �1�M�;�B�M�2�2�`�B�M�;�- �k�y�R�9�- �k�9 �U�R�y�V�- �T�T�X�R�9�R�j�@�R�9�j�3�X ���R�y�X�R�R�9�k�f�a�y�k�R�3�R�N�9�y�R�9�9�y�y�R�9�k���X
���H�B�`�K�K�@�y�R�R�9�d�3�N�3��

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01147898
https://hal.archives-ouvertes.fr


Automatic Documentation of [Mined] Feature
Implementations from Source Code Elements and

Use-Case Diagrams with the REVPLINE Approach

R. Al-Msie'deen*, M. Huchard† and A.-D. Seriai‡

LIRMM/CNRS and Montpellier University
Montpellier ��� France
*al-msiedee@lirmm.fr

†huchard@lirmm.fr
‡seriai@lirmm.fr

C. Urtado§ and S. Vauttier¶

LGI2P/Ecole des Mines d'Al �es
N�̂mes, France

§Christelle.Urtado@mines-ales.fr
¶Sylvain.Vauttier@mines-ales.fr

Companies often develop a set of software variants that share some features and di®er in others
to meet speci¯c requirements. To exploit the existing software variants as a Software Product
Line (SPL), a Feature Model of this SPL must be built as a ¯rst step. To do so, it is necessary to
de¯ne and document the optional and mandatory features that compose the variants. In our
previous work, we mined a set of feature implementations as identi¯ed sets of source code
elements. In this paper, we propose a complementary approach, which aims to document the
mined feature implementations by giving them names and descriptions, based on the source
code elements that form feature implementations and the use-case diagrams that specify soft-
ware variants. The novelty of our approach is its use of commonality and variability across
software variants, at feature implementation and use-case levels, to run Information Retrieval
methods in an e±cient way. Experiments on several real case studies (Mobile media and
ArgoUML-SPL) validate our approach and show promising results.

Keywords: Software variants; Software Product Line; feature documentation; code compre-
hension; Formal Concept Analysis; Relational Concept Analysis; use-case diagram; Latent
Semantic Indexing; Feature Models.

1. Introduction

Similarly to car developers who propose a full range of cars with common char-
acteristics and numerous variants, software developers may cater to various needs
and propose as a result a software family instead of a single product. Such a software
family is called a Software Product Line (SPL) [1].



Software��variants��often��evolve��from��an��initial�� product,��developed��for��and��suc-
cessfully��used��by��the��¯rst�� customer.��These��product��variants��usually��share��some��
common��features��and��di®er��regarding��others.��As��the��number��of��features��and��the��
number��of��software��variants��grow,��it��is��worth��to��re-engineer��them��into��an��SPL��for��
systematic��reuse��[2].

The��̄ rst�� step��towards��re-engineering��software��variants��into��SPL��is��to��mine��a��
Feature��Model��(FM).��To��obtain��such��a��FM,��the��common��and��optional��features��that��
compose��these��variants��have��to��be��identi¯ed�� and��documented.��This��consists��in��
(step��1)��identifying,��among��source��code��elements,��groups��that��implement��candidate��
features��and��(step��2)��associating��them��with��their��documentation��(i.e.��a��feature��name��
and��description).��In��our��previous��work��[3],��we��proposed��an��approach��for��step��1��which��
consists��in��mining��features��from��the��object-oriented��source��code��of��software��variants��
(the��REVPLINE�� approacha).��REVPLINE�� mines��functional�� features��as��sets��of��
Source��Code��Elements��(SCEs)��(e.g.��packages,��classes,��attributes,��methods��or��method��
bodies).

In��this��article,��we��address��step��2.��To��assist��a��human��expert��in��documenting��the��
mined��feature��implementations,��we��propose��an��automatic��approach��which��associates��
names��and��descriptions��using��the��source��code��elements��of��feature��implementations��
and��the��use-case��diagrams��of��software��variants.��Compared��with��existing��work��that��
documents��source��code��(cf.��Sec.��2),��the��novelty��of��our��approach��is��that��we��exploit��
commonality��and��variability�� across��software��variants��at��feature��implementation��
and��use-case��levels��in��order��to��apply��Information��Retrieval��(IR)�� methods��in��an��
e±cient��way.

Considering��commonality��and��variability�� across��software��variants��enables��to��
group��use-cases��and��feature��implementations��into��disjoint��and��minimal��clusters��
based��on��Relational��Concept��Analysis��(RCA).��Each��cluster��consists��of��a��subset��of��
feature��implementations��and��their��corresponding��use-cases.��Then,��we��use��Latent��
Semantic��Indexing��(LSI)��to��measure��similarities��and��identify��which��use-cases��best��
characterize��the��name��and��description��of��each��feature��implementation��by��using��
Formal��Concept��Analysis��(FCA).�� In��the��cases��where��use-case��diagrams��or��docu-
mentation��are��not��available,��we��propose��an��alternative��approach,��based��on��the��names��
of��the��source��code��elements��that��implement��features.

