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Abstract. Inrecentyears, there has been a growing interest for probabilistic da
management. We focus on probabilistic time series where a main chisticter
is the high volumes of data, calling for efficient compression techniduedate,
most work on probabilistic data reduction has provided synopses thahinin
the error of representation w.r.t. the original data. However, in mase¢s; the
compressed data will be meaningless for usual queries involving geggye op-
erators such as SUM or AVG. We propdEA (Probabilistic Histogram Aggre-
gation), a compression technique whose objective is to minimize the ésoclo
queries over compressed probabilistic data. We incorporate the atjgregper-
ator given by the end-user directly in the compression technique, d@aithobuch
lower error in the long term. We also adopt a global error aware strategyler

to manage large sets of probabilistic time series, where the available méemory
carefully balanced between the series, according to their individuialbitty.

1 Introduction

The abundance of probabilistic and imprecise data, in teegecade, has been the cen-
ter of recent research interest probabilistic data managemef&] [14]. This growing
production of probabilistic information is due to variowsasons, such as the increas-
ing use of monitoring devices and sensors, the emergenggbéations dealing with
moving objects, or scientific applications, with very lasggs of experimental and sim-
ulation data (so much so that Jim Gray has identified theiragement and analysis as
the “Fourth Paradigm” [9]). Example 1 gives an illustratioihsuch a scientific appli-
cation, where one must deal with very large sets of protsluidata. These data arrive
as probabilistic distribution functions (pdf), where eaalue €.g.the observation of a
measure) is associated to a level of probability.

Example 1.Phenotyping is an emerging science that bridges the gagebatgenomics
and plant physiology. In short, it aims to observe the intéoas between the functions
of a plant (growth, temperature, etc.) and the physicalaviorivhich it develops. Then,
depending on the genomic background of the plant, coneissian be drawn about
plant productivity, which is a major concern from ecolodieaonomic and societal
points of view. In this context, as illustrated by Figure &yeral measures, such as
height and weight growth, or evaporation, can be perfornyesksors attached to each



plant. Due to device characteristics, each measure isiatst¢o a level of probability
and expressed as a pdf. The pdfs of a plant are stored at réiguéeintervals, leading
to a probabilistic time series. In our case, we have as mualbghilistic time series as
plants in the platform.
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Fig. 1. A phenotyping platform. For each plant, several probabilistic valuesassured at regu-
lar time intervals and the whole platform produces a large number of stiggmrobabilistic time
series

There are many other possible applications involving stieg probabilistic time
series, where the measures may be, for example, the amolighbfeceived by an
array of solar panels in a photovoltaic system, the numbgaldéns passing by a dam,
the quantity of pesticides received by the plants of an ofasien plot, the support
of probabilistic frequent itemsets over time in a probatiiti data stream, etc. All the
above applications have a common characteristic: theyuysetime series where, for
each interval of time and for each series, we have a pdf quoreling to the possible
measures during this interval. In almost all these apptioat the user intends to issue
specific aggregation queries over the time intervals, g stum of plant growth in a
sequence of time intervals.

Depending on the application, the number of probabilistices may be very high.
Compared to deterministic time series, the data size isipfielf by the range of the
pdf (e.g.with a thousand of series, ten thousands of measures pemdag hundred
of probabilistic values per measure, there are one billimbabilistic values to handle
per day). When the number of values is larger than the avaitabimory, data has to be
compressed, and when that number gets even much largepri@ession cannot be
without information loss. Our goal is to lower the infornmatiloss due to probabilistic
data compression. Actuallwe take the view that such data are usually intended to be
intensively queried, especially by aggregation quefieshis paper, we propose a com-
pression approach, call&®HA, that allows high quality results to specific aggregation
operators. This is done by incorporating the aggregatiothéncompression process
itself. The idea is that when the granularity of the représt@on decreases, the aggre-
gation operator tackled by the end-user is used at the cdimefseries compression.
Our approach includes strategies for probabilistic stiegrtime series management



by considering their tolerance to compression. PHA is itiistion independent, so it
can work with any kind of distributions (uniform, normalcét We perform extensive
evaluations to illustrate the performanceRHA over real and synthetic datasets. The
results show it’s ability to apply compression ratios ashhag 95% over probabilistic
time series, while keeping extremely low (almost null) emates w.r.t. the results of
aggregation operators.

