
HAL Id: lirmm-01162359
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01162359v1

Submitted on 10 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Efficient Solution for Processing Skewed MapReduce
Jobs

Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, Patrick Valduriez

To cite this version:
Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, Patrick Valduriez. An Efficient Solution
for Processing Skewed MapReduce Jobs. Globe, Sep 2015, Valencia, Spain. pp.417-429, �10.1007/978-
3-319-22852-5_35�. �lirmm-01162359�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01162359v1
https://hal.archives-ouvertes.fr

An Efficient Solution for Processing Skewed

MapReduce Jobs

Reza Akbarinia1, Miguel Liroz-Gistau1, Divyakant Agrawal2, and Patrick Valduriez1

1 INRIA & LIRMM, Montpellier, France

{Reza.Akbarinia, Miguel.Liroz_Gistau,

Patrick.Valduriez}@inria.fr
2 University of California, Santa Barbara, USA

agrawal@cs.ucsb.edu

Abstract. Although MapReduce has been praised for its high scalability and

fault tolerance, it has been criticized in some points, in particular, its poor perfor-

mance in the case of data skew. There are important cases where a high percentage

of processing in the reduce side is done by a few nodes, or even one node, while

the others remain idle. There have been some attempts to address the problem of

data skew, but only for specific cases. In particular, there is no proposed solution

for the cases where most of the intermediate values correspond to a single key, or

when the number of keys is less than the number of reduce workers.

In this paper, we propose FP-Hadoop, a system that makes the reduce side of

MapReduce more parallel, and efficiently deals with the problem of data skew in

the reduce side. In FP-Hadoop, there is a new phase, called intermediate reduce

(IR), in which blocks of intermediate values, constructed dynamically, are pro-

cessed by intermediate reduce workers in parallel, by using a scheduling strategy.

By using the IR phase, even if all intermediate values belong to only one key, the

main part of the reducing work can be done in parallel by using the computing re-

sources of all available workers. We implemented a prototype of FP-Hadoop, and

conducted extensive experiments over synthetic and real datasets. We achieved

excellent performance gains compared to native Hadoop, e.g. more than 10 times

in reduce time and 5 times in total execution time.

Keywords: MapReduce, Data Skew, Load Balancing

1 Introduction

MapReduce [3] is one of the most popular solutions for big data processing, in particular

due to its automatic management of parallel execution in clusters of machines. Initially

proposed by Google, its popularity has continued to grow over time, as shown by the

tremendous success of Hadoop [1], an open-source implementation.

The idea behind MapReduce is simple and elegant. Given an input file, and two

map and reduce functions, each MapReduce job is executed in two main phases. In the

first phase, called map, the input data is divided into a set of splits, and each split is

processed by a map task in a given worker node. These tasks apply the map function

on every key-value pair of their split and generate a set of intermediate pairs. In the

2 Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, and Patrick Valduriez

second phase, called reduce, all the values of each intermediate key are grouped and

assigned to a reduce task. Reduce tasks are also assigned to worker machines and apply

the reduce function on the created groups to produce the final results.

Although MapReduce has been praised for its high scalability and fault tolerance,

it has also been criticized in some points, particularly its poor performance in the case

of data skew. There are important cases where a high percentage of processing in the

reduce side ends up being done by only one node. Let us illustrate this by an example.

Example 1. Top accessed pages in Wikipedia. Suppose we want to analyze the statis-

tics3 that the free encyclopedia, Wikipedia, has published about the visits of its pages

by users. In the statistics, for every hour, there is a file about the pages visited in that

hour. More precisely, for each visited page there is a line containing some information

about the page including its url, language and the number of visits. Given a file, we

want to return the top-k% of pages accessed for each language (e.g. top 1%). To answer

this query, we can write a simple program as in the following Algorithm4:

Algorithm 1: Map and reduce functions for Example 1

map(id : K1, content : V1)

foreach line 〈lang, page_id, num_visits, ...〉 in content do
emit (lang, page_info = 〈num_visits, page_id〉)

reduce(lang : K2, pages_info : list(V2))

