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Abstract

Side-Channel Attacks (SCAs) such as Differential Power or ElectroMagnetic Analysis (DPA/DEMA), pose a
serious threat to the security of embedded systems. In the literature, few articles address the problem of securing
General Purpose Processors (GPPs) with resourceful countermeasures. However, in many low-cost applications
where security is not critical, cryptographic algorithms are typically implemented in software. Since it has been
proved that GPPs are vulnerable to SCAs, it is desirable to develop efficient mechanisms to ensure a certain level of
security. In this paper, we extend side-channel countermeasures to the Register Transfer Level (RTL) description. The
challenge is to create a new class of processor that executes embedded software applications, which are intrinsically
protected against SCAs. For that purpose, we first investigate how to integrate into the datapath two countermeasures
based on masking and hiding approaches. Through an FPGA-based processor, we then evaluate the overhead and
the effectiveness of the proposed solutions against time-domain first-order attacks. We finally show that a suitable
combination of countermeasures significantly increases the side-channel resistance in a cost-effective way.
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Cost-Effective Design Strategies for Securing
Embedded Processors

1 INTRODUCTION
1.1 Context

O meet the stringent security requirements of
Telectronic systems, various cryptographic tools
have been developed. Cryptography, in its traditional
approach, studies the security of an algorithm as a
mathematical function. For that purpose, it assumes a
black-box model, in which attackers have only access
to inputs and outputs of algorithms in order to obtain
the secrets, the cryptographic keys. However, when
these algorithms are executed on hardware devices
that have the ability to store, process, and output
digital data, adversaries have also the opportunity to
tamper, perturbate, and spy their physical implemen-
tation.

As a consequence, new threats have been identified.
In particular, attacks based on run-time information
gained from physical characteristics of cryptographic
implementations have received an ever increasing
interest since their public introduction in 1996 by Paul.
C. Kocher [1]. These cryptanalysis techniques, referred
as Side-Channel Attacks (SCAs), exploit different forms
of information leakage such as the power consump-
tion, electromagnetic emanations, or execution time
from integrated circuits. Because such side-channels
are dependent on the processed data and operations,
simple and complex statistical analyses of collected
samples can be conducted to retrieve the encryption
keys of cryptographic algorithms.

With the discovery of SCAs, the security at the
physical level has thus become a major priority for
designers and developers of secure embedded sys-
tems. To prevent, or at least to mitigate the poten-
tial of these attacks, both industrial and research or-
ganisations have investigated a number of solutions,
called countermeasures [2]. Although most of these
methods do not guarantee absolute security, they can
significantly reduce the side-channel leakages to make
the attacks impractical [3]. However, regardless of
the technique used, the implementation of counter-
measures does not come for free. Most hardware and
software solutions introduce considerable power, area,
and performance overheads that are not suitable for
resource-limited embedded systems.

1.2 Objective

Most of the papers in the literature are only focused
on cryptoprocessors, i.e. dedicated hardware crypto-
graphic cores for encryption and decryption process-

ing. However, in various applications, cryptographic
algorithms are directly implemented as pieces of soft-
ware in General Purpose Processors (GPPs) for cost
and flexibility reasons. Generally, for such applica-
tions, the required security is not the highest one,
but it is important though to guarantee a certain
level of trust. Within this context, the present paper
investigates the security issues related to software
cryptographic implementations running on embed-
ded processors. More precisely, the attention is focu-
sed on the threat of time-domain first-order power
and electromagnetic analysis attacks that predict inter-
mediate values such as the Differential Power Analysis
(DPA) [4] and Correlation Power Analysis (CPA) [5].

The objective is to enhance efficiently at low-cost
the robustness of the core of embedded processor
architectures by introducing design strategies at the
Register Transfer Level (RTL), so that the executed
software is intrinsically protected against these at-
tacks. The RTL approach is motivated by the need
to offer attractive solutions that are independent of
the target technology. The real challenge is to pro-
vide efficient countermeasures that strike the balance
among security, area cost, computing performance,
and power consumption in order to meet the requi-
rements of embedded systems. Another fundamental
step is to describe the development of a prototype sys-
tem based on Field-Programmable Gate Array (FPGA)
technology, which implements the proposed methods.
This approach has indeed the considerable advantage
of allowing a security evaluation process under real-
environment conditions, which is all the more relevant
in the framework of SCAs.

1.3 Contributions

This paper presents novel design strategies to miti-
gate SCAs on embedded processors. Even if they are
based on known principles, their application and their
implementation on general processor architectures
constitutes the originality of this work. The major
contributions include:

 a masking countermeasure that conceals interme-
diate values with random values throughout the
pipelined architecture of embedded processors
(Section 2),

e a hiding countermeasure that efficiently ran-
domises the execution of operations at the
data-path level by exploiting micro-architectural
functionalities of processors (Section 3), and
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o a practical evaluation of the Side-Channel Resis-
tant (SCR) implementation of the SecretBlaze [6],
an open-source 32-bit soft-core processor deve-
loped to investigate the problem of time-domain
first-order SCAs on embedded architectures (Sec-
tion 4).

2 INVESTIGATION MASKING

COUNTERMEASURE

The masking has been extensively studied by both
academic and industrial research groups. Its principle
is based on secret sharing, in which intermediate values
are shared by means of random numbers called masks,
such that each share alone is independent of the se-
cret. For instance, an i*"-order masking scheme shares
each intermediate value in (i+1) shares with ¢ random
masks. Several masking schemes have been proposed
in the literature, most targeting block ciphers [7], [8],
[9], [10], [11]. Such countermeasures have become
popular as their soundness can be formally proven
[12].

