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Companies often develop a set of software variants that share some features and di®er in others

to meet speci¯c requirements. To exploit the existing software variants as a Software Product
Line (SPL), a Feature Model of this SPL must be built as a ¯rst step. To do so, it is necessary to

de¯ne and document the optional and mandatory features that compose the variants. In our

previous work, we mined a set of feature implementations as identi¯ed sets of source code
elements. In this paper, we propose a complementary approach, which aims to document the

mined feature implementations by giving them names and descriptions, based on the source

code elements that form feature implementations and the use-case diagrams that specify soft-

ware variants. The novelty of our approach is its use of commonality and variability across
software variants, at feature implementation and use-case levels, to run Information Retrieval

methods in an e±cient way. Experiments on several real case studies (Mobile media and

ArgoUML-SPL) validate our approach and show promising results.

Keywords: Software variants; Software Product Line; feature documentation; code compre-

hension; Formal Concept Analysis; Relational Concept Analysis; use-case diagram; Latent

Semantic Indexing; Feature Models.

1. Introduction

Similarly to car developers who propose a full range of cars with common char-

acteristics and numerous variants, software developers may cater to various needs

and propose as a result a software family instead of a single product. Such a software

family is called a Software Product Line (SPL) [1].



Software variants often evolve from an initial product, developed for and suc-
cessfully used by the ¯rst customer. These product variants usually share some 
common features and di®er regarding others. As the number of features and the 
number of software variants grow, it is worth to re-engineer them into an SPL for 
systematic reuse [2].

The ¯rst step towards re-engineering software variants into SPL is to mine a 
Feature Model (FM). To obtain such a FM, the common and optional features that 
compose these variants have to be identi¯ed and documented. This consists in 
(step 1) identifying, among source code elements, groups that implement candidate 
features and (step 2) associating them with their documentation (i.e. a feature name 
and description). In our previous work [3], we proposed an approach for step 1 which 
consists in mining features from the object-oriented source code of software variants 
(the REVPLINE approacha). REVPLINE mines functional features as sets of 
Source Code Elements (SCEs) (e.g. packages, classes, attributes, methods or method 
bodies).

In this article, we address step 2. To assist a human expert in documenting the 
mined feature implementations, we propose an automatic approach which associates 
names and descriptions using the source code elements of feature implementations 
and the use-case diagrams of software variants. Compared with existing work that 
documents source code (cf. Sec. 2), the novelty of our approach is that we exploit 
commonality and variability across software variants at feature implementation 
and use-case levels in order to apply Information Retrieval (IR) methods in an 
e±cient way.

Considering commonality and variability across software variants enables to 
group use-cases and feature implementations into disjoint and minimal clusters 
based on Relational Concept Analysis (RCA). Each cluster consists of a subset of 
feature implementations and their corresponding use-cases. Then, we use Latent 
Semantic Indexing (LSI) to measure similarities and identify which use-cases best 
characterize the name and description of each feature implementation by using 
Formal Concept Analysis (FCA). In the cases where use-case diagrams or docu-
mentation are not available, we propose an alternative approach, based on the names 
of the source code elements that implement features.

The remainder of this paper is structured as follows: Section 2 presents the state 
of the art and motivates our work. Section 3 brie°y describes the technical back-
ground which is used in our work. Section 4 outlines the feature documentation 
process. Section 5 details the feature documentation process based on the use-case 
diagrams of variants step by step. Section 6 presents the feature documentation 
process based on SCE names. Section 7 reports the experimentation and discusses 
threats to the validity of our approach. Finally, Sec. 8 concludes and provides 
perspectives for this work.

aREVPLINE stands for RE-engineering software Variants into a software Product LINE.



2. State of the Art

In our approach, we aim at documenting groups of source code elements that are the

result of a mining process. These groups of source code elements correspond to

feature implementations. The comprehension or documentation of feature imple-

mentation is a complex problem-solving task [4]. We consider here that documenting

a feature is the process of analyzing the implementation of a feature to provide it

with either a name or a more detailed description based on software artifacts such as

use-case diagrams or identi¯er names. Related approaches are documenting the

source code of a single software, ¯nding traceability links between source code and

documentation, and documenting mined features in software product lines.

This section presents research papers in these three ¯elds. We then conclude

this state of the art by a synthesis which introduces the main objectives of our

approach.