2 Problem Definition

We are interested in compressing probabilistic time sdriesggregating their his-
tograms that are representations of the data distributiotime intervals of time series.

2.1 Preliminaries

We define grobabilistic histogramas follows.

Definition 1. [Probabilistic histogramp probabilistic histogran is an approximate
representation of a pdf (probabilistic distribution fuiart) based on partitioning the
domain of values inten buckets, and assigning the same probability to all values of
each bucket. Each buckgtis a pair (I,p) wherel = [s,e) is a value interval with

s ande as start and end points respectively, amés the probability of each value in
the bucket. We assume thatind e are integer. For each value, we denote by [v]

the probability ofv in the distribution. The buckets of a histograihare denoted by
bucks(H), and theith bucket byvucks(H)[i]. The number of buckets [lucks(H)|.

Hereafter, unless otherwise specified, when we write hiatogve mean a proba-
bilistic histogram. A probabilistic time series is defineslaasequence of histograms as
follows.

Definition 2. [Probabilistic time series] probabilistic time serieX = {Hy,...,H,}

is a sequence of histograms defined on a sequence of timeal#é&i, . .., T, such
that histogramH; represents the probability distribution in intervdl. The intervals
Ti,...,T, are successive, i.e. there is no gap between them.

Example 2.Let us consider a plantin the phenotyping application of example 1. The
height growth ofp has been measured by a sensor. The resulting pdfs are mejeicse
by two histogramd{; and H» (see Figure 2)H; = {([0,1),0), ([1,2),0), (2, 3),0),
([3,4),0.2), ([4,5),0.2), (]5,6),0.4), ([6,7),0.2),([7,8),0)} from 8 am to 7:59 pm,
and H, = {([0,1),0), ([1,2),0.2), (]2,3),0.4), ([3,4),0.2),([4,5),0.2), ([5,6),0),
([6,7),0),([7,8),0)} from 8 pm to 7:59 am. For instance, ifi;, the probability that
the plant grew by 5 units is 40%. Meanwhile, during the nite,most probable growth
is only 2 units. The probabilistic time series @fs made of these two histograms on
their respective time intervals.

Below, we define a data stream based on time series.

Definition 3. [Data streamp data streamS = {X;,..., X,,} is a set of time series
defined on a sequence of intervdls . . ., T,, such that each time serig§; has its own
histograms for the interval®, ..., T,.
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Fig. 2. A probabilistic time series, made of two probabilistic histograms on contigtiogsin-
tervals

The aggregation of histograms can be defined using the aaggyegf probability
distribution functions.

Definition 4. [Aggregation of pdfslet G; andG, be two pdfs, and be an aggregation
function. Then, aggregating pdfs; and GG, by f means to generate a pdf such that
for any two values:; € G andz, € G, there is a valuer € G wherex = f(x1,x2),
and the probability ofz in G is equal to the probability of all combinations of values
x1 € D¢, andzy € D¢, such thatf(z1,z2) = x.

Definition 5. [Aggregation of probabilistic histogramg]ven an aggregation function
f, and two histogramé{; and H, representing two pdf&; and G- respectively, then
aggregating histograms/; and H, by f means to make a histogram on the aggregated
pdf of G; andGs.

We compare the probabilistic histograms by measuring thiséolute difference
defined as follows.

Definition 6. [Absolute differencethe absolute difference of two histograifis and
H,, denoted asbs_dif(H;, Hs), is defined as the cumulative difference of their prob-
ability distributions for all possible values. In other vets:

abs_dif(Hy, Hy) = [ (| Hy(x) — Ha()]) da.

We compress the histograms of time series in order to ho&hstrmanagement
constraints. For each compressed histogram, there is A@ggioal histograms which
we define as follows.