The��remainder��of��this��paper��is��structured��as��follows:��Section��2��presents��the��state��
of��the��art��and��motivates��our��work.��Section��3��brie°y��describes��the��technical��back-
ground��which��is��used��in��our��work.��Section��4��outlines��the��feature��documentation��
process.��Section��5��details��the��feature��documentation��process��based��on��the��use-case��
diagrams��of��variants��step��by��step.��Section��6��presents��the��feature��documentation��
process��based��on��SCE��names.��Section��7��reports��the��experimentation��and��discusses��
threats��to��the��validity�� of��our��approach.��Finally,�� Sec.��8��concludes��and��provides��
perspectives��for��this��work.

aREVPLINE��stands��for��RE-engineering��software��Variants��into��a��software��Product��LINE.



2. State of the Art

In our approach, we aim at documenting groups of source code elements that are the
result of a mining process. These groups of source code elements correspond to
feature implementations. The comprehension or documentation of feature imple-
mentation is a complex problem-solving task [4]. We consider here that documenting
a feature is the process of analyzing the implementation of a feature to provide it
with either a name or a more detailed description based on software artifacts such as
use-case diagrams or identi¯er names. Related approaches are documenting the
source code of a single software, ¯nding traceability links between source code and
documentation, and documenting mined features in software product lines.

This section presents research papers in these three ¯elds. We then conclude
this state of the art by a synthesis which introduces the main objectives of our
approach.

2.1. Source code documentation in a single software

Kebir et al. [5] propose to identify components from the object-oriented source code
of a single software. Their approach assigns names to the components in three steps:
extracting and tokenizing class names from the identi¯ed implementation of a
component, weighting words and building the component name by using the
strongest weighted tokens.

Kuhn [6] presents a lexical approach that uses the log-likelihood ratio of word
frequencies to automatically retrieve labels from source code. This approach can be
applied to compare several components (i.e. describing their di®erences as well as
their commonalities), a component against a normative corpus (i.e. providing labels
for components) and di®erent versions of the same component (i.e. documenting the
history of a component). In Kuhn et al. [7], information retrieval techniques are used
to exploit linguistic information found in source code, such as identi¯er names and
comments, in order to enrich software analysis with the developers' knowledge that is
hidden in the code. They introduce semantic clustering, a technique based on LSI
and clustering to group source artifacts (i.e. classes) that use similar vocabulary.
They call these groups semantic clusters and they interpret them as linguistic topics
that reveal the intention of the code. They compare the topics, identify links between
them, provide automatically retrieved labels (using LSI again to automatically label
the clusters with their most relevant terms). They ¯nally use distribution maps to
illustrate how the semantic clusters are distributed over the system. Their work is
language independent as it works at the level of identi¯er names.

De Lucia et al. [8] propose an approach for source code labeling, based on IR
techniques, that identi¯es relevant words in the source code of a single software.
They apply various IR methods (such as VSM, LSI and Latent Dirichlet Allocation
(LDA)) to extract terms from class names by means of some representative words,
with the aim of facilitating code comprehension or improving visualization. This



work��investigates��to��what��extent��IR-based��source��code��labeling��would��identify��rel-
evant��words��in��the��source��code,��compared��to��the��words��a��human��would��manually��
select��during��a��program��comprehension��task.

A��technique��for��automatically��summarizing��source��code��by��leveraging��the��lexical��
and��structural��information��in��the��code��is��proposed��in��Haiduc��et��al.��[9].��Summaries��are��
obtained��from��the��content��of��a��document��by��selecting��the��most��important�� infor-
mation��in��that��document.��The��goal��of��this��approach��is��the��automatic��generation��of��
summaries��for��source��code��entities.

Falleri��et��al.��[10]��propose��a��wordNet-like��approach��to��extract��the��structure��of��a��
single��software��using��relationships��among��identi¯er��names.��The��approach��considers��
natural�� language��processing��techniques��which��consist��of��a��tokenization��process��
(straightforward��decomposition��technique��by��word��markers,��e.g.��case��changes,��un-
derscore,��etc.),��part��of��speech��tagging��and��rearranging��order��of��terms��by��term��
dominance��order��rules��based��on��part��of��speech��information.

Sridhara��et��al.��[11]��present��a��novel��technique��to��automatically��generate��comments��
for��Java��methods.��They��use��the��signature��and��body��of��a��method��(i.e.��method��calls)��to��
generate��a��descriptive��natural��language��summary��of��the��method.��The��developer��
remains��responsible��for��verifying��the��accuracy��of��generated��summaries.��The��objective��
of��this��approach��is��to��ease��program��comprehension.��Authors��use��natural��language��
processing��techniques��to��automatically��generate��leading��method��comments.��Studies��
have��shown��that�� good��comments��help��programmers��understand��quickly��what��a��
method��does,��thus��assisting��program��comprehension��and��software��maintenance.