In this context, we propose to study and extend
the principle of masking to the datapath of embedded
processors. For that purpose, we only consider the 1%/-
order masking scheme, which is briefly introduced in
the next subsection.

OF A

2.1
2.1.1

To remove the dependence between the side-channel
leakages and the internal sensitive values of a cipher
implementation, the fundamental idea of a 1°*-order
masking scheme is to share a sensitive data d into two
shares; a mask m and a masked data d,, such that:

General Description
15t-order Masking Principle

d — (d o m, m)=(dp, m) (1)

where o is a group operation, which can be for instance
Boolean or arithmetic.

From (1), the original value can be obtained from
the inverse element according to:

(dpm, m) = d=dpom™! )

For convenience, we use the terms to mask and fo
unmask to refer to equations (1) and (2), respectively.

When m is randomly and uniformly chosen from
d, each of the shares is independent of d. As a
consequence, the side-channel leakages of the overall
cipher execution are independent of the secret, which
thus provides a protection against 15*-order statistical
power and electromagnetic analyses.

The challenge of this approach lies in the difficulty
to reconstruct the expected value: this step is the mask
correction. Indeed, for a proper masking scheme, both
the mask and the masked data have to be uniformly
distributed throughout the various processes of a

cryptoalgorithm implementation. There are two cases
to consider:
o when the transformation process has a linear
system property, and
o when the transformation process has a non-linear
property.
For the first case, a linear transformation £ can
be applied independently to each share according to
equation (3):

(£(dom), £(m)) = (£(d) o m',m") ®)

where m’ = £(m).

Hence, the correct value can be extracted at the end
of the process by computing its inverse transforma-
tion, as illustrated by equations (4) and (5):

Vd,m, £(dom) = £(d)om' 4)
= £(d) = £(dom)om'™! )

For the second case, the masking structure becomes
more complex due to the non-linear property of the
transformation. To overcome this problem, a common
technique is to modify the non-linear part in order to
produce the expected value. The secure solution is to
pre-compute and store the values resulting from all
possible combinations of masks and masked values
into special masked tables [13]. Although the overhead
of this approach is not negligible, it has the advantage
to guarantee the correct execution of a cryptographic
algorithm without involving the use of sensitive data.

To be an effective method, it is essential to remark
that a particular attention should be given to opera-
tions with masked data and mask values. For instance,
if two masked intermediate values are processed, we
need to ensure that the result is still masked, i.e. it is
crucial to avoid intermediate data sharing the same
mask. In addition to this problem, all steps related to
the mask correction should be carefully implemented
to limit the information leakage. In practice, the use-
fulness of the masking method may be compromised
if these details are not properly considered.

2.1.2 Dual Pipelined Datapath Masking Scheme

As the masking technique is an efficient method
to remove the dependence between processed data
and the side-channel leakages, we suggest to study
the integration of its algorithmic description into the
architecture of embedded processors at the RTL. Our
solution consists of implementing a dual pipelined data-
path.

Basically, the idea is to introduce a special datapath
for the mask itself, which can be coupled to a clas-
sic RISC-based datapath. Hence, instead of directly
handling raw data, the processor operates on a dual
datapath with masked data. The main role of the
new datapath is to keep the corresponding mask for
each masked data along the pipeline structure of the
processor. It thus allows to implement all steps related
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to the mask correction to ensure the correct execution
of instructions. Besides, one or more Pseudo Random
Number Generators (PRNGs) are also included to
generate the masks, which should be updated at each
step of the datapath for a more efficient masking
scheme.

The simplified model of our approach is depicted
in Figure 1. Green (long) dash lines illustrate the
pipeline with masked data, blue dot lines indicate
the pipeline with masks, whereas black (short) dash
lines point out the optional hardware. The direction of
the data flow is indicated by arrowheads. In addition,
filled circle arrows are used to denote the interaction
between each datapath to properly implement the
mask correction.

Pipeline with Masked Data

|

Pipeline with Masks

Fig. 1. The simplified model of the dual pipelined
datapath masking scheme.

Despite the apparent simplicity of the concept, there
are significant challenges to overcome, in particular,
about the mask correction and the memory manage-
ment of the masks.

2.2 Architectures

To implement the idea of the dual pipelined datapath,
different approaches can be considered, along with
their advantages and disadvantages. In the following
paragraphs, we present various architectures of an
embedded masked processor that attempts to address
the side-channel issues. Thanks to a RISC-based de-
sign, we examine the masking strategy for two cases:
o the datapath related to register-to-register instruc-
tions, and
« the datapath related to memory-reference instruc-
tions.

2.2.1 Masked Datapath for Register-to-Register Ins-
tructions

The first datapath to consider is the one that takes
place in the core of a processor: the computational
datapath, which is exclusively used by register-to-
register instructions. It starts from the register file,

then goes through several pipeline stages, performs
mathematical operations, and finally returns back to
the register file.

With the proposed masking strategy, the processor
implements a new datapath dedicated to masks, ope-
rating in parallel to the original datapath. It thus fol-
lows the same steps, starting from fetching operands
from the register file and ending to store the result
into the register file. A register file of masks is provided
to store each mask associated with the respective
masked data. The architecture also includes various
pipeline registers of masks, carrying the mask value from
one stage to another.

Implementing the mask correction is more challen-
ging. For this purpose, we distinguish two categories
of register-to-register instructions:

« arithmetic and logic instructions, and

« control flow instructions.