Definition 7. [Original histogramslet X = {H;,..., H,} be a time series defined
on time intervalsly, . .., T,. Assuméed’ is a histogram resulted from compressing the
histograms of intervald;, ..., T;. Then, the original histograms df’, denoted as
org_hist(H'), are the histograms oK in time intervalsT;, ..., T}. In other words,
org_hist(H') = {H;,..., H,;}.

In our algorithms, sometimes we need to extend the histogirahe extension of a
histogram is defined as follows.

Definition 8. [Extending a probabilistic histograrttje extension of a probabilistic his-
togram H, denoted asixt(H ), is a probabilistic histogranfl’ such that the interval
of each bucket i/’ is of size one (i.ee— s = 1), and for each value, H'(v) = H (v).



Example 3.Let H = {([0,2),0.4), ([2,4),0.6)} be a histogram with two buckets. The
extension ofH is Ext(H) = {([0,1), 0.4), ([1,2),0.4), ([2,3),0.6), ([3,4),0.6)}.
Thus, inExt(H) the size of each bucket interval is 1.

Hereafter, when we write extended representation of adriato we mean its ex-
tension. For simplicity of presentation, when each buckethistogram is of size one,
we write the histogram with the probability values only anel @mit the start and end
points.

2.2 Problem Statement

Our objective is to compress the histograms of a data steetimé series by aggregat-
ing their histograms, while respecting memory constraimgshe size of histograms.
Concretely, the results of each aggregation should besepted by a histogram of at
mostm buckets, wheren is a predefined value. At the same time, we want to preserve
the quality of aggregation, i.e. minimum error in the result

Our goal can be defined as follows: given a set of given time sefies{ X1, ...,
X, }, an aggregation functiofi, and an integer numbet, our objective is to compress
S to a set of time serieS’ = {X71,..., X}, } such that each time seriég is composed
of a set of histogram$H1, ..., H }, while :

1. Minimizing the error of aggregation, given by:
> ovxres (XLvmrex absdif (H', f(org-hist(H'))))
2. Limiting the number of buckets of each histogramwtoln other words:
VX' e 8" \VH' € X', |bucks(H])| < m.

2.3 Background

In our underlying applications, when the number of bucketsomes larger than the
available memory, we must reduce the data size. Since we andng with proba-
bilistic time seriesi(e. series of histograms) we have two possible dimensions fiar da
compression. The first one is the bucket dimension. In thée,cae merge several con-
tiguous buckets into one bucket having larger granulavitsvelets and regression [7]
are two popular methods that can be adapted for this purpbsesecond one is the time
dimension. In this case, when the number of histograms itarge, we merge several
histograms, corresponding to a number of time slots, ineagyregated histogram that
correspond to a larger time slot, thus increasing the geaityilof our representation.

3 Compression Approach

In this section, we propose our compression approach oognasins called PHA (Prob-
abilistic Histogram Aggregation) and a strategy for histog selection (for compres-
sion) in the global streaming process.



3.1 Bucket Dimension

As stated previously, there are two possible dimensionsdarpressing probabilistic

time series: bucket and time dimensions. In this subsectienpresent our approach
for compression on the bucket dimension. We first describeyamihod for aggregat-

ing probabilistic histograms of time intervals based on$tiM aggregation operator,

which is the running operator of this paper. Then, we exglancompression of aggre-
gated histograms. Itis not difficult to extend our approaabther aggregation operators
such as AVG (see Appendix 7 for AVG).

Aggregating Histograms with SUM. Given two histogramd¢/; and H, on two time
intervalsT; andT>, respectively, aggregating them by a functipmeans to obtain a
histogramH such that the probability of each valien H is equal to the cumulative
probability of all cases wherke = f(x1,x2) such thati;(z1) > 0 and Hx(z2) > 0.

In deterministic context, given two histogrami§ and H,, for each value: the SUM
operator returnd? (k) = H; (k) + Hz(k) as output. However, this method does not
work for the case of probabilistic histograms, because veel e take into account the
probability of all cases where sum is equaktdBelow, we present a lemma that gives
a formula for performing the SUM operator over probabitististograms.