Sort pages_info by num_visits

foreach page_info in top k% do
emit (lang, page_id)

In this example, there may be a high skew in the load of reduce workers. In particu-

lar, the worker that is responsible for reducing the English language will receive a lot of

values. According to the statistics published by Wikipedia5, the percentage of English

pages over total was more than 70% in 2002 and more than 25% in 2007. This means

for example that if we use the pages published up to 2007, when the number of reduce

workers is more than 4, then we have no way for balancing the load because one of

the nodes would receive more than 1/4 of the data. The situation is even worse when

the number of reduce tasks is high, e.g., 100, in which case after some time, all reduce

workers but one would finish their assigned task, and the job has to wait for the respon-

sible of English pages to finish. In this case, the execution time of the reduce phase is

at least equal to the execution time of this task, no matter the size of the cluster.

There have been some proposals to deal with the problem of reduce side data skew.

One of the main approaches is to try to uniformly distribute the intermediate values to

the reduce tasks, e.g., by repartitioning the keys to the reduce workers [8]. However,

3 http://dumps.wikimedia.org/other/pagecounts-raw/
4 This program is just for illustration; actually, it is possible to write a more efficient code by

leveraging the sorting mechanisms of MapReduce.
5 http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

An Efficient Solution for Processing Skewed MapReduce Jobs 3

this approach is not efficient in many cases, e.g. when there is only one intermediate

key, or when most of the values correspond to one of the keys.

One solution for decreasing the reduce side skew is to filter the intermediate data

as much as possible in the map side, e.g., by using a combiner function. But, the input

of the combiner function is restricted to the data of one map task [12], thus its filtering

power is very limited for many applications.

In this paper, we propose FP-Hadoop, a system that uses a new approach for dealing

with the data skew in reduce side. In FP-Hadoop, there is a new phase, called intermedi-

ate reduce (IR), whose objective is to make the reduce side of MapReduce more parallel.

More specifically, the programmer replaces his reduce function by two functions: inter-

mediate reduce (IR) and final reduce (FR) functions. Then, FP-Hadoop executes the job

in three phases, each phase corresponding to one of the functions: map, intermediate

reduce (IR) and final reduce (FR) phases. In the IR phase, even if all intermediate val-

ues belong to only one key (i.e., the extreme case of skew), the reducing work is done

by using the computing power of available workers. Briefly, the data reducing in the IR

phase has the following distinguishing features:

– Parallel reducing of each key: The intermediate values of each key can be pro-

cessed in parallel by using multiple intermediate reduce workers.

– Distributed intermediate block construction: The input of each intermediate

worker is a block composed of intermediate values distributed over multiple nodes

of the system, and chosen using a scheduling strategy, e.g. locality-aware.

– Hierarchical execution: The processing of intermediate values in the IR phase

can be done in several levels (iterations). This permits to perform hierarchical ex-

ecution plans for jobs such as top-k% queries, in order to decrease the size of the

intermediate data more and more.

– Non-overwhelming reducing: The size of the intermediate blocks is bounded by

configurable maximum value that prevents the intermediate reducers to be over-

whelmed by very large blocks of intermediate data.

We implemented a prototype of FP-Hadoop by modifying Hadoop’s code. We con-

ducted extensive experiments over synthetic and real datasets. The results show excel-

lent performance gains of FP-Hadoop compared to native Hadoop. For example, in a

cluster of 20 nodes with 120GB of input data, FP-Hadoop outperformed Hadoop by a

factor of about 10 in reduce time, and a factor of 5 in total execution time.

The rest of this paper is organized as follows. In Section 2, we propose FP-Hadoop.

In Section 3, we report the results of our experiments done to evaluate the performance

of FP-Hadoop. In Section 4, we discuss related work, and Section 5 concludes.

2 FP-Hadoop

In this section, we propose FP-Hadoop, a new Hadoop-based system designed for deal-

ing with data skew in MapReduce jobs. We first introduce the programming model of

FP-Hadoop, its main phases, and the functions that are necessary for executing the jobs.