2.1. Source code documentation in a single software

Kebir et al. [5] propose to identify components from the object-oriented source code

of a single software. Their approach assigns names to the components in three steps:

extracting and tokenizing class names from the identi¯ed implementation of a

component, weighting words and building the component name by using the

strongest weighted tokens.

Kuhn [6] presents a lexical approach that uses the log-likelihood ratio of word

frequencies to automatically retrieve labels from source code. This approach can be

applied to compare several components (i.e. describing their di®erences as well as

their commonalities), a component against a normative corpus (i.e. providing labels

for components) and di®erent versions of the same component (i.e. documenting the

history of a component). In Kuhn et al. [7], information retrieval techniques are used

to exploit linguistic information found in source code, such as identi¯er names and

comments, in order to enrich software analysis with the developers' knowledge that is

hidden in the code. They introduce semantic clustering, a technique based on LSI

and clustering to group source artifacts (i.e. classes) that use similar vocabulary.

They call these groups semantic clusters and they interpret them as linguistic topics

that reveal the intention of the code. They compare the topics, identify links between

them, provide automatically retrieved labels (using LSI again to automatically label

the clusters with their most relevant terms). They ¯nally use distribution maps to

illustrate how the semantic clusters are distributed over the system. Their work is

language independent as it works at the level of identi¯er names.

De Lucia et al. [8] propose an approach for source code labeling, based on IR

techniques, that identi¯es relevant words in the source code of a single software.

They apply various IR methods (such as VSM, LSI and Latent Dirichlet Allocation

(LDA)) to extract terms from class names by means of some representative words,

with the aim of facilitating code comprehension or improving visualization. This



work investigates to what extent IR-based source code labeling would identify rel-
evant words in the source code, compared to the words a human would manually 
select during a program comprehension task.

A technique for automatically summarizing source code by leveraging the lexical 
and structural information in the code is proposed in Haiduc et al. [9]. Summaries are 
obtained from the content of a document by selecting the most important infor-
mation in that document. The goal of this approach is the automatic generation of 
summaries for source code entities.

Falleri et al. [10] propose a wordNet-like approach to extract the structure of a 
single software using relationships among identi¯er names. The approach considers 
natural language processing techniques which consist of a tokenization process 
(straightforward decomposition technique by word markers, e.g. case changes, un-
derscore, etc.), part of speech tagging and rearranging order of terms by term 
dominance order rules based on part of speech information.

Sridhara et al. [11] present a novel technique to automatically generate comments 
for Java methods. They use the signature and body of a method (i.e. method calls) to 
generate a descriptive natural language summary of the method. The developer 
remains responsible for verifying the accuracy of generated summaries. The objective 
of this approach is to ease program comprehension. Authors use natural language 
processing techniques to automatically generate leading method comments. Studies 
have shown that good comments help programmers understand quickly what a 
method does, thus assisting program comprehension and software maintenance.

2.2. Source code-to-documentation traceability links

Grechanik et al. [12] propose a novel approach for partially automating the process of 
recovering traceability links (TLs) between types and variables in Java programs 
and elements of use-case diagrams (UCDs). Authors evaluate their prototype im-

plementation on open-source and commercial software, and their results suggest that 
their approach can recover many traceability links with a high automation degree 
and precision. As UCDs are widely used to describe the functional requirements of 
software products, these traces help programmers understand the code that they 
maintain and modify.

Marcus et al. [13] use LSI to recover traceability links between source code and 
documentation. The documentation consists of requirement documents which de-
scribe elements of the problem domain such as manuals, design models or test suites. 
This documentation is supposed to have been written before implementation and 
does not include any parts of the source code.

Diaz et al. [14] capture relationships between source code artifacts to improve the 
recovery of traceability links between documentation and source code. They extract 
the author of each source code component and, for each author, identify the
\context" she/he worked on. Thus, to link documentation and source code artifacts 
(i.e. use cases and classes), they compute the similarity between these use cases and



the authors' contexts. When retrieving related classes using a standard IR-based

approach (e.g. LSI or VSM) they reward all the classes developed by authors whose

contexts are most similar to use cases.

Xue et al. [2] automatically identify traceability links between a given collection of

features and a given collection of source code variants. They consider feature

descriptions as an input.

2.3. Documentation of mined features in SPL

Braganca and Machado [15] describe an approach for automating the transformation

of UML use cases into FMs. In their work, each use case is mapped to a feature. Their

approach explores the include and extend relationships between use cases to discover

relationships between features. Their work assumes that the feature name is given by

that of the use-case.