Lemma 1. Let H, and Hs be two probabilistic histograms. Then, the probability of
each valuek in the probabilistic histogram obtained from the sumibf and H, de-
noted asSUM (Hy, H)[k], is given by>"_ ((Hy[i] x Hylk — i) + Hy [k —i] x Hali])

Proof. The probability of having a valuein SUM (H,, H») is equal to the probability
of having values in H; andj in H, such that + j = k. Thus, we must compute
the cumulative probability of all cases where the sum of tainies fromiH; and Hs is
equal tok. This is done by the sigma in Lemma 1.

Example 4.Consider the histogramd; and H; in Example 2. Then, the probability
of valuek = 4 in the histogran? = SUM (H,, H>) is computed as follows:

H[4] = H1[0] x Ho[4]+ H1[1] x H2[3]+ H1[2] x H2|2]+ H1[3] x Ha[1]+ H;[4] x
H[0]=0+0+0+4+0.2x0.24 0= 0.04.

Aggregation Value probabilities Error

SUM(H1,H2) 0 [0 |0 |0 [0.04[0.130.2]0.280.2 [0.120.040 [0 [0 |0
SUM(Ext(Wav(H1)),Ext(Wav(H2)))0 [0 [0.01]0.02]0.07|0.130.170.240.140.120.070.020.010 [0 | 0.24
SUM(Ext(Reg(H1)),Ext(Reg(H2)))0 [0 [0 [0.02]0.04|0.140.170.260.170.140.040.030 [0 [0 |0.16

PHA(H1,H2) 0.0080.0080.0080.00$0.0080.140.2 [0.2§0.2 [0.120.040 [0 [0 [0 [0.064

Fig. 3. Comparing the results of SUM operator on histograms compressed diffiergnt com-
pression techniques

Compressing Aggregated HistogramsAn aggregated histogram is not a compressed
histogram by itself (it is just a representation having adowranularity on the time
dimension). Let us consider the SUM operator idn and H, from Example 2. The



result of this operator is given by Figure 3 (line “SUMI{, H2)" in bold characters).
Obviously, the number of buckets is not significantly redleed the requirement of
data compression when the memory budget has been reachmdign This is due to
the fact that the number of values has grown, and now corngispto the sum of the
maximum values inf{; and H,. Therefore, if we want to obtain a compressed version
of this histogram, we need to aggregate data on the bucke&ndions. We chose the
regression approach and apply it to the aggregated histogfa Then, we obtain an
aggregation on the time dimension, combined to a compressidhe buckets dimen-
sion.We adopt a bottom-up approach to calculate the regrefssm of our histograms.
First, we build a sorted list of distances between the caotig buckets. Then, the two
most similar buckets are merged and the list of distancepdated. This process is
repeated until the desired number of buckets is reached, Mdren two contiguous
bucketsh; andb, are merged into the resulting buckétthend’ inherits from the start
point of b; and the end-point df;. The value ob’ is the weighted average of values in
b1 andb,. The weight of a buckel’ is the number of original buckets that have been
merged inta’.Our claim is that paying attention to the order of these afens {.e.
compressiosraggregation vs. aggregatigoompression) makes the difference between
appropriate and irrelevant manipulation of probabilistéta. Since an aggregation op-
erator considers the probabilistic meaning of each valwehistogram, it gives better
results on the original data, compared to the result oblagrethe compressed €.
damaged) data. This is illustrated in the next example.

Comparative Example. The operations reported in Figure 3 illustrate the main moti
vation for our approachn order to choose a representation for probabilistic tinegiss
compression, we should not focus on the error w.r.t. theimgichistograms, but rather
on the error w.r.t.the results of aggregation operatorsttil run on the compressed
data The table of Figure 3 gives the results of the SUM operatofgrand H, from
Example 2 (second lineSUM (Hy, H2)"). We compare the results of this operator on
the compressed versions8f andH>, using the techniques presented Sections 2.3 and
3.1. First, we report the results of SUM on the compressetdriams on the bucket
dimension,.e. SUM (Ext(Wav(H1)), Ext(Wav(H2))). In other words, we apply
SUM on the extended histograms of the wavelet transformfy pfand H, and obtain
the approximate value probabilities on the time intefiial. . . , T5. In the last column,
we report the errord%) of this representation, compared to the true probabibiyes

of SUM(H, H,). Second, we apply SUM on the extended histograms of thegegre
sion compression oH; andHs, i.e. SUM (Ext(Reg(H1)), Ext(Reg(H2))) and also
report the errori(e. 16%).