Then, Then, we provide a more detailed description of the FP-Hadoop design, such as

our technique for constructing the working blocks of the IR phase, and the scheduling

of intermediate workers.

4 Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, and Patrick Valduriez

Input

Splits

D1

D2

...

Dn

Map workers

M1

...

Mm

Intermediate

key-values

k1

V1,1

V1,2

k2

V2,1

V2,2

V2,3

V2,4

V2,5

k3

V3,1

Intermediate

reduce workers

R1

...

Rr

Intermediate

key-values

k1

V ′
1,1

k2

V ′
2,1

V ′
2,2

k3

V ′
3,1

Final

reduce workers

R1

...

Rr

Results

O1

...

Or

Map phase Intermediate reduce phase Final reduce phase

Fig. 1. FP-Hadoop job processing scheme

2.1 Job Execution Model

In FP-Hadoop, the output of the map tasks is organized as a set of blocks (splits) which

are consumed by the reduce workers (see Figure 1). More specifically, the intermediate

key-value pairs are dynamically grouped into splits, called Intermediate Result Splits

(IR splits for short). The size of an IR split is bounded between two values, minIRsize

and maxIRsize, that can be configured by the user. Formally, each IR split is a set of

(k, V) pairs such that k is an intermediate key and V is a subset of the values generated

for k by the map tasks.

In FP-Hadoop, the execution of a job is done in three phases: map, intermediate

reduce, and final reduce. The map phase is almost the same as that of Hadoop in the

sense that the map workers apply the map function on the input splits, and produce

intermediate key-value pairs. The only difference is that in FP-Hadoop, the map output

is managed as a set of IR fragments that are used for constructing IR splits (more details

about the management of IR splits are given in Section 2.3).

There are two different reduce functions: intermediate reduce (IR) and final reduce

(FR) functions.

In the intermediate reduce phase, the IR function is executed in parallel by reduce

workers on the IR splits, which are constructed using a scheduling strategy from the

intermediate values distributed over different nodes. More specifically, in this phase,

each reduce worker takes an IR split as input, applies the IR function on it, and produces

a set of key-value pairs which may be used for constructing future IR splits. When a

reduce worker finishes its input split, it takes another split and so on until there is no

more IR splits.

The intermediate reduce phase can be repeated in several iterations, to apply the IR

function several times on the intermediate data, and incrementally decrease the size of

the final splits which will be consumed by the FR function. The maximum number of

iterations can be specified by the programmer, or be chosen adaptively, i.e., until the

intermediate reduce tasks input/output size ratio is higher than a threshold (which can

be configured by the user).

An Efficient Solution for Processing Skewed MapReduce Jobs 5

In the final reduce phase, the FR function is applied on the IR splits generated as

the output of the intermediate reduce phase. The FR function is in charge of performing

the final grouping and production of the results. Like in Hadoop, the keys are assigned

to the reduce tasks according to a partitioning function. Each reduce worker pulls all

IR splits corresponding to its keys, merges them, applies the FR function on the values

of each key, and generates the final job results. Since in FP-Hadoop the final reduce

workers receive the values on which the intermediate workers have worked, the load of

the final reduce workers in FP-Hadoop is usually much lower than that of the reduce

workers in Hadoop.

In the next subsection, we give more details about the IR and FR functions, and

explain how they can be programmed.

2.2 IR and FR Functions

To take advantage of the intermediate reduce phase, the programmer should replace

his/her reduce function by intermediate and final reduce functions. Formally, the input

and output of map (M), intermediate reduce (IR) and final reduce (FR) functions are as

follows:

M : (K1,V1) → list(K2,V2)

IR : (K2, partial_list(V2)) → (K2, partial_list(V2))

FR : (K2, list(V2)) → list(K3,V3)

Notice that in IR function, any partial set of intermediate values can be received

as input. However, in FR function, all values of an intermediate key are passed to the

function.