2.2.��Source��code-to-documentation�� traceability�� links

Grechanik��et��al.��[12]��propose��a��novel��approach��for��partially��automating��the��process��of��
recovering��traceability��links��(TLs)��between��types��and��variables��in��Java��programs��
and��elements��of��use-case��diagrams��(UCDs).��Authors��evaluate��their��prototype��im-
plementation��on��open-source��and��commercial��software,��and��their��results��suggest��that��
their��approach��can��recover��many��traceability��links��with��a��high��automation��degree��
and��precision.��As��UCDs��are��widely��used��to��describe��the��functional��requirements��of��
software��products,��these��traces��help��programmers��understand��the��code��that��they��
maintain��and��modify.

Marcus��et��al.��[13]��use��LSI��to��recover��traceability��links��between��source��code��and��
documentation.��The��documentation��consists��of��requirement��documents��which��de-
scribe��elements��of��the��problem��domain��such��as��manuals,��design��models��or��test��suites.��
This��documentation��is��supposed��to��have��been��written��before��implementation��and��
does��not��include��any��parts��of��the��source��code.

Diaz��et��al.��[14]��capture��relationships��between��source��code��artifacts��to��improve��the��
recovery��of��traceability��links��between��documentation��and��source��code.��They��extract��
the��author��of��each��source��code��component��and,��for��each��author,�� identify�� the
\context"�� she/he��worked��on.��Thus,��to��link��documentation��and��source��code��artifacts��
(i.e.��use��cases��and��classes),��they��compute��the��similarity��between��these��use��cases��and



the authors' contexts. When retrieving related classes using a standard IR-based
approach (e.g. LSI or VSM) they reward all the classes developed by authors whose
contexts are most similar to use cases.

Xue et al. [2] automatically identify traceability links between a given collection of
features and a given collection of source code variants. They consider feature
descriptions as an input.

2.3. Documentation of mined features in SPL

Braganca and Machado [15] describe an approach for automating the transformation
of UML use cases into FMs. In their work, each use case is mapped to a feature. Their
approach explores theinclude and extendrelationships between use cases to discover
relationships between features. Their work assumes that the feature name is given by
that of the use-case.

Yang et al. [16] analyze open source applications for multiple domains with similar
functionalities. They propose an approach to recover domain feature models using
data access semantics, FCA, concept pruning=merging, structure reconstruction and
variability analysis. After concept pruning=merging, analysts examine each of the
generated candidate feature (i.e. concept cluster) to evaluate its relevance. Mean-
ingless candidate features are removed, whilst meaningful candidate features are
chosen as domain features. Then analysts name each domain feature with the help
of the corresponding concept intent and extent. After these manual examination
and naming, all domain features bear signi¯cant names denoting their business
functions.

Paškevi� ius et al. [17] present a framework for an automated derivation of FMs
from existing software artifacts (e.g. classes, components, libraries, etc.), which
includes a formal description of FMs, a program-feature relation meta-model and a
method for FM generation based on feature dependency extraction and clustering.
FMs are generated as Feature Description Language (FDL) descriptors and as
Prolog rules. They focus on reverse engineering of source code to FMs and assume
that feature names are provided by that of the class or component.

Ziadi et al. [18] propose a semi-automatic approach to identify features from
object-oriented source code. Their approach takes the source code of a set of product
variants as its input. They manually assign names to the identi¯ed feature imple-
mentations by relying on the feature names that are used in the original FM.

In our previous work [19, 3, 20], we manually propose feature names for the mined
feature implementations, based on the code elements of each feature implementation.

Davril et al. [21] build FMs from product descriptions. Extracting FMs from these
informal data sources includes mining feature descriptions from sets of product
descriptions, naming the features in a way that is understandable to human users
and then discovering relations between features in order to organize them hierar-
chically into a comprehensive model. The identi¯ed features correspond to clusters of



descriptions.��Authors��propose��a��method��to��name��a��cluster��using��the��most��frequently��
and��less��verbose��occurring��phrase��in��the��descriptors��of��this��cluster.

2.4.��Synthesis

Most��existing��approaches��are��designed��to��extract��labels,��names,��topics��or��to��identify��
traceability�� links��between��code��and��documentation��artifacts��in��a��single��software��
system.��To��document��mined��features,��most��existing��approaches��manually��assign��
feature��names��to��feature��implementations��(without��any��further��description)��and��they��
often��rely��on��atomic��source��code��element��names��(e.g.��class��or��component��names).��The��
most��advanced��approach��for��automatic��feature��description��extraction��is��that��of��[21]��
which��works��on��informal��product��descriptions.

Our��work��addresses��the��problem��of��documenting��features��mined��from��several��
variants��of��a��software��system.��Our��mined��feature��implementations��are��sets��of��source��
code��elements��that��are��more��formal��artifacts��than��the��product��descriptions��used��in��
[21]��and��give��complementary��information��as��compared��to��use-case��diagrams��[15].��Our��
approach��relies��on��commonality��and��variability�� across��the��variants��to��apply��infor-
mation��retrieval��methods��more��e±ciently��than��in��a��single��software��system.��Our��input��
data��are��the��source��code��and��use-case��diagrams��of��the��variants.��We��do��not��consider��
any��prior��knowledge��about��features��contrarily�� to��[2].��We��aim��at��automatically��
assigning��a��name��and��a��description��to��each��mined��feature��implementation��using��
several��techniques��(Formal��Concept��Analysis,��Relational��Concept��Analysis��and��
Latent��Semantic��Indexing),��whereas��several��approaches��manually��assign��names��[16,��
18,��3].��Feature��documentation��consists��in��use-case��names,��tokens��from��the��source��
code��elements��and��use-case��descriptions.