Yang et al. [16] analyze open source applications for multiple domains with similar

functionalities. They propose an approach to recover domain feature models using

data access semantics, FCA, concept pruning=merging, structure reconstruction and

variability analysis. After concept pruning=merging, analysts examine each of the

generated candidate feature (i.e. concept cluster) to evaluate its relevance. Mean-

ingless candidate features are removed, whilst meaningful candidate features are

chosen as domain features. Then analysts name each domain feature with the help

of the corresponding concept intent and extent. After these manual examination

and naming, all domain features bear signi¯cant names denoting their business

functions.

Paškevičius et al. [17] present a framework for an automated derivation of FMs

from existing software artifacts (e.g. classes, components, libraries, etc.), which

includes a formal description of FMs, a program-feature relation meta-model and a

method for FM generation based on feature dependency extraction and clustering.

FMs are generated as Feature Description Language (FDL) descriptors and as

Prolog rules. They focus on reverse engineering of source code to FMs and assume

that feature names are provided by that of the class or component.

Ziadi et al. [18] propose a semi-automatic approach to identify features from

object-oriented source code. Their approach takes the source code of a set of product

variants as its input. They manually assign names to the identi¯ed feature imple-

mentations by relying on the feature names that are used in the original FM.

In our previous work [19, 3, 20], we manually propose feature names for the mined

feature implementations, based on the code elements of each feature implementation.

Davril et al. [21] build FMs from product descriptions. Extracting FMs from these

informal data sources includes mining feature descriptions from sets of product

descriptions, naming the features in a way that is understandable to human users

and then discovering relations between features in order to organize them hierar-

chically into a comprehensive model. The identi¯ed features correspond to clusters of



descriptions. Authors propose a method to name a cluster using the most frequently 
and less verbose occurring phrase in the descriptors of this cluster.

2.4. Synthesis

Most existing approaches are designed to extract labels, names, topics or to identify 
traceability links between code and documentation artifacts in a single software 
system. To document mined features, most existing approaches manually assign 
feature names to feature implementations (without any further description) and they 
often rely on atomic source code element names (e.g. class or component names). The 
most advanced approach for automatic feature description extraction is that of [21] 
which works on informal product descriptions.

Our work addresses the problem of documenting features mined from several 
variants of a software system. Our mined feature implementations are sets of source 
code elements that are more formal artifacts than the product descriptions used in 
[21] and give complementary information as compared to use-case diagrams [15]. Our 
approach relies on commonality and variability across the variants to apply infor-
mation retrieval methods more e±ciently than in a single software system. Our input 
data are the source code and use-case diagrams of the variants. We do not consider 
any prior knowledge about features contrarily to [2]. We aim at automatically 
assigning a name and a description to each mined feature implementation using 
several techniques (Formal Concept Analysis, Relational Concept Analysis and 
Latent Semantic Indexing), whereas several approaches manually assign names [16, 
18, 3]. Feature documentation consists in use-case names, tokens from the source 
code elements and use-case descriptions.

3. Technical Background

This section provides a glimpse on FCA, RCA and LSI. It also shortly describes the 
example that illustrates the remaining sections of the paper.

3.1. Formal and relational concept analysis

Formal Concept Analysis (FCA) is a classi¯cation technique that takes as an input 
data sets describing objects and their attributes and extracts concepts that are 
maximal groups of objects (concept extents) sharing maximal groups of attributes 
(concept intents) [22]. It has many applications in software engineering [23–25]. The 
extracted concepts are linked by a partial order relation, which represents concept 
specialization, as an order which has a lattice structure (called the concept lattice). 
In the concept lattice, each attribute (resp. each object) is introduced by a unique 
concept and inherited by its sub-concepts (resp. by its super-concepts). In ¯gures, 
objects and attributes are often represented only in their introducing concept for the 
sake of simplicity. Rather than using the whole concept lattice, which is often a large



and complex structure (exponential number of concepts, considering objects and

attributes, in the worst case), we use a sub-order called the AOC-poset, which is

restricted to the concepts that introduce at least one object or one attribute. The

interested reader can ¯nd more information about our use of FCA in [3].

Relational Concept Analysis (RCA) [26] is an iterative version of FCA in which

objects are classi¯ed not only according to attributes they share, but also according

to relations between them (cf. Sec. 5.1). Other close approaches are [27–29].