In case of arithmetic and logic instructions, masked
data are transferred from stage to stage without any
loss of data integrity until the execute phase, where
all mathematical operations are implemented. While
masked cryptographic co-processors usually involve
to pre-compute and store masked tables for specific
operations, the large number of instructions and their
relative complexity require a trade-off between the
cost in terms of gates and the efficiency of the masking
method. As a consequence, we propose, in a first
step, to perform ALU operations with unmasked data
and, in a second step, to mask the result of the ALU
with a new Pseudo Random Number (PRN). This
crucial design choice is also motivated by the fact
that, even if SCAs are still effective on combinational
logic, experimental results suggest that the leakage
at the register stages is predominant [14], [15] and
masking ALU operations results in large overhead
[16]. Hence, although this solution is not perfect, it
has the advantage to protect most critical parts of
the datapath while achieving an attractive trade-off
between performance and security.

In case of control flow instructions, the mask cor-
rection is straightforward. Since they are not the tar-
get of the studied model of attacks, it is therefore
allowed to unmask the masked data for all related
processes (computations, address assignments, branch
evaluations, etc.) without breaking the efficiency of
the masking scheme.

Figure 2 illustrates the proposed masked datapath
for register-to-register instructions. The direction of
the data flow is indicated by arrowheads while the op-
tional hardware used to update the mask is depicted
with black dash lines. Unmask and mask modules are
also included in the execute phase of the pipeline.
Note that, if the execute phase requires more stages,
the same approach should be adopted. Finally, filled
circle arrows are used to denote other steps of the
mask correction that are used for control flow ins-
tructions and do not provide useful information for
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side-channel analysis.

Register
File of Masked Data

R31

Core

Update Mask Unmask

Register
File of Masks

MRO

MR1

MR31

Masked Datapath Unmasked

Datapath

Masked Datapath

Fig. 2. The architecture of the masked datapath for
register-to-register instructions.

2.2.2 Masked Datapath for Memory-Reference Ins-
tructions

The second datapath that leaks sensitive information
comes from memory-reference instructions. As a load-
store architecture, memory instructions transfer data
between the register file and the memory sub-system
of the processor.

Like the masked datapath for register-to-register
instructions, the idea of the countermeasure is to
secure the data flow of the architecture by introducing
a new pipeline of masks with various pipeline regis-
ters throughout all steps of load and store instruc-
tions, starting from the register file and ending to the
memory sub-system of the processor. To reduce the
overhead of the solution, some parts of the masked
datapath for such instructions can be shared with the
one for register-to-register instructions. The structure
of the data alignment process also facilitates the inte-
gration of the masking scheme into the core of the
processor, reducing thus the complexity of the mask
correction for load and store instructions.

In this article, the memory management of masks
that depends on the depth and complexity of the
memory hierarchy is not addressed in detail. A sim-
ple approach that consists in generalising the dual
pipelined concept to the whole memory architecture
is assumed. Hence, all registers and RAMs used by
the data part of the memory sub-system have to
be duplicated to store the masks associated to the
masked data. This concerns not only the data cache
memory, but also all components linked to the cache
architecture such as the memory controller, the bus
structure, and the main memory of the system. More
efficient approaches are discussed in detail in [17].

TABLE 1
Performance and resource overhead of the masking
countermeasure.
Without With
Masking | Masking Overhead
# Flip-Flops 897 1234 +37.6%
# LUT 2423 3389 +39.9%
#BRAM 18 22 +22.2%
fMAX (MHz) 64.5 52.4 —18.8%
TABLE 2

Performance and resource overhead of the
SecretBlaze’s PRNG.

[ [[ SecretBlaze’s PRNG |

# State Bits 1024

# Random Output per cycle 32
Maximum SR length 32

# Flip-Flops 350

# LUT 510

fMAX in MHz 125

2.3 Implementation and Overhead Evaluation

Choosing the SecretBlaze [6] — a 32-bit embedded
processor — as a case study, we implemented the
concept of the masked datapath based on the Boolean
group. At the hardware level, this group has not only
a low overhead cost, but also the advantage to reduce
the complexity of the integration of masking and
unmasking operations into the pipelined architecture
of the processor.

The performance impact and the resource overhead
of the studied masking method were estimated in Ta-
ble 1. A cost-effective configuration of the SecretBlaze
(instruction and data caches were set to 8 KB and
the core included a barrel shifter unit) was chosen
to conduct this evaluation. The generation process
of the mask values was implemented using a PRNG
optimised for FPGAs that produces three 32-bit mask
values each clock cycle. This PRNG is based on the
use of Shift Registers (SRs). It takes advantage of bit-
wise XOR operations and the ability to turn Look-
Up Tables LUTs into SRs, providing a good balance
between quality and area. The complete description
of the PRNG can be found in [18].

These results were obtained with Xilinx's XST 12.1
using the 90 nm Spartan-3 technology (speedgrade -
4). Synthesis options were set at the highest speed
optimisation level with strong timing constraints. The
resource usage was evaluated with the number of
flip-flops, 4-inputs (LUTs), and Block RAMs (BRAMs)
while the maximum operating frequency (fMAX) was
estimated after the place and route process. Note
that the results of the PRNG are given separately in
Table 2. Clearly, a better (or worse) PRNG would lead
to higher (or lower) resource requirements.

Not surprisingly, the overhead on the number of
flip-flops is significant, owing to the introduction of
several 32-bit pipeline registers for the mask values.

2168-6750 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution

requires IEEE permission. See http://www ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TETC.2015.2407832, IEEE Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 0, NO. 0, SEPTEMBER 2014 5

As regard the number of LUTs, the overhead is about
40% and mainly results from the introduction of
the register file of masks (synthesised as distributed
resources with 484 LUTs). The number of BRAMs
also increases by 22% with 8KB dedicated to the
cache of masks. Finally, the fMAX is reduced by
19%, which comes from special mask modules imple-
mented within some critical paths.