This comparison is provided with SUM operator applied to tiigtogram com-
pressed on the time dimension. We apply a regression cogipnes the result of SUM
on the original histograms. The compressed histogram isengily the
“Reg(SUM(H1, H2))" line and its extension is given by the last line. In this case
the error is only6.4%.

In this illustration, we can observe the difference betwinenerrors of each repre-
sentation. Intuitively, we observe that PHA gives the bestilts (bottom line of Figure



3).When the histograms are independent, the regressioniggehshould give better
results tharwavelets

3.2 Time Dimension

The time dimension is very important in the technique useddmpressing time series.
In data streams, this dimension has a major impact sinceésghe organization of
events records.€. their order of arrival). Moreover, most streams are coleesiv this
dimension since the series have usually low variation from timestamp to an other.
By working on this dimension, we are thus able to lower therimfation loss due to the
representation granularity. In this section, we study twatsgies under the decaying
factor point of view and propose a global optimization framek where the available
space is balanced between the series in the model, in ordétam the best possible
global error.

Logarithmic Tilted Time Windows. The logarithmic Tilted Time Windows (TTW) is
a management principle based on a decaying factor [5]. Whertna@sactions arrive
in the stream, older transactions are merged. The olderdhsdctions, the larger the
granularity of representation (and the size of windows)e Tiein advantage of this
representation is to give more space to recent transacfidresmain drawback is to
merge old transactions with a blind approach that does rtohze the available space.

Global Error Optimization. Let us considelS, the data stream of Definition 3. At
each step (a new histogram is added to each probabilistic time senes)want to
update the representations and their error rates in ousttatzure. In order to maintain
a globally satisfying error rate, we need to choose the sgmitations that will minimize
this error. The main idea is that merging the most similatogisam will have low
impact on the resulting error. In other words, similar hgggons have higher tolerance
to merging error. Therefore, for each new histograntinet X; be the time series
having the most similar consecutive histograies,H; and Ho, then i) H; andH, are
merged intaH ii) the distances betweet; and its direct neighbors are calculated and
iii) the sorted list of distances between consecutive Bistms inS is updated. Based
on this general principle, we devise the strategies desdtigreafter.

PHA 'ala Ward’. The goal ofPHA s to minimize the error of a merged histogram w.r.t.
the original merged histogram. It is not possible to knowadivance, which couple of
histograms will give the lowest error (after merging) amatigthe histograms irf.
Therefore, an optimal strategy, by meansP#{A, should try all the possible combi-
nations and pick up the best one. This principle is inspirechfthe Ward criterion in
hierarchical clustering. However, as illustrated by oyperiments, this does not always
give the best results in terms of global error.

Fast PHA. We also propose a fast strategy basedPéti. In order to reduce the time
spent on each merging operation, we propose to merge twacotige histograms if
the sum of their number of values is minimum. Surprisingly; experiments illustrate



the good quality of results obtained with this strategy, sehs no information about
the histogram’s content has been taken into account (oely ttumber of probability
values).

4 On Retrieving Original Values

When the histograms have been merged, the remaining quéstibow to use this
compressed information to retrieve the original histogg@mAn ideal solution would
be able to get back to the original histograms (even if sorfogrmation has been lost in
the compression). In this section, we first show that in garigthe original histograms
are different, it is not possible to find them from the compesshistogram, because
of information loss in the compression process. Then, byrasyy that the original
histograms are identical, we propose a method to return.themus first study of
the case where the original histograms are different. Letsssime that the size of the
original histograms is:.. The following lemma shows the impossibility of computing
them from the merged histogram.

