
HAL Id: lirmm-01162362
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01162362v1

Submitted on 10 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FP-Hadoop: Efficient Execution of Parallel Jobs Over
Skewed Data

Miguel Liroz-Gistau, Reza Akbarinia, Patrick Valduriez

To cite this version:
Miguel Liroz-Gistau, Reza Akbarinia, Patrick Valduriez. FP-Hadoop: Efficient Execution of Parallel
Jobs Over Skewed Data. Proceedings of the VLDB Endowment (PVLDB), 2015, 8 (12), pp.1856-1867.
�10.14778/2824032.2824085�. �lirmm-01162362�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01162362v1
https://hal.archives-ouvertes.fr


FP-Hadoop: Efficient Execution of Parallel Jobs Over
Skewed Data

Miguel Liroz-Gistau
Inria & LIRMM

Montpellier, France

miguel.liroz gistau@inria.fr

Reza Akbarinia
Inria & LIRMM

Montpellier, France

reza.akbarinia@inria.fr

Patrick Valduriez
Inria & LIRMM

Montpellier, France

patrick.valduriez@inria.fr

ABSTRACT
Big data parallel frameworks, such as MapReduce or Spark
have been praised for their high scalability and performance,
but show poor performance in the case of data skew. There
are important cases where a high percentage of processing
in the reduce side ends up being done by only one node. In
this demonstration, we illustrate the use of FP-Hadoop, a
system that efficiently deals with data skew in MapReduce
jobs. In FP-Hadoop, there is a new phase, called inter-
mediate reduce (IR), in which blocks of intermediate val-
ues, constructed dynamically, are processed by intermediate
reduce workers in parallel, by using a scheduling strategy.
Within the IR phase, even if all intermediate values belong
to only one key, the main part of the reducing work can be
done in parallel using the computing resources of all avail-
able workers. We implemented a prototype of FP-Hadoop,
and conducted extensive experiments over synthetic and real
datasets. We achieve excellent performance gains compared
to native Hadoop, e.g. more than 10 times in reduce time
and 5 times in total execution time.

During our demonstration, we give the users the possibil-
ity to execute and compare job executions in FP-Hadoop
and Hadoop. They can retrieve general information about
the job and the tasks and a summary of the phases. They
can also visually compare different configurations to explore
the difference between the approaches.

1. INTRODUCTION
Big data parallel frameworks, such as MapReduce [1] or its

main memory efficient versions such as Spark [3] have been
praised for their scalability and performance, using clusters
of commodity machines. The idea behind MapReduce is
simple and elegant. Given an input file, and two functions
named map and reduce, each MapReduce job is executed in
two main phases. In the first phase, called map, the input
data is divided into a set of splits, and each split is processed
by a map task in a given worker node. These tasks apply
the map function on every key-value pair of their split and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 11
Copyright 2015 VLDB Endowment 2150-8097/15/07.

generate a set of intermediate pairs. In the second phase,
called reduce, all the values of each intermediate key are
grouped and assigned to a reduce task. Reduce tasks are also
assigned to worker machines and apply the reduce function
on the created groups to produce the final results.

However, MapReduce and Spark show poor performance
in the case of data skew. There are important cases where
a high percentage of processing in the reduce side ends up
being done by only one node. Let us illustrate this by an
example. Suppose we want to return for each language, the
top-k% accessed pages of Wikipedia. In MapReduce, we
would write a simple program that emits for each log file
the number of visits per page and groups them by language
and then by page. Then, for each language, we would sort
the pages by number of visits and return the first k%. In
this example, there may be a high skew in the load of re-
duce workers. In particular, the worker that is responsible
for reducing the English language will receive a lot of val-
ues. According to the statistics published by Wikipedia1,
the percentage of English pages over total was more than
70% in 2002 and more than 25% in 2007. This means for
example that if we use the pages published up to 2007, when
the number of reduce workers is more than 4, then we have
no way for balancing the load because one of the reduce
nodes would receive more than 1/4 of the data. The situa-
tion is even worse when the number of reduce tasks is high,
e.g., 100, in which case after some time, all reduce workers
but one would finish their assigned task, yet the job would
have to wait for the responsible of English pages to finish.

There have been some proposals to deal with the problem
of reduce side data skew. One of the main approaches is to
try to uniformly distribute the intermediate values to the
reduce tasks, e.g., by repartitioning the keys to the reduce
workers [2]. However, this approach is not efficient in many
cases, e.g. when there is only one single intermediate key,
or when most of the values correspond to one of the keys.