In the RCA framework, data are encoded into a Relational Context Family

(RCF), which is a pair ðK;RÞ, where K is a set of formal (object-attribute) contexts

Ki ¼ ðOi;Ai; IiÞ and R is a set of relational (object-object) contexts rij � Oi �Oj,

where Oi (domain of rij) and Oj (range of rij) are the object sets of the contexts Ki

andKj, respectively (cf. Table 3). A RCF is iteratively processed to generate, at each

step, a set of concept lattices. As a ¯rst step, concept lattices are built using the

formal contexts only. Then, in the following steps, a scaling mechanism translates the

links between objects into conventional FCA attributes and derives a collection of

lattices whose concepts are linked by relations (cf. Fig. 5).

To apply FCA and RCA, we use the Eclipse eRCA platformb.

3.2. Latent semantic indexing

Information Retrieval (IR) refers to techniques that compute textual similarity be-

tween documents. Textual similarity is computed based on the occurrences of terms

in documents [30]. When two documents share a large number of terms, those

documents are considered to be similar. Di®erent IR techniques have been proposed,

such as Latent Semantic Indexing (LSI) and Vector Space Model (VSM), to compute

textual similarity.

As proposed by [2], we use LSI to group together software artifacts that pertain to

the implementation or the documentation of a similar, thus considered common,

conceptc.

To do so, software artifacts are regarded as textual documents. Occurrences of

terms are extracted from the documents in order to calculate similarities between

them and then classify together similar documents (cf. Sec. 5.2).

The heart of LSI is the singular value decomposition technique. This technique is

used to mitigate noise introduced by stop words (like \the", \an", \above") and

overcome two issues of natural language processing: synonymy and polysemy.

The e®ectiveness of IR methods is usually measured by metrics including recall,

precision and F-measure (cf. Eqs. (1), (2) and (3)). In this work, for a given use-case

(query), recall is the percentage of correctly retrieved feature implementations

(documents) to the total number of relevant feature implementations, while preci-

sion is the percentage of correctly retrieved feature implementations to the total

bThe eRCA: http://code.google.com/p/erca/
cTo set our approach up, we developed our own LSI tool, available at https://code.google.com/p/

lirmmlsi/



Recall ¼ jfrelevant documentsg
T
fretrieved documentsgj

jfrelevant documentsgj ð1Þ

Precision ¼ jfrelevant documentsg
T
fretrieved documentsgj

jfretrieved documentsgj ð2Þ

F �Measure ¼ 2� Precision �Recall

Precisionþ Recall
ð3Þ

All measures have values in [0%, 100%]. When recall equals 100%, all relevant

feature implementations are retrieved. However, some retrieved feature imple-

mentations may not be relevant. If precision equals 100%, all retrieved feature

implementations are relevant. Nevertheless, all relevant feature implementations

may not be retrieved. When F-Measure equals 100%, all relevant feature imple-

mentations are retrieved.

The interested reader can ¯nd more information about our use of LSI in [3].

3.3. The mobile tourist guide example

In this example, we consider four software variants of the Mobile Tourist

Guide (MTG) application. These variants enable users to inquire about tourist

information on mobile devices. MTG_1 supports core MTG functionalities: view

map, place marker on a map, view direction, launch Google map and show street

view. MTG_2 has the core MTG functionalities and a new functionality called

download map from Google. MTG_3 has the core MTG functionalities and a new

functionality called show satellite view. MTG_4 supports search for nearest at-

traction, show next attraction and retrieve data functionalities, together with the

core ones. Table 1 describes the sets of functionnalities (use cases) implemented by

the di®erent MTG software variants. Figure 1 shows the corresponding use-case

diagrams.

In this example, we can observe that the use-case diagrams of software variants

show commonality and variability at use-case level (i.e. functionalities). This

prompts to extract feature documentation from the use-case diagrams of software

variants. Table 2 shows the mined feature implementations from MTG software

variants. In the examples, mined feature implementations are named using the

same names as that of the corresponding use case for the sake of clarity. But as

mentioned before, mined feature names are not known beforehand. We only use

the mined feature implementations composed of Source Code Elements (SCEs)

and the use-case diagrams of software variants as inputs for the documentation

process.

number of retrieved feature implementations. F-Measure de¯nes a trade-o® between 
precision and recall, that gives a high value only when both recall and precision 
are high.