In summary, the overhead costs introduced by the
proposed masking method are relatively small. Fur-
thermore, the SecretBlaze does not implement debug
modules, exceptions and exception handling, a power
management system, and a Memory Management
Unit (MMU), which are not related to the masking
countermeasure. That is why the performance impact
and the resource overhead of the masking method for
a similar industrial processor should be even smaller.

2.4 Comparison with Related Work

To the best of our knowledge, there is one example in
the literature of a masking countermeasure that takes
place into the datapath of embedded processors.

In [19], authors provide a complete masking frame-
work for the LEON3 processor based on the Boolean
masking with a secure zone (note that the original
idea was introduced early in [20] with the LEON2
processor). However, their approach is only focused
on the protection of cryptographic instruction set
extensions and does not address the problem for the
whole Instruction Set Architecture (ISA). Despite its
efficiency, this method has some drawbacks including
the development of specific instruction set extensions
for an application, the customisation of the compiler,
and the overhead due to the use of DPA-resistant logic
styles. Unlike our method, their solution is not generic
and circumvents the side-channel issues of embedded
processors by treating only the inner blocks related to
cryptographic extensions.

3 INVESTIGATION OF A HIDING COUNTER-
MEASURE

The goal of hiding countermeasures is to make the
physical characteristics of integrated circuits inde-
pendent of intermediate values and operations per-
formed during cryptographic applications. Among
hiding countermeasures, we essentially distinguish
two strategies: one based on the randomisation of
the execution of cryptographic algorithms [21], [22]
and one based on balanced DPA-logic styles [23], [24].
Note that, unlike masking-based countermeasures
that are only efficient against statistical power and
electromagnetic-based attacks, methods based on the
randomisation of the execution increase the robust-
ness of cryptosystems against most SCAs, including
simple power analysis and timing-based attacks.

To be exhaustive in our study, we have chosen
to study and integrate a hiding countermeasure that
operates into the datapath of embedded processors.

3.1 General Description

Because of the large overhead of secure logic styles,
our research efforts were focused on the integration of
a cost-effective module that randomises the instruc-
tion stream at the hardware level.

Our idea is essentially based on the concept of a
non-deterministic processor [25], in which the software
can be executed with random additional operations
that are generated by the hardware architecture of
the processor. It allows not only to randomly insert
dummy cycles that change the execution time, but
also to randomise the usage of available hardware
resources in order to increase the “noise”, scrambling
the patterns in the power consumption as well as
the electromagnetic waves to prevent advanced signal
processing, statistical, and modelling methods [26].
The countermeasure hence affects both time and
amplitude dimensions of the physical leakages.

One solution consists of implementing a pipeline
randomiser that handles a RISC datapath in a non-
deterministic fashion through dummy control and
data signals. Within this structure, a PRNG is required
to provide a random information that should be used
by the pipeline randomiser for taking a decision for
each instruction being processed at each stage of
the pipeline: either to keep a normal execution or
to perform a dummy cycle. Additional PRNGs can
also be implemented to generate random numbers for
data operands during dummy cycles. This increases
the random switching activity in order to lower the
information leakage of the circuit.

The simplified model of our approach is depicted
in Figure 3, in which the direction of the data flow is
indicated by arrowheads and the additional hardware
is illustrated with black (short) dash lines.

The challenge of this method lies in the difficulty
to randomise both the execution of instructions and
the content of registers in an efficient manner without
altering the behaviour of the application.

Pipeline

1,
insert dummy | 4!
cycle? " '

insert dummy
cycle?

Pipeline randomiser

PRNG

Fig. 3. The simplified model of the pipeline randomiser.
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3.2 Architecture

In this section, we introduce an efficient and cost-
effective architecture to implement the pipeline ran-
domiser method within the datapath of embedded
processors. For that, we examine two key elements:
o the mechanism that implements a
deterministic execution, and
o the mechanism that increases the noise.

non-

3.2.1

When considering most RISC architectures of embed-
ded processors such as ARM, MIPS, and PowerPC,
a pipeline interlock is usually implemented to detect
and solve data dependencies or control flow condi-
tions specified in a sequence of instructions, known
as hazards. This mechanism is often called a hazard
controller, and thus manages the state of each pipeline
stage throughout the whole architecture. A common
technique to solve hazards is to stall all registers
related to a pipeline stage until the data depen-
dency is cleared (also known as pipeline bubbling).
Sometimes it is also necessary to flush the pipeline
stage to remove the execution of an instruction. Note
that in case of an out-of-order execution (typically
superscalar architectures for high-end embedded sys-
tems), advanced methods such as scoreboarding [27]
or Tomasulo algorithm [28] are implemented to reduce
the number of pipeline stalls. Nevertheless, a simi-
lar mechanism with stall, flush, and enable control
signals remains necessary to ensure the correct execu-
tion of instructions.

To implement a non-deterministic execution, we
can take advantage of the hardware features of the
hazard controller (stall and flush control signals) to
insert dummy cycles along the pipelined datapath.
Indeed, although stall and flush are used primarily
for hazards management, they can be also reused to
insert dummy cycles using the same control logic,
which does not allow to identify dummy cycles from
control and data hazards. This design choice greatly
reduces the overhead costs of the countermeasure
(area, power, and may not affect the fMAX of the
design) while achieving its purpose. Hence, by adding
one or more false conditions to the controller, the
pipeline operates in an unexpected way that can be
efficiently exploited to insert additional calculations.
We called it the ghost hazard generation.

To be an efficient technique, ghost hazards should
be randomly generated. Nevertheless, an excessive
use of random cycles can seriously decrease the
throughput of the architecture. In practice, a suitable
compromise needs to be found. To meet user appli-
cation requirements, the probability of ghost hazards
should be configurable by the software. One solution
is to implement a module that compares a threshold
value defined in a control register with a PRN gene-
rated at each clock cycle. The sign of the result hence

Non-Deterministic Execution

determines the generation of ghost hazards. Note also,
for real-time systems, it can be important to add
a counter that determines the maximum number of
consecutive dummy cycles. This can help to estimate
the worst case execution time.