One solution for decreasing the reduce side skew is to filter
the intermediate data as much as possible in the map side,
e.g., by using a combiner function. But, the input of the
combiner function is restricted to the data of one map task,
thus its filtering power is very limited for many applications.

In this demonstration, we illustrate the usage of Fully-
Parallel Hadoop (FP-Hadoop), a system that uses a new
approach for dealing with the data skew in reduce side of
MapReduce. In FP-Hadoop, there is a new phase, called
intermediate reduce (IR), whose objective is to make the re-
duce side of MapReduce more parallel. More specifically, the

1http://en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia



programmer replaces his reduce function by two functions:
intermediate reduce (IR) and final reduce (FR) functions.
Then, FP-Hadoop executes the job in three phases, each
phase corresponding to one of the functions: map, interme-
diate reduce (IR) and final reduce (FR) phases. In the IR
phase, even if all intermediate values belong to only one key,
the reducing work is done by using the computing power of
available workers. Briefly, the data reducing in the IR phase
has the following distinguishing features: 1) collaborative re-
ducing of each key: the intermediate values of each key can
be processed in parallel by using multiple intermediate re-
duce workers; 2) distributed intermediate block construction:
the input of each intermediate worker is a block composed
of intermediate values distributed over multiple nodes of the
system, and chosen using a scheduling strategy ; 3) hierarchi-
cal execution: the processing of intermediate values in the
IR phase can be done in several iterations. This permits
to perform hierarchical execution plans for jobs, in order to
decrease the size of the intermediate data more and more.

We implemented a prototype of FP-Hadoop by modifying
native Hadoop, and conducted extensive experiments over
synthetic and real datasets. The results show excellent per-
formance gains of FP-Hadoop compared to native Hadoop.
For example, in a cluster of 20 nodes with 120GB of input
data, FP-Hadoop outperformed Hadoop by a factor of about
10 in reduce time, and a factor of 5 in total execution time.

In our demonstration, the user can execute jobs with FP-
Hadoop and Hadoop, and compare visually the job execu-
tions in the two systems. For each executed job, we show
detailed information about the three phases of FP-Hadoop,
the tasks which have been executed at each time and in each
phase, the number of working slots at each time, the size of
the data which has been reduced in the intermediate phase,
etc. Briefly, by using the demonstration the user can dis-
cover by himself the reason for which FP-Hadoop is so faster
than Hadoop in processing skewed data.

2. FP-HADOOP

2.1 Job Execution Model
In FP-Hadoop, the output of the map tasks is organized

as a set of blocks (splits) which are consumed by the re-
duce workers. More specifically, the intermediate key-value
pairs are dynamically grouped into splits, called Intermedi-
ate Result Splits (IR splits for short). The size of an IR split
is bounded between two values, minIRsize and maxIRsize,
configurable by the user.

FP-Hadoop executes the jobs in three different phases:
map, intermediate reduce, and final reduce. The map phase
is almost the same as that of Hadoop in the sense that the
map workers apply the map function on the input splits, and
produce intermediate key-value pairs. The only difference is
that in FP-Hadoop, the map output is managed as a set of
IR fragments that are used for constructing IR splits.

There are two different reduce functions: intermediate re-
duce (IR) and final reduce (FR) functions.

In the intermediate reduce phase, the IR function is exe-
cuted in parallel by reduce workers on the IR splits, which
are constructed using a scheduling strategy from the inter-
mediate values distributed over the nodes. More specifically,
in this phase, each ready reduce worker takes an IR split as
input, applies the IR function on it, and produces a set of
key-value pairs which may be used for constructing future

Figure 1: Architecture of FP-Hadoop.

IR splits. When a reduce worker finishes its input split, it
takes another split and so on until there is no more IR splits.
In general, programming the IR function is not very com-
plicated; it can be done in a similar way as the combiner
function of Hadoop. In Section 2.2, we give more details
about the IR function, and how it can be programmed.

The intermediate reduce phase can be repeated in sev-
eral iterations, to apply the IR function several times on the
intermediate data and reduce incrementally the final splits
consumed by the FR function. The maximum number of
iterations can be specified by the programmer, or be cho-
sen adaptively, i.e., until the intermediate reduce tasks in-
put/output size ratio is higher than a given threshold.