4. The Feature Documentation Process

As previously mentioned, we aim at documenting mined feature implementations by

using use-case diagrams that document a set of software variants. We rely on the

same assumption as in the work of [15] stating that each use case corresponds to a

feature. The feature documentation process uses lexical similarity to identify which

use-case best characterizes the name and description of each feature implementa-

tion. As performance and e±ciency of the IR technique depend on the size of the

search space, we take advantage of the commonality and variability between soft-

ware variants to group feature implementations and the corresponding use cases in

the software family into disjoint, minimal clusters (e.g. Concept_1 of Fig. 5). We call

Fig. 1. The use-case diagrams of the MTG software variants.

Table 1. The use cases of MTG software variants.

V
ie
w

m
ap

P
la
ce

m
ar
k
er

on
a
m
a
p

V
ie
w

d
ir
ec
ti
on

L
au

n
ch

G
oo

gl
e
m
ap

S
h
ow

st
re
et

v
ie
w

D
ow

n
lo
ad

m
ap

fr
om

G
o
o
g
le

S
h
ow

sa
te
ll
it
e
v
ie
w

S
ea
rc
h
fo
r
n
ea
re
st

at
tr
ac
ti
on

S
h
ow

n
ex
t
at
tr
ac
ti
on

R
et
ri
ev
e
d
at
a

Mobile Tourist Guide 1 � � � � �
Mobile Tourist Guide 2 � � � � � �
Mobile Tourist Guide 3 � � � � � �
Mobile Tourist Guide 4 � � � � � � � �
Product-by-use case matrix (� use-case is in the product)



each disjoint minimal cluster a Hybrid Block (HB). After reducing the search space

to a set of hybrid blocks, we measure textual similarity to identify, within each

hybrid block, which use case may provide a name and a description of each feature

implementation.

For a product variant, our approach takes as inputs the set of use cases that

documents the variant and the set of mined feature implementations that are pro-

duced by REVPLINE. Each use case is de¯ned by its name and description. This

information represents domain knowledge that is usually available as software

documentation (i.e. requirement model). In our work, the use-case description con-

sists of a short paragraph in a natural language. For example, the retrieve data use-

case of Fig. 1 is described by the following paragraph, \the tourist can retrieve

information and a small image of the attraction using his/her mobile phone. In

addition, the tourist can store the current view of the map in the mobile phone".

Our approach provides a name and a description for each feature implementation

based on a use-case name and description. Each use case is mapped onto a functional

feature thanks to our assumption. If two or more use cases have a relation with the

same feature implementation, we consider them all as the documentation for this

feature implementation.

Table 2. The mined feature implementations from MTG software variants.
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Figure 2 shows an overview of our feature documentation process. The ¯rst step

of this process identi¯es hybrid blocks based on RCA (cf. Sec. 5.1). In the second

step, LSI is applied to determine similarity between use cases and feature imple-

mentations (cf. Sec. 5.2). FCA is then used to build use-case clusters. Each cluster

identi¯es a name and a description for feature implementation (cf. Sec. 5.3).

5. Feature Documentation Step by Step

In this section, we describe the feature documentation process step by step. Feature

name and description are identi¯ed through three steps as detailed in the following.

5.1. Identifying hybrid blocks of use cases and feature

implementations via RCA

Mined feature implementations and use cases are clustered into disjoint minimal

clusters (i.e. hybrid blocks) to apply LSI on reduced search spaces. RCA is used to

Fig. 2. The feature documentation process.



build the clusters, based on the commonality and variability in software variants:

use cases and feature implementations that are common to all software variants; use

cases and feature implementations that are shared by a set of software variants, but

not all variants; use cases and feature implementations that are held by a single

variant (cf. Fig. 3).

An RCF is automatically generated from the use-case diagrams and the mined

feature implementations associated with software variantsd. The RCF used in our

approach contains two formal contexts and one relational context, as illustrated

in Table 3. The ¯rst formal context represents the use-case diagrams: objects are

use cases and attributes are software variants. The second formal context represents

feature implementations: objects are feature implementations and attributes are

software variants. The relational context (i.e. appears-with) indicates which use case

appears in the same software variant as a feature implementation.