3.�� Technical�� Background

This��section��provides��a��glimpse��on��FCA,��RCA��and��LSI.��It��also��shortly��describes��the��
example��that��illustrates��the��remaining��sections��of��the��paper.

3.1.��Formal�� and��relational�� concept��analysis

Formal��Concept��Analysis��(FCA)��is��a��classi¯cation��technique��that��takes��as��an��input��
data��sets��describing��objects��and��their��attributes��and��extracts��concepts��that�� are��
maximal��groups��of��objects��(concept��extents)��sharing��maximal��groups��of��attributes��
(concept��intents)��[22].��It��has��many��applications��in��software��engineering��[23–25].��The��
extracted��concepts��are��linked��by��a��partial��order��relation,��which��represents��concept��
specialization,��as��an��order��which��has��a��lattice��structure��(called��the��concept��lattice).��
In��the��concept��lattice,��each��attribute�� (resp.��each��object)��is��introduced��by��a��unique��
concept��and��inherited��by��its��sub-concepts��(resp.��by��its��super-concepts).��In��̄ gures,��
objects��and��attributes��are��often��represented��only��in��their��introducing��concept��for��the��
sake��of��simplicity. ��Rather��than��using��the��whole��concept��lattice,��which��is��often��a��large



and complex structure (exponential number of concepts, considering objects and
attributes, in the worst case), we use a sub-order called the AOC-poset, which is
restricted to the concepts that introduce at least one object or one attribute. The
interested reader can ¯nd more information about our use of FCA in [3].

Relational Concept Analysis (RCA) [26] is an iterative version of FCA in which
objects are classi¯ed not only according to attributes they share, but also according
to relations between them (cf. Sec.5.1). Other close approaches are [27–29].

In the RCA framework, data are encoded into aRelational Context Family
(RCF), which is a pair ðK ; RÞ, whereK is a set of formal (object-attribute) contexts
K i ¼ ðOi ; Ai ; I i Þand R is a set of relational (object-object) contextsr ij � Oi � Oj ,
whereOi (domain of r ij ) and Oj (range of r ij ) are the object sets of the contextsK i

and K j , respectively (cf. Table3). A RCF is iteratively processed to generate, at each
step, a set of concept lattices. As a ¯rst step, concept lattices are built using the
formal contexts only. Then, in the following steps, a scaling mechanism translates the
links between objects into conventional FCA attributes and derives a collection of
lattices whose concepts are linked by relations (cf. Fig.5).

To apply FCA and RCA, we use the Eclipse eRCA platformb.

3.2. Latent semantic indexing

Information Retrieval (IR) refers to techniques that compute textual similarity be-
tween documents. Textual similarity is computed based on the occurrences of terms
in documents [30]. When two documents share a large number of terms, those
documents are considered to be similar. Di®erent IR techniques have been proposed,
such as Latent Semantic Indexing (LSI) and Vector Space Model (VSM), to compute
textual similarity.

As proposed by [2], we use LSI to group together software artifacts that pertain to
the implementation or the documentation of a similar, thus considered common,
conceptc.

To do so, software artifacts are regarded as textual documents. Occurrences of
terms are extracted from the documents in order to calculate similarities between
them and then classify together similar documents (cf. Sec.5.2).

The heart of LSI is the singular value decomposition technique. This technique is
used to mitigate noise introduced by stop words (like \the", \an", \above") and
overcome two issues of natural language processing:synonymyand polysemy.

The e®ectiveness of IR methods is usually measured by metrics includingrecall,
precision and F-measure(cf. Eqs. (1), (2) and (3)). In this work, for a given use-case
(query), recall is the percentage of correctly retrieved feature implementations
(documents) to the total number of relevant feature implementations, while preci-
sion is the percentage of correctly retrieved feature implementations to the total

bThe eRCA: http://code.google.com/p/erca/
cTo set our approach up, we developed our own LSI tool, available at https://code.google.com/p/
lirmmlsi/



Recall ¼
jf relevant documentsg

T
f retrieved documentsgj

jf relevant documentsgj
ð1Þ

Precision ¼
jf relevant documentsg

T
f retrieved documentsgj

jf retrieved documentsgj
ð2Þ

F � Measure ¼ 2 �
Precision � Recall
Precision þ Recall

ð3Þ

All measures have values in [0%, 100%]. When recall equals 100%, all relevant
feature implementations are retrieved. However, some retrieved feature imple-
mentations may not be relevant. If precision equals 100%, all retrieved feature
implementations are relevant. Nevertheless, all relevant feature implementations
may not be retrieved. When F-Measure equals 100%, all relevant feature imple-
mentations are retrieved.