In the final reduce phase, the FR function is applied on the
IR splits generated as the output of the intermediate reduce
phase. The FR function is in charge of performing the final
grouping and production of the results of the job. Like in
Hadoop, the keys are assigned to the reduce tasks according
to a partitioning function. Each reduce worker pulls all IR
splits corresponding to its keys, merges them, applies the FR
function on the values of each key, and generates the final
job results. Since in FP-Hadoop the final reduce workers
receive the values on which the intermediate workers have
worked, the load of the final reduce workers in FP-Hadoop
is usually much lower than that of the reduce workers in
Hadoop.

2.2 IR and FR Functions
To take advantage of the intermediate reduce phase, the

programmer should replace his/her reduce function by in-
termediate and final reduce functions. Formally, the input
and output of map (M), intermediate (IR) and final reduce
(FR) functions is as follows:

M : (K1,V1)→ list(K2,V2)

IR : (K2, partial list(V2))→ (K2, partial list(V2))

FR : (K2, list(V2))→ list(K3,V3)

Notice that in IR function, any partial set of intermediate
values can be received as input. However, in FR function,
all values of an intermediate key are passed to the function.

Given a reduce function, to write the IR and FR func-
tions, the programmer should separate the sections that can
be processed in parallel and put them in IR function, and



the rest in FR function. There are many functions for which
we can use the original reduce function both in the interme-
diate and final reduce phases, i.e., we have IR = FR = R.
Examples of such functions are Top-k, SkyLine, Union, SUM,
MIN and MAX. For some reduce functions, it may be difficult
to find an efficient IR function. We precise that if it is diffi-
cult to find an efficient IR function for a job, it is sufficient
to specify no IR function, then the final reduce phase starts
just after the map phase, i.e., like in Hadoop.

2.3 Dynamic Construction of IR Splits
In this subsection, we describe our approach for construct-

ing the IR splits that are the working blocks of the reducers
in the intermediate reduce phase.

In the map phase, the output of the map tasks is kept
in the form of temporary files (called spills). Each spill
contains a set of partitions, such that each partition involves
a set of keys and their values. In Hadoop, these spills are
merged at the end of the map task, and the data of each
partition is sent to one of the reducers.

In FP-Hadoop, the spills are not merged. Each partition
of a spill generates an IR fragment (IRF), and the IRFs are
used for making IR splits. When a spill is produced by a map
task, the information about the spill’s IRFs, which we call
IRF metadata, is sent to the master by using MapReduce’s
heartbeat message passing mechanism.

For keeping IRF metadata, the master of FP-Hadoop uses
a new data structure called IR fragment table (IRF Table).
Each partition has an entry in IRF Table that points to a
list keeping the IR fragment metadata of the partition, e.g.,
size, spill and the ID of the worker where the IRF has been
produced. The master uses the information in IRF Table for
constructing IR splits and assigning them to ready reduce
workers (see Figure 1). This is done mainly based on the
scheduling strategies described in the next subsection.

2.4 Scheduling of Intermediate Tasks
For scheduling an intermediate reduce task, the most im-

portant issue is to choose the IRFs that belong to the IR
split that should be processed by the task. For this, the fol-
lowing strategies are actually implemented in FP-Hadoop:

• Greedy . In this strategy, the objective is to give the
priority to the IR fragments of the partition that has
the maximum number of values. This strategy is the
default strategy in FP-Hadoop.

• Locality-aware. In this strategy, we try to choose for
a worker w in the first place the IRFs that are on its
local disk or close to it.

The user can configure FP-Haddop to execute the IR
phase in several iterations, in such a way that the output
of each iteration is consumed by the next iteration. There is
a parameter that defines the maximum number of iterations,
although in practice each partition may be processed in a
different number of iterations, for instance depending on its
size, input/output ratio or skew. FP-Hadoop implements
by default an approach where an iteration is launched only
if its input size is more than a given threshold.

2.5 Performance gains
We have performed a thorough evaluation of FP-Hadoop

and compared it with native Hadoop. We obtain increasing

performance gains as the input size grows. For instance, in
the top-k% example described in Section 1, for an input of
120GB and a 20 nodes cluster, we decrease by 5 the total
execution time and by 10 the reduce time. In general, per-
formance gains increase when augmenting the cluster size,
the data size and the skew. All these gains, and those ob-
tained for other queries and configurations will be available
for examination in our demonstration.

3. DEMONSTRATION
The goal of the demonstration is to show the potential of

FP-Hadoop as a tool to accelerate the execution of parallel
jobs and to illustrate the details of job execution compared
to Hadoop. To such end, we have developed a Web front-
end that allows the user to execute jobs and analyze their
execution, both in native Hadoop and FP-Hadoop.