Given a reduce function, to write the IR and FR functions, the programmer should

separate the sections that can be processed in parallel and put them in IR function, and

the rest in FR function. Formally, given a reduce function R, the programmer generates

two functions IR and FR, such that for any intermediate key k and its list of values V ,

R(k, V) = FR(k, 〈IR(k, V1), ..., IR(k, Vn)〉) for every partition V1 ∪ ... ∪ Vn = V .

The following example illustrates the IR and FR functions for a job that implements

the average operation.

Example 2. Avg. Consider a job that computes the average of the numeric values that

are in a big file. To implement this job in Hadoop, it is sufficient to emit(1, value)

for each read value in the map function. Then, the reduce function computes the sum

and count of all values and returns sum/count. In FP-Hadoop, in the IR function, we

compute the (partial) sum and count of the values in the input IR split, and emit(1,

{sum, count}). This allows to compute the partial counts and sums in parallel.

Then, in the FR function, we compute the sum of partial sums and counts, and divide

the total sum by the total count.

There are many functions for which we can use the original reduce function both

in the intermediate and final reduce phases, i.e., we have IR = FR = R. Examples of

such functions are Top-k, SkyLine, Union, SUM, MIN and MAX.

6 Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, and Patrick Valduriez

Please notice that if the programmer does not want to use the IR phase, he/she

should specify no IR function. In this case, the final reduce phase starts just after the

map phase completes, i.e., as in Hadoop.

Map Worker

Input

Split

Map task m1

map

function

Buffer

spill1

p0 ... prp0

IRFi

...

spillm

p0 ... pr

Intermediate Reduce Worker

IR task ir1

IR fragments

...

...

IR Split

IRF0

IRFn

IRFj

IR

function

Master

IR F ragments Table (IRF Table)

p0

IRFi info

m1 , spill1
size

m2 , spill1
size

...

..
.

pr
m1 , spill1

size
...

Reduce

Scheduler

heartBeat: 〈IRFi info, ...〉

1 IR task info: 〈..., IRFi info, ...〉2

3

heartBeat: 〈IRFj info〉

4

Fig. 2. Data flow between a map worker, the master and an intermediate reduce worker. The

communicated messages are shown in their sent order.

2.3 Dynamic Construction of IR Splits

In this subsection, we describe our approach for constructing the IR splits that are the

working blocks of the reducers in the intermediate reduce phase.

In Hadoop, the output of the map tasks is kept in the form of temporary files (called

spills). Each spill contains a set of partitions, such that each partition involves a set of

keys and their values. These spills are merged at the end of the map task, and the data

of each partition is sent to one of the reducers.

In FP-Hadoop, the spills are not merged. Each partition of a spill generates an IR

fragment, and the IR fragments are used for making IR splits. When a spill is produced

by a map task of FP-Hadoop, the information about the spill’s IR fragments, which we

call IRF metadata, is sent to the master node by using the heartbeat message passing

mechanism6. The data flow between FP-Haddop components is shown in Figure 2.

For keeping IRF metadata, the master of FP-Hadoop uses a specific data structure

called IR fragment table (IRF Table). Each partition has an entry in IRF Table that

points to a list keeping the IR fragment metadata of the partition, e.g., size, spill and the

ID of the map worker where the IR fragment has been produced. The master uses the

6 This mechanism is used for communication between the master and workers

An Efficient Solution for Processing Skewed MapReduce Jobs 7

information in IRF Table for constructing IR splits and assigning them to ready reduce

workers. This is done mainly based on the scheduling strategies described in the next

subsection.

2.4 Scheduling of Intermediate Tasks

For scheduling an intermediate reduce task, the most important issue is to choose the

IR fragments that belong to the IR split that should be processed by the task. For this,

the following strategies are actually implemented in FP-Hadoop:

– Greedy. In this strategy, the objective is to give priority to the IR fragments of the

partition that has the maximum number of values. In our implementation of IRF

Table, for each partition, we keep the total size of IR fragments. Thus, by a scan

of IRF Table, we can find the partition that has the highest number of values until

now. After finding the partition, we scan its list, and take from the head of the list

the IR fragments until reaching the maxIRsize value, i.e., the upper bound size for

an IR split. This strategy is the default strategy in FP-Hadoop.