The interested reader can ¯nd more information about our use of LSI in [3].

3.3. The mobile tourist guide example

In this example, we consider four software variants of the Mobile Tourist
Guide (MTG) application. These variants enable users to inquire about tourist
information on mobile devices. MTG_1 supports core MTG functionalities: view
map, place marker on a map, view direction, launch Google mapand show street
view. MTG _2 has the core MTG functionalities and a new functionality called
download map from Google. MTG _3 has the core MTG functionalities and a new
functionality called show satellite view. MTG _4 supports search for nearest at-
traction , show next attractionand retrieve data functionalities, together with the
core ones. Table1 describes the sets of functionnalities (use cases) implemented by
the di®erent MTG software variants. Figure 1 shows the corresponding use-case
diagrams.

In this example, we can observe that the use-case diagrams of software variants
show commonality and variability at use-case level (i.e. functionalities). This
prompts to extract feature documentation from the use-case diagrams of software
variants. Table 2 shows the mined feature implementations from MTG software
variants. In the examples, mined feature implementations are named using the
same names as that of the correspondinguse case for the sake of clarity. But as
mentioned before, mined feature namesare not known beforehand. We only use
the mined feature implementations composed of Source Code Elements (SCEs)
and the use-case diagrams of software variants as inputs for the documentation
process.

number��of��retrieved��feature��implementations.��F-Measure��de¯nes��a��trade-o®��between��
precision��and��recall,��that��gives��a��high��value��only��when��both��recall��and��precision��
are��high.



4. The Feature Documentation Process

As previously mentioned, we aim at documenting mined feature implementations by
using use-case diagrams that document a set of software variants. We rely on the
same assumption as in the work of [15] stating that each use case corresponds to a
feature. The feature documentation process uses lexical similarity to identify which
use-case best characterizes the name and description of each feature implementa-
tion. As performance and e±ciency of the IR technique depend on the size of the
search space, we take advantage of the commonality and variability between soft-
ware variants to group feature implementations and the corresponding use cases in
the software family into disjoint, minimal clusters (e.g. Concept_1 of Fig. 5). We call

Fig. 1. The use-case diagrams of the MTG software variants.

Table 1. The use cases of MTG software variants.
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each disjoint minimal cluster aHybrid Block (HB). After reducing the search space
to a set of hybrid blocks, we measure textual similarity to identify, within each
hybrid block, which use case may provide a name and a description of each feature
implementation.

For a product variant, our approach takes as inputs the set of use cases that
documents the variant and the set of mined feature implementations that are pro-
duced by REVPLINE. Each use case is de¯ned by its name and description. This
information represents domain knowledge that is usually available as software
documentation (i.e. requirement model). In our work, the use-case description con-
sists of a short paragraph in a natural language. For example, theretrieve data use-
case of Fig.1 is described by the following paragraph, \the tourist can retrieve
information and a small image of the attraction using his/her mobile phone. In
addition, the tourist can store the current view of the map in the mobile phone".

Our approach provides a name and a description for each feature implementation
based on a use-case name and description. Each use case is mapped onto a functional
feature thanks to our assumption. If two or more use cases have a relation with the
same feature implementation, we consider them all as the documentation for this
feature implementation.

Table 2. The mined feature implementations from MTG software variants.

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
1:

V
ie

w
m

ap

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
2:

P
la

ce
m

ar
ke

r
on

a
m

ap

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
3:

V
ie

w
di

re
ct

io
n

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
4:

La
un

ch
G

oo
gl

e
m

ap

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
5:

S
ho

w
st

re
et

vi
ew

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
6:

D
ow

nl
oa

d
m

ap
fr

om
G

oo
gl

e

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
7:

S
ho

w
sa

te
lli

te
vi

ew

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
8:

S
ea

rc
h

fo
r

ne
ar

es
t

at
tr

ac
tio

n

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
9:

S
ho

w
ne

xt
at

tr
ac

tio
n

F
ea

tu
re

Im
pl

em
en

ta
tio

n_
10

:
R

et
rie

ve
da

ta

Mobile Tourist Guide 1 � � � � �
Mobile Tourist Guide 2 � � � � � �
Mobile Tourist Guide 3 � � � � � �
Mobile Tourist Guide 4 � � � � � � � �

Product-by-feature implementation matrix (� feature implementation is in the
product)



Figure 2 shows an overview of our feature documentation process. The ¯rst step
of this process identi¯es hybrid blocks based on RCA (cf. Sec.5.1). In the second
step, LSI is applied to determine similarity between use cases and feature imple-
mentations (cf. Sec.5.2). FCA is then used to build use-case clusters. Each cluster
identi¯es a name and a description for feature implementation (cf. Sec.5.3).

5. Feature Documentation Step by Step

In this section, we describe the feature documentation process step by step. Feature
name and description are identi¯ed through three steps as detailed in the following.