For the RCF in Table 3, the two lattices of the Concept Lattice Family (CLF) are

represented in Fig. 4 and a close-up view is represented in Fig. 5. An example of a

hybrid block is given in Fig. 5 (the left dashed block), which gathers a set of use cases

(from the extent of Concept1 in the Use_case_Diagrams lattice) that always

appear with a set of feature implementations (from the extent of Concept6 in the

Feature_Implementations lattice). The relation between the two concepts is repre-

sented in Concept1 via the relational attribute appears-with:Concept6. As shown in

Fig. 3. The common, shared and unique use-cases (resp. feature implementations) across software product

variants.

dSource code: https://code.google.com/p/rcafca/
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Fig. 5, RCA enables to reduce the search space by exploiting commonality and

variability across software variants. In our work, we ¯lter the CLF from bottom to

top to get a set of hybrid blockse.

5.2. Measuring the lexical similarity between use cases and feature

implementations via LSI

Each hybrid block created during previous step consists of a set of use cases and a set

of feature implementations. Which use cases characterize the name and description

of each feature implementation needs to be identi¯ed. To do so, we use textual

similarity between use cases and feature implementations. This similarity measure is

calculated using LSI. We consider that a use case corresponding to a feature im-

plementation should be lexically closer to this feature implementation than to others.

Similarity between use cases and feature implementations in the hybrid blocks is

computed in three steps as detailed below.

5.2.1. Building the LSI Corpus

In order to apply LSI, we build a corpus that represents a collection of documents

and queries (cf. Fig. 6). In our work, each use-case name and description in the

hybrid block represents a query and each feature implementation represents a

document.

This document contains all the words extracted from the SCE names in the

feature implementation as a result of splitting them using a tokenization scheme

Fig. 5. Parts of the CLF deduced from Table 3.

eSource code: https://code.google.com/p/fecola/



(Camel-case). Regardless of their location in the SCE names, we store all the words in

the document. For example, in the SCE name ManualTestWrapper all words are

important: manual, test and wrapper. This process is applied to all feature imple-

mentations. Our approach creates a query for each use-case. This query contains the

use-case name and its description.

To be processed, documents and queries must be normalized as follows: stop

words, articles, punctuation marks, or numbers are removed; text is tokenized and

lower-cased; text is split into terms; stemming is performed (e.g. removing word

endings); terms are sorted alphabetically. We use WordNetf to do part of the pre-

processing (e.g. stemming and removal of stop words).

The most important parameter of LSI is the number of term-topics (i.e. k-Topics)

chosen. A term-topic is a collection of terms that co-occur often in documents of the

corpus, for example fuser, account, password, authenticationg. In our work, the

number of k-Topics is equal to the number of feature implementations for each corpus.

Fig. 6. Constructing a raw corpus from hybrid block.

fhttp://wordnet.princeton.edu/



5.2.2. Building the term-document and the term-query matrices

for each hybrid block

The term-document matrix is of size m� n, where m is the number of terms

extracted from feature implementations and n is the number of feature imple-

mentations (i.e. documents) in a corpus. The matrix values indicate the number of

occurrences of a term in a document, according to a speci¯c weighting scheme. In our

work, terms are weighted using the TF-IDF function (the most common weighting

scheme) [2]. The term-query matrix is of size m� n, where m is the number of terms

that are extracted from use-cases and n is the number of use-cases (i.e. queries) in a

corpus. An entry in the term-query matrix refers to the weight of the ith term in the

jth query.

In the term-document matrix (in left-hand side of Table 4), the direction term

appears 6 times in the Feature Implementation_4 document. In the term-query

matrix (in right-hand side of Table 4), the direction term appears 8 times in the view

direction query.

5.2.3. Building the cosine similarity matrix

Similarity between documents in a corpus is measured by the cosine of the angle

between their corresponding term vectors [31], as given by Eq. (4), where dq is a

query vector, dj is a document vector and Wi;q and Wi;j go over the weights of terms

Table 4. The term-document and the term-query matrices of

Concept_1 in Figure 5.
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in the query and document respectively.

cosine similarity ðdq; djÞ ¼
dq
! � dj!

j dq! jj dj! j ¼
Pn

i¼1Wi;q �Wi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1W

2
i;q

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1W

2
i;j

q ð4Þ

Similarity between use cases and feature implementations in each hybrid block is

thus de¯ned by a cosine similarity matrix which columns (documents) represent

feature implementations and rows (queries) use cases [3].

Results are represented as a directed graph. Use cases (resp. feature imple-

mentations) are represented as vertices and similarity links as edges. The degree of

similarity appears as weights on the edges (cf. Fig. 7). This graph is only used for

visualization purposes.