Lemma 2. Suppose a histograti = SUM (H;, H»), and assume it has been gener-
ated from two different probabilistic histograms. Then,caa@not computéf; and H,
by usingH.

Proof. Let 2n be the size of histogradd = SUM (Hy, Hs). Let X; = H,[i] and
Y; = H,[i] for 0 < ¢ < n. To find the variables{; andY; for 0 < ¢ < n, we must be
able to solve the following equation system:

Xo x Yy = H[0]
XQXYl—‘erXYO:H[H
XQXK+X1XK_1++X7XY0:H[Z] (1)

X, x Y, = H[2n]

In this system, there atex n + 1 equations, and x n + 2 variables, i.e X; andY; for
0 < i < n. Since the number of equations is less than the number @hles, it is not
possible to find the value of variablés.

This is usual for data streams, where decreasing the grégubdé representation
leads to approximate representations and information lde®ever, our experiments
show that our approach allows very high compression ratisnai, or very few, loss for
the queries performed on the stream (while traditional @@gines show very important
loss). Furthermore, when the original histograms are edjualfollowing lemma gives
us a formula for retrieving their exact original values.

Lemma 3. Suppose an aggregated histogrdiy and assume it has been generated
from H, and H» with the SUM operator, i.ed = SUM (H;, Hs). Suppose thati; and

H,, are two equal probabilistic histograms, i.H; = H,, thenH; can be reconstructed
from H using the following formulas:

{ HK] =3k Hy [ x Hy [k—1) for k > 0:

2x Hy 0]

HI0] fork=0 @)



Proof. The proof is done by using Lemma 1 and the assumptiorHhgt] = H,[k]
for all k. We first prove the equation for the casekof 0, and then fork > 0. From
Lemma 1, we haveH, [0] x H»[0] = H[0]. By replacingH:[0] with H;[0], we obtain:
H,[0] = \/H][0]. To prove the second case, ile.> 0, let us write the equation of
Lemma 1 as follows:

HU{J] = Hl [O] XHQ[]C]—i-Hl [k] XHQ[O] + Zfz_ll(Hl [Z] XHQ[k-i]-‘rH] [kJ—Z} XHQ[’L])

Then, by replacindd:[i] with H;[i] for 0 < i < k, we have

H[K] = 2 x Hy[0] x Hy[k]+2 x Y5 (Hy i) x Hy[k —i]

Thus, we have :

_ H[K =320 Ha[i) x H [k—i]
Hy[k] = 2X H1[0] 0

By assuming the equality of the original histograms of a redrgistogram, Algo-
rithm 1 computes the original histograms.

Algorithm 1 Retrieving original histograms in the case where they azatidal
Require: H: a probabilistic histogram generated by applying SUM operator on two identic
histograms2 x n: highest value in the domain df;
Ensure: H;: the original probabilistic histogram from whidd has been generated,;
1: H.[0] = sqrtH|[0];
2: fork=1tondo
3 s=0;
4 fori=1tok — 1do
5: 8=S+H1[’L‘]><H1[k—i};
6: endfor
7
8:
9:

Hy[k] = (H[k] — s)/(2 x H1[0]);
end for
return H,

5 Experiments

We have implemented the strategies described in Sectiomith®ur PHAcompression
technique.

We evaluated our approach on a real-world dataset and twbetymdatasets. The
real world dataset has been built over probabilistic fredjitemsets (PFI) [1] extracted
from theaccidentdataset of the FMI repositotyThe original accident dataset contains
11 millions of events, 340K transactions and 468 items. We lzaided an existential
probability P € [0..1] to each event in these datasets, with a uniform distribufiben,
we have extracted PFls [3] from this file. Each PFI has a pritibabistribution of its
frequentness at regular time intervals in the file. Our adem this dataset is due to the
significant number of PFIs that can be extracted from it. Atjuwe have recorded the
evolution of these distributions for 15 itemsets, over 5Tdiestamps, with a range of
49 possible values. For synthetic datasets, we have wathemerator that builds a set of

L hitp://fimi.ua.ac.be/data/



S probabilistic time series having lengih of histograms havindf buckets (normal or
uniform distributions) as follows. For a normal distritarij we first generate a random
time series of lengttiV. Then, for each value in the time series, we consider it as the
“mean” value of the distribution and we chose a random “varéd. We have generated
two datasets: U.S20N100K.H50 and N.S10N100K.H40. For bbthese datasets, S is
the number of series, N the series length and H the size oftaatdgram.