5.1. Identifying hybrid blocks of use cases and feature
implementations via RCA

Mined feature implementations and use cases are clustered into disjoint minimal
clusters (i.e. hybrid blocks) to apply LSI on reduced search spaces. RCA is used to

Fig. 2. The feature documentation process.



build the clusters, based on the commonality and variability in software variants:
use cases and feature implementations that are common to all software variants; use
cases and feature implementations that are shared by a set of software variants, but
not all variants; use cases and feature implementations that are held by a single
variant (cf. Fig. 3).

An RCF is automatically generated from the use-case diagrams and the mined
feature implementations associated with software variantsd. The RCF used in our
approach contains two formal contexts and one relational context, as illustrated
in Table 3. The ¯rst formal context represents the use-case diagrams: objects are
use cases and attributes are software variants. The second formal context represents
feature implementations: objects are feature implementations and attributes are
software variants. The relational context (i.e.appears-with) indicates which use case
appears in the same software variant as a feature implementation.

For the RCF in Table 3, the two lattices of the Concept Lattice Family (CLF) are
represented in Fig.4 and a close-up view is represented in Fig.5. An example of a
hybrid block is given in Fig. 5 (the left dashed block), which gathers a set of use cases
(from the extent of Concept1 in the Use_case_Diagrams lattice) that always
appear with a set of feature implementations (from the extent ofConcept6 in the
Feature_Implementations lattice). The relation between the two concepts is repre-
sented inConcept1 via the relational attribute appears-with:Concept6. As shown in

Fig. 3. The common, shared and unique use-cases (resp. feature implementations) across software product
variants.

dSource code: https://code.google.com/p/rcafca/
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Fig. 5, RCA enables to reduce the search space by exploiting commonality and
variability across software variants. In our work, we ¯lter the CLF from bottom to
top to get a set of hybrid blockse.

5.2. Measuring the lexical similarity between use cases and feature
implementations via LSI

Each hybrid block created during previous step consists of a set of use cases and a set
of feature implementations. Which use cases characterize the name and description
of each feature implementation needs to be identi¯ed. To do so, we use textual
similarity between use cases and feature implementations. This similarity measure is
calculated using LSI. We consider that a use case corresponding to a feature im-
plementation should be lexically closer to this feature implementation than to others.
Similarity between use cases and feature implementations in the hybrid blocks is
computed in three steps as detailed below.

5.2.1. Building the LSI Corpus

In order to apply LSI, we build a corpus that represents a collection of documents
and queries (cf. Fig.6). In our work, each use-casename and description in the
hybrid block represents a query and each feature implementation represents a
document.

This document contains all the words extracted from the SCE names in the
feature implementation as a result of splitting them using a tokenization scheme

Fig. 5. Parts of the CLF deduced from Table3.

eSource code: https://code.google.com/p/fecola/



(Camel-case). Regardless of their location in the SCE names, we store all the words in
the document. For example, in the SCE nameManualTestWrapper all words are
important: manual, test and wrapper. This process is applied to all feature imple-
mentations. Our approach creates a query for each use-case. This query contains the
use-case name and its description.

To be processed, documents and queries must be normalized as follows: stop
words, articles, punctuation marks, or numbers are removed; text is tokenized and
lower-cased; text is split into terms; stemming is performed (e.g. removing word
endings); terms are sorted alphabetically. We use WordNetf to do part of the pre-
processing (e.g. stemming and removal of stop words).

The most important parameter of LSI is the number of term-topics (i.e.k-Topics)
chosen. A term-topic is a collection of terms that co-occur often in documents of the
corpus, for examplef user, account, password, authenticationg. In our work, the
number ofk-Topics is equal to the number of feature implementations for each corpus.

Fig. 6. Constructing a raw corpus from hybrid block.

f http://wordnet.princeton.edu/



5.2.2. Building the term-document and the term-query matrices
for each hybrid block

The term-document matrix is of size m � n, where m is the number of terms
extracted from feature implementations andn is the number of feature imple-
mentations (i.e. documents) in a corpus. The matrix values indicate the number of
occurrences of a term in a document, according to a speci¯c weighting scheme. In our
work, terms are weighted using theTF-IDF function (the most common weighting
scheme) [2]. The term-query matrix is of sizem � n, wherem is the number of terms
that are extracted from use-cases andn is the number of use-cases (i.e. queries) in a
corpus. An entry in the term-query matrix refers to the weight of thei th term in the
j th query.

In the term-document matrix (in left-hand side of Table 4), the direction term
appears 6 times in theFeature Implementation_4 document. In the term-query
matrix (in right-hand side of Table 4), the direction term appears 8 times in theview
direction query.

5.2.3. Building the cosine similarity matrix

Similarity between documents in a corpus is measured by the cosine of the angle
between their corresponding term vectors [31], as given by Eq. (4), where dq is a
query vector,dj is a document vector andWi;q and Wi;j go over the weights of terms

Table 4. The term-document and the term-query matrices of
Concept_1 in Figure 5.
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in the query and document respectively.

cosine similarity ðdq; dj Þ ¼
dq
!