The architecture of the ghost hazard controller is
illustrated in Figure 4. The direction of the data flow
is indicated by arrowheads.

Pipeline

L Register

M M M

stall/flush

stall/flush

Hazard Controller

RISC Hazards

Data Hazards (RAW, WAR, WAW)
Branch Hazard

Ghost Hazards

N

Structural Hazard Threshold

Fig. 4. The architecture of the ghost hazard controller.

3.2.2 Noise Generation

Non-deterministic processor can also introduce ran-
dom additional calculations to lower the side-channel
leakages. Like the masking countermeasure, we con-
sider to randomise the architecture for two cases:

o the datapath related to register-to-register instruc-
tions, and

« the datapath related to memory-reference instruc-
tions.

The final architecture of the noise generation
mechanism is depicted in Figure 5.

3221 Randomised Datapath for Register-to-
Register Instructions: For register-to-register instruc-
tions, a simple approach is to enable the propagation
of random data operands from the register file to
several functional units. It can be easily done by
inserting additional muxes at the beginning of one
or more pipeline stages. Hence, through the use of
PRNSs, pipeline buffers as well as functional units can
be randomised to thwart an attacker. To ensure the
integrity of the instruction flow, the designer has to
ensure that the architecture does not write-back the
result of a dummy calculation to the register file, for
instance by forcing the write-back control signal to a
no-operation state (by definition, this is the purpose
of a flush signal).

For the sake of clarity, we would like to precise
that most of functional units of the ALU (AND, OR,
XOR, ROTATE, ADD, CMP, etc.) operate in parallel.
This implies that, according to the type of the instruc-
tion being executed, only the result of the decoded
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functional unit is stored into the pipeline register.
In other words, all computations are done at the
same time with more or less the same operands. It
is hence not necessary to randomly modify all control
signals during a dummy cycle (for instance, the one
used to select the result from the functional unit).
It also appears difficult to distinguish most logical
and arithmetic instructions by simple analysis. Typ-
ical exceptions are multiply and divide instructions,
which are usually handled as multi-cycle instruc-
tions with enable control signals to reduce the power
consumption of these modules. Depending on the
complexity of the processor architecture, it can also be
more powerful to randomly activate such modules.

3.2.2.2 Randomised Datapath for Memory-
Reference Instructions: Instructions that perform
operations with the memory sub-system can seriously
modify the leakages of a circuit by activating large
memory banks. It is thus essential to add dummy
memory operations for increasing the noise. A simple
approach is to insert dummy load operations that
does not write-back the result into the register file.
For that, the address is randomly computed using a
PRN and then is assigned to the data memory sub-
system. Hence, depending on the available hardware,
it may active the data cache memory sub-system,
internal memories, or request a data from peripheral
devices. In case of incomplete/partial memory map,
the designer has to ensure that the random address
is properly handled by the decoder of the processor
and does not lead to a deadlock state.

Pipeline

Register
File

A

X

no write-back

R31 PRN PRN

Fig. 5. The architecture of the noise generation
mechanism.

3.3

Both ghost hazard and noise generation mechanisms
were implemented into the 5-stage pipelined architec-
ture of the SecretBlaze. Unlike the masking counter-
measure that requires attention to detail with mask
values, the randomisation of the instruction stream
can be done using a cost-effective design with a PRNG
producing a 32-bit value each clock cycle without
opening security holes. We arbitrarily chose to im-
plement the noise generation mechanism during the
execute phase of the SecretBlaze’s pipeline, which
significantly affects the side-channel leakages because
of multiple functional units. Furthermore, the ghost

Implementation and Overhead Evaluation

hazard mechanism was implemented using the same
source of PRNs to reduce the cost of the counter-
measure.

The performance impact and the resource overhead
of the hiding method were estimated in Tables 3
and 4. The evaluation was conducted using the same
processor configuration and synthesis options to those
described in Subsection 2.3.

TABLE 3
Performance and resource overhead of the hiding
countermeasure.
Without With
Hiding | Hiding | OVerhead
# Flip-Flops 897 910 +1.4%
# LUT 2423 2653 19.5%
# BRAM 18 18 0.0%
fMAX in MHz 64.5 62.7 —2.9%
TABLE 4

Performance and resource overhead of the
SecretBlaze’'s PRNG.

[ [[ SecretBlaze’s PRNG |

# State Bits 1024

# Random Output per cycle 32
Maximum SR length 32

# Flip-Flops 116

# LUTs 181

fMAX in MHz 125

According to these figures, it can be concluded
that the proposed method has a negligible hardware
overhead compared to conventional countermeasures.
This observation mainly results from the ghost hazard
mechanism that requires minor modifications to the
original design. Synthesis reports also suggest that
the increase in the number of LUTs is principally due
to the introduction of larger muxes involved for the
noise generation. At last, it should be noted that these
tables do not include the execution time overhead,
which is configurable by the software designer.

3.4 Comparison with Related Work

Non deterministic processors were introduced in [25]
to thwart side-channel analysis. In this study, authors
provide a framework to shuffle the instruction stream
in a more or less random fashion. It takes advantage of
an out-of-order execution mechanism, typically found
in superscalar architectures. The proposed implemen-
tation was improved with a random register renaming
technique described in [29]. The efficiency of the
approach relies on the parallelism of the executed
code that is, in practice, fairly limited. To address
this issue, an additional pipeline stage was developed
in [30], in which some random operations are genera-
ted without modifying the effective data. However, all
these works can introduce a significant overhead and
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can require both hardware and compiler tool-chain
modifications.