In our tests, we don’t adopt Wavelets as a compression gyrate probability dis-
tributions because this technique does not fit the conssrainprobabilistic streaming
time series. Actually, Wavelets need to be applied to stitasets (they don't apply
to streaming or incremental environments) and they reglatasets size to be a power
of two (for instance, in our context, both the number of titaegps and the number of
buckets should be a power of two for a Wavelet compression).

We compare our compression approach with extensions of aetitive approach,
which we callaveraging that compresses two given histograms by computing their av
erage for any given value in the domain. Formally, averagingks as follows. Let
and H, be two given histograms, then their compression means trgtna histogram
H' such that for any value in their domain,H'(v) = AVG(H1(v), H2(v)). Actually,
in our context, the time dimension is very important sincecegsive histograms are
more likely to be similar than random histograms in the seriderefore, we consider
that the most adequate approach, for a comparis&tH#, is theaveragingcompres-
sion technique.

In the following, TTW.AVGIs theaveragingcompression in the Tilted Time Win-
dows strategyT TW.PHAIs the PHA compression in the TTW strateg@OF.PHAIs
PHAIn the Global Optimization strategy with tik@stapproach (Section 3.2Z50W.PHA
is PHAin the global optimization 'a la Ward’ (Section 3.2) aG®DS.AVGs theaver-
aging techniguén the global optimization strategy with SSE as a distandevéen
histograms. When quality is measured, it is with regards eajibal defined in Section
2.2. For this purpose, when a stream has been summarized drysnoéPHA and a
techniquel’, we compare the quality of the chosen operator (in our case SlU M)
over the intervals built blPHA on the corresponding histograms in the representation of
T and in the original data. Our goal is to measure the inforomditiss of various com-
pression techniques, compared to thaPsfA, having the original data as a reference.
Since the intervals built blPHA are not the same from one experiment to another, we
have one comparison diagram per dataset and per couple gfression techniques.
Measures are given according to a compression ratio. Ftariog, a compression of
90% for a file with 1,000,000 histograms means that our representation is done with
100, 000 compressed histograms.

5.1 Global Optimization: Evaluation of the Synopses Techmjues

During our experiments, we observed tlBOW.PHAdoes not justify the difference in
response time. Actually, the results in terms of qualityensmilar to that ofBOF.PHA
with much higher response times. This is the case for all #tas#ts we have tested,
but due to lack of space, we don't report this result in ourrgu Our first set of ex-
periments aims to compare the synopses techniques bassg@ying andPHA. For
this purpose, we use the global optimization principle dbsd in Section 3.2.



Figure 4 illustrates the difference in quality of approxtioa according to the com-
pression ratio on the real and synthetic datasets. We camabthatGOF.PHAgives
very good results in terms of quality wh&0S.AVGreaches high error levels (up to
75% onreal data). For instance, on tm®rmaldataset (Figure 4(bJpOF.PHAIs able
to keep an error close to zero with compression rates 0% This is a very good
result, illustrating the capability dPHA to keep most of the information during the
compression, compared to the high error rateS0S.AVG
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Fig. 4. Quality of approximation: Global Optimization strategy

5.2 TTW vs. Global Optimization

Here, our goal is first to investigate the difference betw&€&W.PHAand TTW.AVG
Figure 5(d) illustrates the difference between both apgvea in terms of compression
and error rates on theormal dataset. We observe similar differences, compared to our
previous experiments betwe&OF.PHAandGOS.AVG Then, we have measured the
error rate, timestamp by timestamp, for a TTW strategy ontwared, compared to a
Global Optimization, on the other hand. We expect TTW to dieéter results on the
most recent histograms, since they are designed for thigopar Figure 5(e) gives a
detailed error comparison betwe&OF.PHAand TTW.AVGon the accident data set
with a compression ratio of 85. Figure 5(f) gives the same comparison onmnloemal
dataset with a compression ratio of@5We observe that the difference is negligible



for the most recent histograms, while it increases greatlyofd histograms (one can
observe the quality plateau due to changes of TTW in the septation).
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Fig. 5. Quality of approximations: TTW vs. Global Optimization (a,b,c), TTW ordy énd de-
tailed quality of approximation, transaction by transaction (e,f)