� dj
!

j dq
!

jj dj
!

j
¼

P n
i¼1Wi;q � Wi ;j����������������������P n

i¼1W 2
i ;q

q ���������������������P n
i¼1W 2

i ;j

q ð4Þ

Similarity between use cases and feature implementations in each hybrid block is
thus de¯ned by a cosine similarity matrix which columns (documents) represent
feature implementations and rows (queries) use cases [3].

Results are represented as a directed graph. Use cases (resp. feature imple-
mentations) are represented as vertices and similarity links as edges. The degree of
similarity appears as weights on the edges (cf. Fig.7). This graph is only used for
visualization purposes.

5.3. Identifying feature name via FCA

Having the cosine similarity matrix, we use FCA to identify, in each hybrid block,
which use cases and feature implementations are related. To transform a (nu-
merical) cosine similarity matrix into a (binary) formal context, we use a 0.70
threshold (after having tested many threshold values). This means that only pairs
of use cases and feature implementations having similarity greater than or equal
to 0:70 are considered related. Table6 shows the formal context obtained by
transforming the cosine similarity matrix corresponding to the hybrid block of
Concept_1 from Fig. 5.

Fig. 7. The lexical similarity between use-cases and feature implementations as a directed graph.



For the Concept_1 hybrid block of Fig. 5 the number of term-topics of LSI is equal
to 5. In the formal context associated with this hybrid block, the \Launch Google
Map" use case is linked to the \Feature Implementation_1" feature implementation
because their similarity equals 0:86, which is greater than the threshold. On the
contrary, the \ View Direction" use case and the \Feature Implementation_5" fea-
ture implementation are not linked because their similarity equals 0:10, which is less
than the threshold. The resulting AOC-poset is composed of concepts whoseextent
represents the use-case name(s) andintent represents the feature implementation(s).
In this simple example, there is a one-to-one association between use-case names and
feature implementations, but in the general case, we may have several use-case
names associated with several feature implementations.

Table 5. The cosine similarity matrix of Concept_1 in Fig. 5.
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Place Marker on Map 0.01114798 0.9480070 0 0 0.085939
Show Street View 0.004088722 0.0051128 0.98581691 0.00571 0.070920
View Direction 0.00296571 0.0037085 0.0069484 0.999139665 0.108597
View Map 0.114676597 0.0627020 0.039159941 0.070025418 0.993111

Table 6. Formal context of Concept_1 in Fig. 5.
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For the MTG example, the AOC-poset of Fig. 8 shows ¯ve non comparable
concepts (that correspond to ¯ve distinct features) mined from a single hybrid block
(Concept_1 from Fig. 5). The same feature documentation process is used for each
hybrid block.

6. Naming Feature Implementation Based on SCE Names

In our approach, we consider that use-case diagrams or other kinds of documentation
(i.e. design documents) are not always available. In case they are not, we use the
source code of the mined features to automatically generate feature names and
documentations.

We adapt the process proposed in [5]. Their work identi¯es component names
based onclass namesin a single software. In our work, we extract aname for each
feature implementationfrom the names given to itsSCEs. We identify the name in
three steps:

(1) Extracting and tokenizing SCE names.
(2) Weighting tokens.
(3) Composing the feature name.

Our approach can be applied at any code granularity level (package, class, at-
tribute, method, local variable, method invocation or attribute access).

. Extracting and tokenizing SCE names. At this step, the names of all the
SCEs found in the feature implementation are extracted. Then, each SCE name is
split into tokens, using a camel-case scheme. For examplegetMinimumSupport is
split into get, Minimum and Support. This is a simple but common identi¯er
splitting algorithm [ 32], conforming to programming best practices.

. Weighting tokens. At this step, a weight is assigned to each extracted token. A
high weight(1.0) is given to the ¯rst word in a SCE name. Amedium weight(0.7) is
given to the second word in a SCE name. Finally asmall weight(0.5) is given to the
other words.

Fig. 8. The documented features fromConcept_1.



. Composing the feature name. In this step, a feature name is built using the
highest weighted words.

The number of words used in the feature name is chosen by anexpert. For
example, the expert can select the top two words to construct the feature name.
When many tokens have the same weight, all possible combinations are presented to
the expert and he can choose the most relevant one. Table7 shows an example of
feature name proposals for theshow street viewfeature implementation. In this
example, the expert assigns a feature name based on the top three tokens. The
assigned name for this feature implementation is eventuallyStreetShowView.

Table 7. SCE names, tokens, weight and highest weighted
tokens for the show street viewfeature implementation.