The demonstration consists in two phases. First, the user
is provided with two possibilities: a) she can define the pa-
rameters of a job and submit it to the cluster for execution
or b) select an already executed job based on a set of cri-
teria (e.g., query, data parameters, etc.). Second, the user
can analyze and compare the traces of the executions of the
jobs defined before. She is offered several views, showing
different aspects and statistics of the executions.

3.1 Deployment
We will deploy our prototype of FP-Hadoop in one of the

clusters of Grid50002. Jobs will be executed in a cluster
between 20 and 40 nodes over real and synthetic datasets,
and the real job statistics measured during execution. The
Web platform designed for the demonstration will let the
user specify the characteristics of such jobs and submit them
directly to the cluster and then collect and analyze visually
their execution.

3.2 Job Specification
Two scenarios are possible: either the user specifies and

executes a new job or she chooses one previously executed:
Scenario 1: The user is allowed to define and submit

jobs to the cluster. A set of small datasets are deployed at
the beginning of the demonstration, allowing the user to try
FP-Hadoop with different queries and explore different pa-
rameters. Datasets and queries are set so that execution of
jobs is confined to a 5 minutes time-frame, thus allowing a
certain amount of interactivity. Jobs can be executed in the
background, so that this time can be used for the descrip-
tion of the prototype and the demonstration of the analysis
platform with the traces of jobs already executed.

The user can play with some parameters of the queries,
e.g., the percentage of selected data and its skew in Top-
K, and also specific parameters of FP-Hadoop, such as the
number of iterations or the size of IR fragments. The user
has also the possibility to execute his/her own jobs providing
the necessary traces for our analysis tool.

Scenario 2: Differences in performance between native
Hadoop and FP-Hadoop manifest more clearly when jobs
are executed over big input datasets, whose execution times
fall outside the time constraints of the demonstration. That
is why, several jobs have been executed before the demon-
stration and their traces made available to the user for explo-
ration and analysis. These jobs have been configured with

2https://www.grid5000.fr



(a) Job details (b) Task dependencies in multiple iterations of IR phase

(c) Job comparison: different phases and their input size (d) Job comparison: number of working slots at each
time in different phases

Figure 2: Example of the views provided by our demonstration tool

several queries, e.g., Top-k, Inverted Index, Wordcount; and
a wide range of parameters, including diverse input sizes,
number of participating nodes and cluster parameters.

3.3 Job Analysis
In the two scenarios described before the users can explore

and analyze the traces of job executions and discover how
FP-Hadoop behaves and compares to native Hadoop. The
exploration can be done using the following views:

• Job Details: The user can explore the details of the
execution of a job, including the general and individ-
ual task statistics and a Gantt chart of task execution
where the different type of tasks (map, intermediate
and final reduce) can be recognized, and the effect of
data skew identified. An example of this view is shown
in Figure 2(a). Map (red), intermediate (brown) and
final reduce (blue) tasks can be identified by different
colors and selected to get their individual statistics.

• Task Dependencies: The iterative nature of FP-
Hadoop can result in a multi-iteration execution of
the intermediate reduce phase, where data is aggre-
gated and reduced incrementally. Our Web front-end
allows the user to explore how IR tasks are organized
in the multiple iterations in the IR phase, and how the
number of iterations and tasks adapts to the size of

the intermediate values. An example of such a view is
shown in Figure 2(b).

• Job Comparison: Finally, the user is provided the
option of comparing two jobs in a visual manner with
the interfaces shown in figures 2(c) and 2(d). In the
first view, tasks are aggregated into phases, and both
the input data (y-axis) and execution time (x-axis) are
represented. In the second, the number of occupied
slots at each time is depicted, so that we can compare
how FP-Hadoop exploits the parallelism provided by
the cluster. This representation provides a quick visual
explanation of the differences in the behavior between
FP-Hadoop and native Hadoop executions.

4. REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: Simplified

data processing on large clusters. In OSDI, pages
137–150, 2004.

[2] Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia.
Skewtune: mitigating skew in mapreduce applications.
In SIGMOD Conference, pages 25–36, 2012.

[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica.
Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI
Conference, pages 15–28, 2012.


	Introduction
	FP-Hadoop 
	Job Execution Model
	IR and FR Functions
	Dynamic Construction of IR Splits
	Scheduling of Intermediate Tasks
	Performance gains

	Demonstration
	Deployment
	Job Specification
	Job Analysis

	References