– Locality-aware. In this strategy, we try to choose for a worker w the IR fragments

that are on its local disk or close to it. For this, the scheduler scans IRF Table, and

finds the partitions whose total data size is at least minIRsize (the minimum defined

size for IR split), and chooses among them the partition that has the maximum local

data at w. After choosing the partition, say p, the scheduler chooses a combination

of p’s IR fragments at w with size between minIRsize and maxIRsize. If the total

size of p’s IR fragments at w is lower than minIRsize, then the scheduler completes

the IR split by first choosing IR fragments from the same rack as that of w, and

then if necessary from the same data center.

In FP-Haddop, the programmer can configure the system to execute the IR phase in

several iterations, in such a way that the output of each iteration is consumed by the next

iteration. There is a parameter maxIter that defines the maximum number of iterations.

Notice that this parameter sets the maximum number, but in practice each partition may

be processed in a different number of iterations, for instance depending on its size,

input/output ratio or skew. By default, FP-Hadoop implements an approach in which an

iteration is launched only if its input size is more than a given threshold, minIterSize.

The default value for the threshold is the same as minIRsize (i.e., the minimum size of

IR splits).

3 Performance Evaluation

We implemented a prototype of FP-Hadoop by modifying Hadoop’s code. In this sec-

tion, we report on the results of our experiments for evaluating the performance of

FP-Hadoop. We first discuss the experimental setup such as the datasets, queries and

the experimental platform. Then, we discuss the results of our tests done to study the

performance of FP-Hadoop, particularly by varying parameters such as the number of

nodes in the cluster, the size of input data, etc.

8 Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, and Patrick Valduriez

3.1 Setup

We have used the following combinations of MapReduce jobs and datasets to assess the

performance of our prototype:

Top-k% (TK). This job, which is our default job in the experiments, corresponds

to the query from the Wikipedia example described in the introduction of the paper.

Our query consists of retrieving for each language the k% most visited articles. The

default value of k is 1, i.e., by default the query returns 1% of the input data. We have

used real-world and synthetic datasets. The real-world dataset (TK-RD) is obtained

from the Wikipedia page view statistics 7 stored in hourly log files. We also produced a

synthetic dataset (TK-SK), where the number of articles per language follows a Zipfian

distribution function with exponent S = 1 and N=10 (i.e. 10 languages). We have

performed several tests varying the data size, among other parameters, up to 120GB.

The query is implemented using a secondary sort [12], where intermediate keys are

sorted first by language and then by the article’s number of visits, but only grouped by

language.

Inverted Index (II). This job consists of generating an inverted index with the

words of the English Wikipedia articles8, as in [8]. We used a RADIX partitioner to

map letters of the alphabet to reduce tasks and produce a lexicographically ordered

output. We have executed the job with a dataset containing 20GB of Wikipedia articles.

PageRank (PR). This query applies the PageRank algorithm to a graph in order to

assign weights to the vertices. As in [8] we have used the implementation provided by

Cloud9 9. As dataset, we used the PLD graph from Web Data Commons10 whose size

is about 2.8GB.

Wordcount (WC). Finally, we have used the wordcount job provided in Apache

Hadoop. We have applied it to a dataset generated with the RandomWriter job pro-

vided in the Hadoop distribution. We tested this job with a 100GB dataset.

The default values for the parameters which we used in our experiments are as

follows. The default number of nodes which we used in our cluster was 20. Unless

otherwise specified, the input data size in the experiments was 20 GB. In FP-Hadoop,

the default value for minIRsize was set to 512 MB. The value of maxIRsize is always

twice as that of minIRsize, and the maximum number of iterations is set to 1.

We compared FP-Hadoop with Hadoop and SkewTune [8] which is the closest re-

lated work to ours (see a brief description in Related Work Section).