An alternative method was presented in [31], where
additional instructions are injected at run-time by
the hardware. It requires small hardware and ISA
modifications. Nevertheless, to reduce the complexity
of the method, only a subset of instructions is allowed
to be randomly executed, which clearly limits the non-
determinism method as well as the noise generation.

Compared to these previous works, our contribu-
tion brings the following benefits. First of all, the
proposed method aims to strike the balance between
security and performance by exploiting available
resources of most embedded processors such as the
pipeline interlock mechanism. It also does not require
the customisation of the software tool-chain with
additional opcodes to generate dummy instructions.
At last, it has the advantage to randomise the data-
path at a low abstraction level (control and data
signals rather than instruction codes), which gives the
designer a greater control over the physical leakages.

4 SECURITY  EVALUATION
SECRETBLAZE-SCR PROCESSOR

In this section, we propose to evaluate the robustness
of the masking and hiding countermeasures through
prototyping. The motivation of this approach is to
quantify the relative performance offered by the pro-
posed masking and hiding strategies.

The lab instruments used in our experimental setup
are a high-performance oscilloscope (3.5 GHz band-
width, 40 GS/s sampling rate), a low-noise 63 dB
amplifier, a near-field electromagnetic probe (500 pm
diameter), a motorised X-Y-Z table allowing accurate
positioning, and finally a Spartan-3 FPGA board. The
whole measurement process and the data acquisition
were controlled by a computer over R5232 and Ether-
net communication protocols. All attacks were carried
out on a desktop computer powered by a quad-core
Intel Core 2 at 2.83 GHz with 8 GB of RAM. They were
implemented through a MatLab program, in which
the kernel was accelerated using C language through
the use of MEX-functions. We detail in the following
subsections the framework used for that purpose.

OF THE

41

The SCR implementation of the SecretBlaze was syn-
thesised at 50 MHz on a low-cost Spartan-3 FPGA.
Several functional configurations of the SecretBlaze-
SCR processor were defined to evaluate the benefit of
the countermeasures separately, but also when com-
bined. Note that it was crucial to ensure that the same
FPGA bitstream (with fixed design and implementa-
tion characteristics) was used to allow a valid rela-
tive comparison between the different modes. Thanks
to the flexibility provided by the countermeasures

Processor Configurations

(control through enable bits), the SecretBlaze-SCR was
evaluated for the following configurations:

o the unprotected configuration, used as the reference
design,

o the protected configuration with masking,

o the protected configuration with hiding, and

o the protected configuration with masking and hiding.

Since our main objective was to achieve a secure
implementation without jeopardising performance,
the hiding countermeasure was arbitrarily configu-
red to randomise the instruction flow with a maxi-
mum penalty of 35% (i.e. a weak randomisation in
the context of side-channel analysis). More precisely,
the probability to insert dummy operations was up-
dated every 100 encryptions in software, varying the
execution time overhead between 20% and 35%. The
goal was to increase the efficiency of the proposed
countermeasure by frequently changing the global
distribution of dummy operations. Note also that the
software overhead induced by the management of
both masking and hiding strategies were negligible
(less than 20 instructions to initialise and control the
processor during the run-time execution).

4.2 Attack Scenario

The evaluation of the SecretBlaze-SCR was performed
with the Data Encryption Standard (DES), which has
been the object of several studies regarding SCAs. The
DES was implemented in C programming language,
using a straightforward code that was not specifically
optimised to take advantage of the 32-bit RISC archi-
tecture of the processor.

Using the Hamming Weight (HW) leakage model,
the CEMA which is a time-domain attack was used as
the reference model of attacks. This choice was mostly
motivated by our previous experience with side-
channel analysis on embedded processors, which has
shown that the electromagnetic side-channel using the
Pearson’s correlation distinguisher provides the best
results from an attacker’s point of view.

4.3 Security Metrics
4.3.1

Measurement To Disclosure (MTD) is the first metric
that was introduced with the advent of SCAs. It is
defined as the minimal number of power or electro-
magnetic traces required to correctly find the secret
key. However, we recall that CEMA attacks rank
among divide and conquer cryptanalysis methods
that provide distinguishers for small key chunks,
called subkeys, which can be recovered indepen-
dently. In case of the DES algorithm, the attack divides
the problem into 8 subkeys of 6 bits each. Conse-
quently, there is a total of 64 combinations for each
subkey, which gives a probability of 1.56% to pick

Measurement To Disclosure
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the correct one (assuming an equiprobable distribu-
tion). That is why, in practice, this metric is limited
when applied for the 8 subkeys of the DES, since
the probability to randomly find the correct subkey
is clearly high. Nevertheless, MTD still can give an
information about the efficiency of the attack, and
thus was selected for the security evaluation process.

4.3.2 Measurement To Disclosure with Stability

To overcome the previous limitation, an extended ver-
sion of the MTD metric was adopted: this is the Mea-
surement To Disclosure with Stability (MTDwS). MTDwS
defines the amount of traces needed to guess the
correct key with a stability criterion, which states that
the distinguisher of an attack continuously output the
correct key hypothesis. For that purpose, a threshold
value is arbitrarily chosen. Due to the presence of
countermeasures, we chose a value of 1000 traces to
ensure high stability of the correct key hypothesis.
The latter metric is particularly useful to estimate the
statistical convergence of attacks.