6 Related Work

Today, probabilistic data management is recognized as arroapcern [8], where an
important challenge is to provide reliable models that w&ilbw data querying with

relevance and cohesion [14]. In this section,

we review thekgerdone on the prob-

lems that are related to the problem that we address. Aggregery processing is an
important issue of probabilistic data management. In thistext, some works were



devoted to developing efficient algorithms for returning #xpected value of aggre-
gate values, e.g. [4] [10]. In [6] and [13], approximate aitions have been proposed
for probabilistic aggregate queries. The central limitotteen [12] is one of the main
methods to approximately estimate the distribution of aggtion functions, e.g. SUM,
for sufficiently large numbers of probabilistic values. Irl], Kanagal et al. deal with
continuous aggregate queries over correlated probabitista streams. They assume
correlated data which are Markovian and structured in eatur [2], a dynamic pro-
gramming algorithm for evaluating the SUM aggregate qsesias proposed. The goal
of almost all the work on probabilistic aggregate query pesing is to efficiently pro-
cess these queries over uncompressed probabilistic datath® goal of our work is
to develop compression techniques such that the aggregatiesg return high quality
results on the compressed data. Despite the data overldatequality issues that are
at stake, we only find a few contributions on probabilistitad@&duction [15] [7]. Cur-
rently, the main grip for research in this domain is to coesithe difference between
deterministic and probabilistic data in the compressiahtéues. In [7] the authors
build synopses of probabilistic data represented by hiatog that associate a value
to its probability. In [15], a wavelet approach is designedgrobabilistic time series
compression. The authors work on a series of probabilisstograms and consider
two dimensions in their Wavelet algorithm. Aside from [1h,most of existing works
on probability distributions has focused on normal disttidns. We didn’t find solu-
tions for probabilistic streaming time series where the bers of series, buckets and
timestamps have no constraints. and they don’'t considgrdbsible use of aggregation
operations that can be made on these data.

7 Conclusions

We addressed the problem of probabilistic time series cesgwn with the objective of
allowing high quality results to aggregation operators.piposed PHA, a new prob-
abilistic approach that takes into account the aggregatpmrator in the compression
process. We evaluated our approach through experimentseveral datasets. Exper-
imental results illustrate that our approach is capablebtaio compression ratios as
high as 95% over probabilistic time series, with very lowogd to zero) error rates for
the results of aggregation operators. This shows that PHAwi#ll to analytical ap-
plications where specific aggregation operators are fretiyusssued over compressed
probabilistic time series.
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AVG Operator. To extend PHA to the average (AVG) operator, we need a method

for computing the average of two probabilistic histogra@isen two probabilistic his-
togramsH, and H-, aggregating them by an AVG operator means to make a histogra
H such that the probability of each valéeis equal to the cumulative probability of
cases where the average of two valugdrom H; andx, from Hs is equal tok, i.e.

k = (x1 + z2)/2. In the following lemma, we present a formula for aggregatino
histograms using the AVG operator.

Lemma 4. Let H; and H, be two probabilistic histograms. Then, the probability of
each valuek in the probabilistic histogram obtained from the averageafand Ho,
denoted asAV G (H, Hs)[k], is computed as:

AVG(Hy, Hy)[K] = S8 ((H1[i] x Ha[2 x k —i] + H1[2 x k — ] x Ha[i])
Proof. The probability of having a valuein AVG(H,, H») is equal to the cumu-

lative probability of all cases where the average of two @aluin H, andj in Hs is
equal tok. In other words; should be equal t® x k& — 4. This is done by the sigma in
the above equation.