In all our experiments, we used a combiner function (for Hadoop, FP-Hadoop and

SkewTune) that is executed on the results of map tasks before sending them to the

reduce tasks. This function is used to decrease the amount of data transferred from map

to reduce workers, and so to decrease the load of reduce workers.

In our experiments, we have measured the execution time, which computes the time

elapsed between the start and end of a job, and the reduce time, which only considers

the time elapsed from the end of the last map task.

7 http://dumps.wikimedia.org/other/pagecounts-raw/
8 http://dumps.wikimedia.org/enwiki/latest/
9 http://www.umiacs.umd.edu/ jimmylin/Cloud9/docs/index.html

10 http://webdatacommons.org/hyperlinkgraph/

An Efficient Solution for Processing Skewed MapReduce Jobs 9

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120

R
ed

uc
e

ti
m

e
(s

)

Input data size (GB)

Hadoop
FP-Hadoop

(a) Reduce time vs. input data

size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120

E
xe

cu
ti

on
 t

im
e

(s
)

Input data size (GB)

Hadoop
FP-Hadoop

(b) Execution time over TK-SK

data

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 20 40 60 80 100 120

E
xe

cu
ti

on
 t

im
e

(s
)

Wikipedia data size (GB)

Hadoop
FP-Hadoop

(c) Execution time over

TK-RD data

Fig. 3. Scalability of FP-Hadoop

We run the experiments over a cluster of nodes (up to 50 nodes). The nodes are

provided with Intel Quad-Core Xeon L5335 processors with 4 cores each, and 16GB of

RAM. All the experiments were executed with a number of reduce workers equal to the

number of machines. We have changed io.sort.factor to 100, as advised in [12], which

actually favors Hadoop. For the rest of the parameters, we have used Hadoop’s default

values.

3.2 Scalability

We investigated the effect of the input size on the performance of FP-Hadoop compared

to Hadoop. Using TK-SK dataset, Figures 3(a) and 3(b) show the reduce time and ex-

ecution time respectively, by varying the input size up to 120 GB, minIRsize set to 5

GB, and other parameters set as default values described in Section 3.1. Figure 3(c)

shows the performance using TK-RD dataset with sizes up to 100 GB, while other pa-

rameters as default values described in Section 3.1. As expected, increasing the input

size increases the execution time of both Hadoop and FP-Hadoop, because more data

will be processed by map and reduce workers. But, the performance of FP-Hadoop is

much better than Hadoop when we increase the size of input data. For example, in Fig-

ure 3(b), the gain of FP-Hadoop vs Hadoop on execution time is around 1.4 for input

size of 20GB, but this gain increases to around 5 when the input size is 120GB. For

the latter data size, the reduce time of FP-Hadoop is more than 10 times lower than

Hadoop. The reason for this significant performance gain is that in the intermediate re-

duce phase of FP-Hadoop the reduce workers collaborate on processing the values of

the keys containing a high number of values.

3.3 Effect of Cluster Size

We studied the effect of the number of nodes of the cluster on performance. Figure 4(a)

shows the execution time by varying the number of nodes, and other parameters set as

default values described in Section 3.1. Increasing the number of nodes decreases the

execution time of both Hadoop and FP-Hadoop. However, FP-Hadoop benefits more

from the increasing number of nodes. In Figure 4(a), with 5 nodes, FP-Hadoop outper-

forms Hadoop by a factor of around 1.75. But, when the number of nodes is equal to

10 Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, and Patrick Valduriez

50, the improvement factor is around 4. This increase in the gain can be explained by

the fact that when there are more nodes in the system, more nodes can collaborate on

the values of hot keys in FP-Hadoop. But, in Hadoop, although using higher number of

nodes can decrease the execution time of the map phase, it cannot significantly decrease

the reduce phase time, in particular if there are intermediate keys with high number of

values.