4.3.3 Percentage of Correct Guesses

One restriction of the MTDwS metric is that the use
of the stability as a criterion is not directly related to
the security aspects. In the context of SCAs, the key
recovery is mainly considered to evaluate the robust-
ness of an integrated circuit. A classical approach is
to measure the frequency of the correct key candidate
according to the result of the distinguisher: this is the
goal of the Percentage of Correct Guesses (PCG) metric.
For more information about the effectiveness of the
attack, we can also compute the percentage of guesses
for other key hypotheses in order to determine the
rank of the PCG.

4.3.4 Guessing Entropy

Even if the previously proposed metrics give us a
good starting point to evaluate the countermeasures,
these metrics are data-dependent. This might involve
different results with a same set of measurements
used in a different order. That is the reason why, we
employ the Guessing Entropy (GE) metric to evaluate
the different configurations of our processor [32].
This metric helps us to properly quantify weaknesses
and to conclude whether or not the cryptosystem is
successfully broken.

4.4 Experimental Results

Experimental results for each configuration of the
processor are given in Table 5 while the CEMA traces
obtained for the first subkey are depicted in Figure 6.
We acquired 50,000 traces for the unprotected configu-
ration, 100,000 traces for the protected configuration
with masking, 100,000 traces for the protected confi-
guration with hiding, and 200,000 traces for the pro-
tected configuration with masking and hiding. These

acquisitions were done 3 times with 3 independent
data sets. Note that, these data sets were divided into
smaller data sets to calculate GE for the unprotected
configuration and for the protected configuration with
masking. During these experiments the bandwidth
of the oscilloscope was adjusted at 2 GHz while the
sampling rate was set at 40 GS/s. It took more than
a week with our measurement setup to acquire all
traces. The compressed traces required about 50 GB
of disk space. It should be noted that we favored the
quality of the measurements over the quantity.

Note that, the whole design was constrained using
PlanAhead tool. We had therefore comprehensive
knowledge of the spatial location of logic and sequen-
tial elements that implement the processor within
the FPGA architecture. The probe was firstly located
above the position of the pipeline registers. This one
was finally adjusted after doing some measurements
and computations before launching the whole mea-
surement campaigns.

4.5 Analysis and Interpretation
4.5.1 Unprotected Configuration

The CEMA attack performed with 50,000 electro-
magnetic traces was successful. All subkeys were
quickly broken, as evidenced by the three metrics
(MTDwS, PCG, and GE): only 1,449 traces were neces-
sary to fulfill the stability criterion for all subkeys
while the PCG values reached more than 99%. Fur-
thermore, the CEMA traces obtained for the subkey
S1 (Figure 6(a)) highlight the security issues of the
unprotected implementation by giving a time dimen-
sion to the leakage. The “accordion effect” clearly
visible from the picture (black curve) demonstrates
the vulnerabilities of the SecretBlaze-SCR’s pipelined
architecture.

4.5.2 Protected Configuration with Masking

From the figures given in the table, we first conclude
that the SecretBlaze-SCR with the masking counter-
measure offers a better resistance against CEMA at-
tacks. The data associated to the stability criterion
support this analysis. The MTDwS metric was fulfilled
for all subkeys with 14,836 electromagnetic traces.
Compared to the unprotected implementation of the
processor, the MTDwS was thus increased by a manxi-
mum factor of 10.2 for this attack scenario. However,
as evidenced by the results of average GE, all subkeys
were recovered, which means that the CEMA attack
was successful with less than 500 electromagnetic
traces (Figure 7).

Despite a moderate improvement, the proposed
masking countermeasure does not seem to provide a
sufficient level of security for most applications. To
figure out the reasons behind this observation, we
propose to investigate the origin of the leakage by
analysing the CEMA traces. From them (Figure 6(b)),
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TABLE 5
CEMA results.

[Subkey # [ S1 2 S3 sS4 S5 S6 S7 8|
MTD 141 101 101 144 101 165 108 219
MTDwS 1141 1104 1168 1243 1101 1389 1164 1449
PCG 99.75%  99.80%  99.72%  9957%  99.80%  99.39%  99.74%  99.21%
Rank 1 1 1 1 1 1 1 1
Broken success success success success success success success success

(a) Unprotected configuration.

[Subkey # [ S1 s2 S3 4 S5 S6 S7 s8]
MTD 512 2392 801 1932 5325 101 101 10368
MTDwS | 3057 4751 3045 14836 13784 5612 4293 11511
PCG 9821%  9693%  9840%  88.98%  88.56%  95.67%  96.69%  81.49%
Rank 1 1 1 1 1 1 1 1
Broken success success success success success success success success

(b) Protected configuration with masking.

[ Subkey # | S1 S2 S3 S4 S5 S6 S7 S8 |
MTD 147 861 8111 8612 373 failure 32483 2394
MTDwS 24747 28733 14017 11376 59384 failure 83165 failure
PCG 74.33% 58.91% 74.76% 20.87% 39.63% 0.00% 15.66% 0.17%
Rank 1 1 1 1 1 63-64 1 62
Broken success success success success success failure success failure

(c) Protected configuration with hiding.

[ Subkey # | S1 S2 S3 S4 S5 S6 S7 S8 |
MTD failure 23738 27465 failure 35008 111708 377 35856
MTDwS failure failure failure failure 156132 103069 failure 38305
PCG 0.00% 0.35% 0.23% 0.00% 7.87% 0.24% 0.09% 2.62%
Rank 64 58 62 63-64 3 59 61 8
Broken failure failure failure failure failure failure failure failure

(d) Protected configuration with masking and hiding.

it is apparent that the CEMA attack was successful on
the subkey S1, but the leakage appears to be confined
to a small number of operations. We can indeed
observe two peak areas related to the correct subkey
hypothesis. However, the “accordion effect” due to
the pipelined architecture is no longer observable.
By cross-referencing the behaviour of the SecretBlaze-
SCR’s pipeline with the list of the executed instruc-
tions, we were able to determine which part of the
processor was still leaking sensitive information: the
ALU was identified as the main source of the leakage.
This observation is in fact not surprising. Indeed,
it is the consequence of the design choices made
during the integration of the masking scheme into
the datapath of the SecretBlaze-SCR. We recall that, to
achieve a cost-effective implementation, the processor
performs ALU operations with unmasked data, which
corroborates the results of the CEMA traces. Further-
more, these results confirm that all pipeline registers
as well as the data memory sub-system are no longer
leaking sensitive information thanks to the masking
protection.