5.3. Identifying feature name via FCA

Having the cosine similarity matrix, we use FCA to identify, in each hybrid block,

which use cases and feature implementations are related. To transform a (nu-

merical) cosine similarity matrix into a (binary) formal context, we use a 0.70

threshold (after having tested many threshold values). This means that only pairs

of use cases and feature implementations having similarity greater than or equal

to 0:70 are considered related. Table 6 shows the formal context obtained by

transforming the cosine similarity matrix corresponding to the hybrid block of

Concept_1 from Fig. 5.

Fig. 7. The lexical similarity between use-cases and feature implementations as a directed graph.



For the Concept_1 hybrid block of Fig. 5 the number of term-topics of LSI is equal

to 5. In the formal context associated with this hybrid block, the \Launch Google

Map" use case is linked to the \Feature Implementation_1" feature implementation

because their similarity equals 0:86, which is greater than the threshold. On the

contrary, the \View Direction" use case and the \Feature Implementation_5" fea-

ture implementation are not linked because their similarity equals 0:10, which is less

than the threshold. The resulting AOC-poset is composed of concepts whose extent

represents the use-case name(s) and intent represents the feature implementation(s).

In this simple example, there is a one-to-one association between use-case names and

feature implementations, but in the general case, we may have several use-case

names associated with several feature implementations.

Table 5. The cosine similarity matrix of Concept_1 in Fig. 5.
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View Map 0.114676597 0.0627020 0.039159941 0.070025418 0.993111

Table 6. Formal context of Concept_1 in Fig. 5.
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For the MTG example, the AOC-poset of Fig. 8 shows ¯ve non comparable

concepts (that correspond to ¯ve distinct features) mined from a single hybrid block

(Concept_1 from Fig. 5). The same feature documentation process is used for each

hybrid block.

6. Naming Feature Implementation Based on SCE Names

In our approach, we consider that use-case diagrams or other kinds of documentation

(i.e. design documents) are not always available. In case they are not, we use the

source code of the mined features to automatically generate feature names and

documentations.

We adapt the process proposed in [5]. Their work identi¯es component names

based on class names in a single software. In our work, we extract a name for each

feature implementation from the names given to its SCEs. We identify the name in

three steps:

(1) Extracting and tokenizing SCE names.

(2) Weighting tokens.

(3) Composing the feature name.

Our approach can be applied at any code granularity level (package, class, at-

tribute, method, local variable, method invocation or attribute access).

. Extracting and tokenizing SCE names. At this step, the names of all the

SCEs found in the feature implementation are extracted. Then, each SCE name is

split into tokens, using a camel-case scheme. For example getMinimumSupport is

split into get, Minimum and Support. This is a simple but common identi¯er

splitting algorithm [32], conforming to programming best practices.

. Weighting tokens. At this step, a weight is assigned to each extracted token. A

high weight (1.0) is given to the ¯rst word in a SCE name. Amedium weight (0.7) is

given to the second word in a SCE name. Finally a small weight (0.5) is given to the

other words.

Fig. 8. The documented features from Concept_1.



. Composing the feature name. In this step, a feature name is built using the

highest weighted words.

The number of words used in the feature name is chosen by an expert. For

example, the expert can select the top two words to construct the feature name.

When many tokens have the same weight, all possible combinations are presented to

the expert and he can choose the most relevant one. Table 7 shows an example of

feature name proposals for the show street view feature implementation. In this

example, the expert assigns a feature name based on the top three tokens. The

assigned name for this feature implementation is eventually StreetShowView.

Table 7. SCE names, tokens, weight and highest weighted

tokens for the show street view feature implementation.

Token/weight

SCE Name

T
1/

w
¼

1
:0

T
2/

w
¼

0
:7

T
3=
w
¼

0:
5

T
4=
w
¼

0:
5

ShowStreetView show Street View

StreetPosition Street Position
ChangeStreetSettings Change Street Settings

getStreetAddress get Street Address

setStreetAddress set Street Address

ShowNearestStreet show Nearest Street
ShowNextStreet show Next Street

retrieveStreetData retrieve Street Data

ShowStreet show Street
updateStreetInfo update Street Info

ViewStreetMap View Street Map

ViewStreetPositionInfo View Street Position Info

Token Total weight Top 3 Top 4

Show 4 � �
Street 8 � �
View 2.5 � �
Position 1.2 �
Change 1

Settings 1
get 1

Address 1

set 1

Nearest 0.7
Next 0.7

retrieve 1

Data 0.5

update 1
Info 1

Map 0.5



Evaluation metrics
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Mobile Media
1 Delete Album HB_1 4 100 100 100