3.4 Overhead of IR phase for Balanced Jobs

Our performance evaluation results, reported until now, show that the IR phase in FP-

Hadoop significantly improves the performance of skewed jobs. Let us now investigate

its overhead in the case where there is no skew in the job. For this, we have chosen

the word-count (WC) query over a uniform random dataset as described in Section

3.1. In this job, the key partitioner balances perfectly the reduce load among workers,

thus there is no skew in the reduce side. Figure 4(b) shows the total execution time

of FP-Hadoop and Hadoop for this job. The results show that the execution time of

FP-Hadoop is a little (3%) higher than Hadoop, and this increase corresponds to the

overhead of the IR phase. Indeed, FP-Hadoop spends some time to detect the lack of

skew in the intermediate results, and then launches the final reduce phase. Thus, its

execution time is slightly higher than Hadoop. We believe that this very slight overhead

of IR phase in perfectly balanced jobs can usually be tolerated. If not, the programmer

simply disables the IR phase, then FP-Haddop does not launch that phase.

3.5 Comparison with SkewTune Using Different Queries

We compared FP-Hadoop with SkewTune [8] using different queries. Figure 4(c) shows

the reduce time and execution time of both approaches, using the data and parameters

described in Section 3.1. For these experiments, we downloaded the SkewTune proto-

type 11. The data which we used are the default data and sizes described in Section 3.1

(e.g. 20GB of data for TK-SK). As the results show, FP-Hadoop can outperform Skew-

Tune with significant factors. The main reason is that SkewTune is unable to split the

computation of the tuples assigned to the same intermediate key.

4 Related Work

In the literature, there have been many efforts to improve MapReduce [9]; these include

supporting loops [2], adding index [4], caching intermediate data [5], balancing data

skew [7,10,8]. Hereafter, we briefly present some of them that are the most related to

our work.

The approach proposed in [10] tries to balance data skew in reduce tasks by subdi-

viding keys with large value sets. It requires some user interaction or user knowledge

of statistics or sampling, in order to estimate in advance the values size of each key, and

then subdivide the keys with large values. Gufler et al. [7] propose an adaptive approach

11 https://code.google.com/p/skewtune/

An Efficient Solution for Processing Skewed MapReduce Jobs 11

 0

 100

 200

 300

 400

 500

 600

 700

 10 20 30 40 50

E
xe

cu
tio

n
tim

e
(s

)

Number of nodes

Hadoop
FP-Hadoop

(a) Effect of cluster size

 0

 200

 400

WC

E
xe

cu
ti

on
 t

im
e

(s
)

Queries

Hadoop
FP-Hadoop

(b) Overhead of IR phase

 0

 100

 200

 300

 400

 500

II TK-Sk PR

R
ed

uc
e

tim
e

(s
)

Queries

SkewTune
FP-Hadoop

(c) Reduce time of SkewTune

vs. FP-Hadoop

Fig. 4. Effect of different parameters, and comparison with SkewTune

that collects statistics about intermediate key frequencies and assigns them to the reduce

tasks dynamically at scheduling time. In a similar approach, Sailfish [11] collects some

information about the intermediate keys, and uses them for optimizing the number of

reduce tasks and partitioning the keys to reducer workers. However, these approaches

are not efficient when all or a big part of the intermediate values belong to only one key

or a few number of keys (i.e., fewer than the number of reduce workers).

SkewTune [8] adopts an on-the-fly approach that detects straggling reduce tasks and

dynamically repartitions their input keys among the reduce workers that have completed

their work. This approach can be efficient in the cases where the slow progress of a

reduce task is due to inappropriate initial partitioning of the key-values to reduce tasks.

But, it does not allow the collaboration of reduce workers on the same key.

Haloop [2] extends MapReduce to serve applications that need iterative programs.

Although iterative programs in MapReduce can be done by executing a sequence of

MapReduce jobs, they may suffer from big data transfer between reduce and map work-

ers of successive iterations. Haloop offers a programming interface to express iterative

programs and implements a task scheduling that enables data reuse across iterations.