Token/weight

SCE Name

T
1/

w
¼

1:
0

T
2/

w
¼

0:
7

T
3=

w
¼

0:
5

T
4=

w
¼

0:
5

ShowStreetView show Street View
StreetPosition Street Position
ChangeStreetSettings Change Street Settings
getStreetAddress get Street Address
setStreetAddress set Street Address
ShowNearestStreet show Nearest Street
ShowNextStreet show Next Street
retrieveStreetData retrieve Street Data
ShowStreet show Street
updateStreetInfo update Street Info
ViewStreetMap View Street Map
ViewStreetPositionInfo View Street Position Info

Token Total weight Top 3 Top 4

Show 4 � �
Street 8 � �
View 2.5 � �
Position 1.2 �
Change 1
Settings 1
get 1
Address 1
set 1
Nearest 0.7
Next 0.7
retrieve 1
Data 0.5
update 1
Info 1
Map 0.5
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Mobile Media
1 Delete Album HB_1 4 100 100 100
2 Delete Photo HB_1 4 100 50 66
3 Add Album HB_1 4 100 100 100
4 Add Photo HB_1 4 100 50 66
5 Exception handling HB_2 1 100 100 100
6 Count Photo HB_3 3 100 50 66
7 View Sorted Photos HB_3 3 100 50 66
8 Edit Label HB_3 3 100 100 100
9 Set Favourites HB_4 2 100 50 66
10 View Favourites HB_4 2 100 50 66

ArgoUML-SPL
1 Class diagram HB_1 1 100 100 100
2 Logging HB_2 2 100 50 66
3 Cognitive support HB_2 2 100 100 100
4 Deployment diagram HB_3 1 100 100 100
5 Collaboration diagram HB_4 2 100 50 66
6 Sequence diagram HB_4 2 100 50 66
7 State diagram HB_5 1 100 100 100
8 Activity diagram HB _6 2 100 100 100
9 Use-case diagram HB_6 2 100 100 100

gCase studies and code: http://www.lirmm.fr/CaseStudy

7.�� Experimentation

7.1.��Experimental�� setup

To��validate��our��approach,��we��ran��experiments��on��two��Java��open-source��applications:��
Mobile��media��software��variants��(small��systems)��[33]��and��ArgoUML-SPL�� (large��
systems)��[34].��We��used��4��variants��for��Mobile��media��and��10��for��ArgoUML. ��These��two��
case��studies��interestingly��implement��variability��at��di®erent��levels:��class��and��method��
levels.��In��addition,��these��case��studies��are��well��documented:��their��use-case��diagrams��
and��FMs��are��available��for��comparison��and��validation��of��our��resultsg.��Table��8��sum-
marizes��the��obtained��results.

7.2.��Results

In��these��two��case��studies,��we��observe��that��the��recall��values��are��100%��for��all��features:��
this��means��that�� our��approach��e±ciently�� associates��uses��cases��with�� their�� imple-
mentations��in��the��software.��Precision��values��are��in��[50%–100%]:��similarity��between��a

Table��8.�� Features��documented��from��case��studies.



use case and several features implementation may be high, when they pertain to the
same application domain and thus use common vocabulary, leading to ill associa-
tions. F-Measure values are consequently in [66%–100%]. In most cases, the contents
of hybrid blocks are in the range of [1–4] use-cases and feature implementations: this
validates RCA as a valid technique for building small search spaces in order to
e±ciently compute lexical similarity. Lexical similarity also proves to be a suitable
tool, as shown by high recall, which con¯rms that a common vocabulary is used in
use-case descriptions and feature implementations.

In our work, we cannot use a ¯xed number of topics for LSI because hybrid blocks
(clusters) have di®erent sizes. The column (k-Topics) in Table 8 representsthe
number of term-topics.

All feature names produced by our approach are presented in the column (Feature
Name) of Table 8, as built from names of use cases. For example, in the FM of Mobile
media [33] there is a feature calledsorting. The name proposed by our approach for
this feature is view sorted photosand its description is \the device sorts the photos
based on the number of times photo has been viewed".

7.3. Threats to validity

There is a limit to the use of FCA as a clustering technique. Cosine similarity matrices
are transformed into formal (binary) contexts thanks to a ¯xed threshold. So if simi-
larity between the query and the document is greater than or equals 0:70 the two
documents are considered similar. By contrast, if similarity is less than the threshold
(i.e. 0.69) the two documents are considered dissimilar. This sharp threshold e®ect may
a®ect the quality of the result, since a similarity value of 0:99 (resp. 0:69) is treated as a
similarity value 0:70 (resp. 0). Adaptive and fuzzy threshold schemes should be studied
to improve precision without impacting the high recall of our approach.

In our approach we consider that each use-case corresponds to a functional fea-
ture. However, several use-cases may be implemented by a single feature. In this case
all these use-cases should be considered as relevant documentation for this feature.
Our approach should be improved with other techniques to extract a unique name
and a compound description.

Naming a feature using the names of the SCEs in its implementation is not always
reliable. In our approach, we rely on the top word frequencies to compose the pro-
posed name. However, top words may be not relevant to depict the function of the
feature. The weighting scheme should take into account the di®erent roles and im-
portance of SCEs in the implementation in order to select the most relevant words, if
they are not the most frequent ones.

8. Conclusion and Perspectives

In this paper, we propose an approach for documenting automatically a set of feature
implementations mined from a set of software variants. We exploit commonalities
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