2 Delete Photo HB_1 4 100 50 66

3 Add Album HB_1 4 100 100 100

4 Add Photo HB_1 4 100 50 66
5 Exception handling HB_2 1 100 100 100

6 Count Photo HB_3 3 100 50 66

7 View Sorted Photos HB_3 3 100 50 66

8 Edit Label HB_3 3 100 100 100
9 Set Favourites HB_4 2 100 50 66

10 View Favourites HB_4 2 100 50 66

ArgoUML-SPL

1 Class diagram HB_1 1 100 100 100

2 Logging HB_2 2 100 50 66
3 Cognitive support HB_2 2 100 100 100

4 Deployment diagram HB_3 1 100 100 100

5 Collaboration diagram HB_4 2 100 50 66
6 Sequence diagram HB_4 2 100 50 66

7 State diagram HB_5 1 100 100 100

8 Activity diagram HB_6 2 100 100 100

9 Use-case diagram HB_6 2 100 100 100

gCase studies and code: http://www.lirmm.fr/CaseStudy

7. Experimentation

7.1. Experimental setup

To validate our approach, we ran experiments on two Java open-source applications: 
Mobile media software variants (small systems) [33] and ArgoUML-SPL (large 
systems) [34]. We used 4 variants for Mobile media and 10 for ArgoUML. These two 
case studies interestingly implement variability at di®erent levels: class and method 
levels. In addition, these case studies are well documented: their use-case diagrams 
and FMs are available for comparison and validation of our resultsg. Table 8 sum-

marizes the obtained results.

7.2. Results

In these two case studies, we observe that the recall values are 100% for all features: 
this means that our approach e±ciently associates uses cases with their imple-

mentations in the software. Precision values are in [50%–100%]: similarity between a

Table 8. Features documented from case studies.



use case and several features implementation may be high, when they pertain to the

same application domain and thus use common vocabulary, leading to ill associa-

tions. F-Measure values are consequently in [66%–100%]. In most cases, the contents

of hybrid blocks are in the range of [1–4] use-cases and feature implementations: this

validates RCA as a valid technique for building small search spaces in order to

e±ciently compute lexical similarity. Lexical similarity also proves to be a suitable

tool, as shown by high recall, which con¯rms that a common vocabulary is used in

use-case descriptions and feature implementations.

In our work, we cannot use a ¯xed number of topics for LSI because hybrid blocks

(clusters) have di®erent sizes. The column (k-Topics) in Table 8 represents the

number of term-topics.

All feature names produced by our approach are presented in the column (Feature

Name) of Table 8, as built from names of use cases. For example, in the FM of Mobile

media [33] there is a feature called sorting. The name proposed by our approach for

this feature is view sorted photos and its description is \the device sorts the photos

based on the number of times photo has been viewed".

7.3. Threats to validity

There is a limit to the use of FCA as a clustering technique. Cosine similarity matrices

are transformed into formal (binary) contexts thanks to a ¯xed threshold. So if simi-

larity between the query and the document is greater than or equals 0:70 the two

documents are considered similar. By contrast, if similarity is less than the threshold

(i.e. 0.69) the twodocuments are considered dissimilar. This sharp threshold e®ectmay

a®ect the quality of the result, since a similarity value of 0:99 (resp. 0:69) is treated as a

similarity value 0:70 (resp. 0). Adaptive and fuzzy threshold schemes should be studied

to improve precision without impacting the high recall of our approach.

In our approach we consider that each use-case corresponds to a functional fea-

ture. However, several use-cases may be implemented by a single feature. In this case

all these use-cases should be considered as relevant documentation for this feature.

Our approach should be improved with other techniques to extract a unique name

and a compound description.

Naming a feature using the names of the SCEs in its implementation is not always

reliable. In our approach, we rely on the top word frequencies to compose the pro-

posed name. However, top words may be not relevant to depict the function of the

feature. The weighting scheme should take into account the di®erent roles and im-

portance of SCEs in the implementation in order to select the most relevant words, if

they are not the most frequent ones.

8. Conclusion and Perspectives

In this paper, we propose an approach for documenting automatically a set of feature

implementations mined from a set of software variants. We exploit commonalities
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