However, it does not allow hierarchical execution plans for reducing the intermediate

values of one key, as in our intermediate reduce phase. SpongeFiles [6] is a system that

uses the available memory of nodes in the cluster to construct a distributed-memory,

for minimizing the disk spilling in MapReduce jobs, and thereby improving perfor-

mance. Spark [13], an alternative to MapReduce, uses the concept of Resilient Dis-

tributed Datasets (RDDs) to transparently store data in memory and persist it to disk

only when needed. The concept of intermediate reduce phase proposed in FP-Hadoop

can be used as a complementary mechanism in the systems such as Haloop, Sponge-

Files and Spark, to resolve the problem of data skew when reducing the intermediate

data.

In general, none of the existing solutions in the literature can deal with data skew in

the cases when most of the intermediate values correspond to a single key, or when the

number of keys is less than the number of reduce workers. But, FP-Hadoop addresses

this problem by enabling the reducers to work in the IR phase on dynamically generated

blocks of intermediate values, which can belong to a single key.

12 Reza Akbarinia, Miguel Liroz-Gistau, Divyakant Agrawal, and Patrick Valduriez

5 Conclusion

In this paper, we presented FP-Hadoop, a system that brings more parallelism to the

MapReduce job processing by allowing the reduce workers to collaborate on processing

the intermediate values of a key. We added a new phase to the job processing, called

intermediate reduce phase, in which the input of reduce workers is considered as a

pool of IR Splits (blocks). The reduce workers collaborate on processing IR splits until

finishing them, thus no reduce worker becomes idle in this phase. In the final reduce

phase, we just group the results of the intermediate reduce phase. We evaluated the

performance of FP-Hadoop through experiments over synthetic and real datasets. The

results show excellent gains compared to Hadoop. For example, over a cluster of 20

nodes with 120GB of input data, FP-Hadoop can outperform Hadoop by a factor of

about 10 in reduce time, and a factor of 5 in total execution time. The results show that

the higher the number of nodes, the greater the potential gain from FP-Hadoop. They

also show that the bigger the size of the input data, the larger the potential improvement

from FP-Hadoop.

6 Acknowledgments

Experiments presented in this paper were carried out using the Grid’5000 experimental

testbed, being developed under the INRIA ALADDIN development action with support

from CNRS, RENATER and several universities as well as other funding bodies (see

https://www.grid5000.fr).

References

1. Hadoop. http://hadoop.apache.org (2014)

2. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: The HaLoop approach to large-scale iterative

data analysis. VLDB Journal 21(2) (2012)

3. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: OSDI

(2004)

4. Dittrich, J., Quiané-Ruiz, J.A., Jindal, A., Kargin, Y., Setty, V., Schad, J.: Hadoop++: Making

a yellow elephant run like a cheetah (without it even noticing). PVLDB 3(1) (2010)

5. Elghandour, I., Aboulnaga, A.: ReStore: reusing results of MapReduce jobs in Pig. In: SIG-

MOD (2012)

6. Elmeleegy, K., Olston, C., Reed, B.: SpongeFiles: Mitigating data skew in mapreduce using

distributed memory. In: SIGMOD (2014)

7. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load balancing in MapReduce based on

scalable cardinality estimates. In: ICDE. IEEE (Apr 2012)

8. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.A.: SkewTune: mitigating skew in MapReduce

applications. In: SIGMOD (2012)

9. Lee, K.H., Lee, Y.J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with MapRe-

duce: a survey. SIGMOD Record 40(4) (2011)

10. Ramakrishnan, S.R., Swart, G., Urmanov, A.: Balancing reducer skew in MapReduce work-

loads using progressive sampling. In: ACM Symposium on Cloud Computing, SoCC (2012)

An Efficient Solution for Processing Skewed MapReduce Jobs 13

11. Rao, S., Ramakrishnan, R., Silberstein, A., Ovsiannikov, M., Reeves, D.: Sailfish: a frame-

work for large scale data processing. In: ACM Symposium on Cloud Computing, SoCC

(2012)

12. White, T.: Hadoop - The Definitive Guide: Storage and Analysis at Internet Scale (3rd ed.).

O’Reilly (2012)

13. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J.,

Shenker, S., Stoica, I.: Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing. In: NSDI (2012)

	An Efficient Solution for Processing Skewed MapReduce Jobs