To conclude, the experiment evaluation demon-
strates that our masking countermeasure is still vul-
nerable against first-order CEMA attacks. However,

its most striking benefit is the confinement of the
leakage to a small part of the processor, which modes-
tly enhances the overall robustness of the processor
architecture.

4.5.3 Protected Configuration with Hiding

From Table 6c, we can see that six subkeys were
broken, but the ranks obtained for other two subkeys
were very low. Besides, the subkey S6 was never
found according to the MTD metric. To recover the
full key, we should have made more measurements.

We thus conclude that the proposed hiding counter-
measure works as expected, since the randomisation
does not prevent SCAs, but makes them more dif-
ficult to perform. Clearly, the more dummy operations
are inserted, the more the side-channel resistance of
the processor is increased. This experimental evalua-
tion also reveals the statistical effect of the proposed
hiding countermeasure over the leakage. Indeed, by
analysing the CEMA traces from Figure 6(c), we still
are able to distinguish the “accordion effect” related
to the pipelined architecture, reflecting a large number
of critical operations handled by the processor. This
observation suggests that the instruction stream is not
sufficiently randomised to thwart an attacker, since
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4.5.4 Protected Configuration with Masking and
Hiding
Using both masking and hiding countermeasures, the

CEMA attack was not successful. This observation
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proves that the robustness of the processor was deeply
increased.

From an attacker’s point of view, the best result
was obtained for the subkey S5, which was correctly
guessed many times, as indicated by the PCG metric
(7.87%). It is difficult to conclude if this subkey was
correctly found due to a residual leakage or due
to a random situation. The margin, defined as the
percentage of the difference between the amplitude
of the highest correlation obtained for the guessed
subkey hypothesis and the amplitude of the correla-
tion obtained for other subkey hypotheses, was very
low (less than 5%) for this subkey, which highlights
again the efficiency of the countermeasures. Besides,
the CEMA traces obtained for the first subkey support
this analysis. From Figure 6(d), it is apparent that
the correlation is not relevant, and compared to the
previous configurations, the accordion effect is no
more perceptible. These results are confirmed by the
Figure 7 which shows that the average GE is not
converging to one.

Hence, we conclude that the combination of
masking and hiding countermeasures can offer a
significant protection against CEMA attacks. This is all
the more remarkable given that the randomisation of
the execution was very low (as a reminder, the timing
overhead was 35% at maximum).

5 SUMMARY AND CONCLUSIONS

The research works presented in this paper have been
conducted to address the threat of power and electro-
magnetic SCAs that predict intermediate values. They
have been specifically focused on software cryp-
tographic implementations running on embedded
GPPs.

Several strategies for securing embedded proces-
sors at the RTL have been examined. We have first
introduced the concept of the dual pipelined datapath
masking scheme, which allows to conceal interme-
diate values of cryptographic algorithms within em-
bedded processor architectures. Then, we have sug-
gested the concept of the ghost hazard generation, a
cost-effective hiding countermeasure that randomises
the flow of instructions. Both solutions have been
explored to efficiently balance the security needs
with the performance and resource overhead. An
experimental processor implementing the proposed
countermeasures, the SecretBlaze-SCR, has been deve-
loped on Xilinx’s Spartan-3 FPGA technology. As
summarised in Table 6, the performance evaluation
of the resulting design has shown that the average
overhead induced by the countermeasures is suitable
for many embedded systems.

Then, we have performed a practical security eva-
luation of the SecretBlaze-SCR. From the results ob-
tained with CEMA attacks, we have shown that each
countermeasure moderately enhances the robustness

TABLE 6
Performance and resource overhead of the
countermeasures.
Masked Ghost Hazard Both
Datapath Mechanism
# Flip-Flops +37.6% +1.4% +39.0%
#LUT +39.9% +9.5% +48.9%
# BRAM +22.2% 0.0% +22.2%
fMAX in MHz —18.8% —2.9% —18.9%

against some statistical attacks. While the masking
countermeasure has the advantage to confine the
leaking operations to the ALU of the processor, the
hiding strategy configured with a low randomisation
(35% at maximum) also provides a protection by
affecting both time and amplitude dimensions of the
physical leakages. Furthermore, we have demonstra-
ted the complementary of these methods that can be
combined to significantly increase the side-channel
resistance of the processor. For an attack scenario of
a DES software implementation, we have experimen-
tally shown that the security of the SecretBlaze-SCR
was deeply increased.

As a main conclusion, these research works have
given some valuable and practical information about
the design and implementation processes of a secure
embedded processor. We have developed resource-
ful countermeasures against time-domain first-order
SCAs. This contribution may be further investigated
in future works, against frequency domain attacks as
well as high-order analysis. Although the proposed
countermeasures are based on well-known concepts,
they have been developed at the RTL description of
processor architectures in order to prove their feasi-
bility on silicon while addressing the requirements of
many embedded systems. They have the advantage
of being independent of the executed cryptographic
algorithms, which gives the designer an attractive
degree of flexibility when designing a secure system.
Due to their construction, they also offer full compa-
tibility with most existing software and technological
countermeasures to achieve a higher level of security.
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