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Abstract. In recent years, there has been a growing interest for probabilistic data
management. We focus on probabilistic time series where a main characteristic
is the high volumes of data, calling for efficient compression techniques.To date,
most work on probabilistic data reduction has provided synopses that minimize
the error of representation w.r.t. the original data. However, in most cases, the
compressed data will be meaningless for usual queries involving aggregation op-
erators such as SUM or AVG. We proposePHA (Probabilistic Histogram Aggre-
gation), a compression technique whose objective is to minimize the error of such
queries over compressed probabilistic data. We incorporate the aggregation oper-
ator given by the end-user directly in the compression technique, and obtain much
lower error in the long term. We also adopt a global error aware strategyin order
to manage large sets of probabilistic time series, where the available memoryis
carefully balanced between the series, according to their individual variability.

1 Introduction

The abundance of probabilistic and imprecise data, in the past decade, has been the cen-
ter of recent research interest onprobabilistic data management[8] [14]. This growing
production of probabilistic information is due to various reasons, such as the increas-
ing use of monitoring devices and sensors, the emergence of applications dealing with
moving objects, or scientific applications, with very largesets of experimental and sim-
ulation data (so much so that Jim Gray has identified their management and analysis as
the “Fourth Paradigm” [9]). Example 1 gives an illustrationof such a scientific appli-
cation, where one must deal with very large sets of probabilistic data. These data arrive
as probabilistic distribution functions (pdf), where eachvalue (e.g.the observation of a
measure) is associated to a level of probability.

Example 1.Phenotyping is an emerging science that bridges the gap between genomics
and plant physiology. In short, it aims to observe the interactions between the functions
of a plant (growth, temperature, etc.) and the physical world in which it develops. Then,
depending on the genomic background of the plant, conclusions can be drawn about
plant productivity, which is a major concern from ecological, economic and societal
points of view. In this context, as illustrated by Figure 1, several measures, such as
height and weight growth, or evaporation, can be performed by sensors attached to each



plant. Due to device characteristics, each measure is associated to a level of probability
and expressed as a pdf. The pdfs of a plant are stored at regular time intervals, leading
to a probabilistic time series. In our case, we have as much probabilistic time series as
plants in the platform.

Fig. 1.A phenotyping platform. For each plant, several probabilistic values aremeasured at regu-
lar time intervals and the whole platform produces a large number of streaming probabilistic time
series

There are many other possible applications involving streaming probabilistic time
series, where the measures may be, for example, the amount oflight received by an
array of solar panels in a photovoltaic system, the number ofgallons passing by a dam,
the quantity of pesticides received by the plants of an observation plot, the support
of probabilistic frequent itemsets over time in a probabilistic data stream, etc. All the
above applications have a common characteristic: they produce time series where, for
each interval of time and for each series, we have a pdf corresponding to the possible
measures during this interval. In almost all these applications, the user intends to issue
specific aggregation queries over the time intervals, e.g. the sum of plant growth in a
sequence of time intervals.

Depending on the application, the number of probabilistic values may be very high.
Compared to deterministic time series, the data size is multiplied by the range of the
pdf (e.g.with a thousand of series, ten thousands of measures per day and a hundred
of probabilistic values per measure, there are one billion probabilistic values to handle
per day). When the number of values is larger than the available memory, data has to be
compressed, and when that number gets even much larger, the compression cannot be
without information loss. Our goal is to lower the information loss due to probabilistic
data compression. Actually,we take the view that such data are usually intended to be
intensively queried, especially by aggregation queries. In this paper, we propose a com-
pression approach, calledPHA, that allows high quality results to specific aggregation
operators. This is done by incorporating the aggregation inthe compression process
itself. The idea is that when the granularity of the representation decreases, the aggre-
gation operator tackled by the end-user is used at the core oftime series compression.
Our approach includes strategies for probabilistic streaming time series management



by considering their tolerance to compression. PHA is distribution independent, so it
can work with any kind of distributions (uniform, normal, etc.). We perform extensive
evaluations to illustrate the performance ofPHA over real and synthetic datasets. The
results show it’s ability to apply compression ratios as high as 95% over probabilistic
time series, while keeping extremely low (almost null) error rates w.r.t. the results of
aggregation operators.

2 Problem Definition

We are interested in compressing probabilistic time seriesby aggregating their his-
tograms that are representations of the data distributionsin time intervals of time series.

2.1 Preliminaries

We define aprobabilistic histogramas follows.

Definition 1. [Probabilistic histogram]A probabilistic histogramH is an approximate
representation of a pdf (probabilistic distribution function) based on partitioning the
domain of values intom buckets, and assigning the same probability to all values of
each bucket. Each bucketb is a pair (I, p) whereI = [s, e) is a value interval with
s and e as start and end points respectively, andp is the probability of each value in
the bucket. We assume thats and e are integer. For each valuev, we denote byH[v]
the probability ofv in the distribution. The buckets of a histogramH are denoted by
bucks(H), and theith bucket bybucks(H)[i]. The number of buckets is|bucks(H)|.

Hereafter, unless otherwise specified, when we write histogram we mean a proba-
bilistic histogram. A probabilistic time series is defined as a sequence of histograms as
follows.

Definition 2. [Probabilistic time series]a probabilistic time seriesX = {H1, . . . , Hn}
is a sequence of histograms defined on a sequence of time intervalsT1, . . . , Tn, such
that histogramHi represents the probability distribution in intervalTi. The intervals
T1, . . . , Tn are successive, i.e. there is no gap between them.

Example 2.Let us consider a plantp in the phenotyping application of example 1. The
height growth ofp has been measured by a sensor. The resulting pdfs are represented
by two histogramsH1 andH2 (see Figure 2):H1 = {([0, 1), 0), ([1, 2), 0), ([2, 3), 0),
([3, 4), 0.2), ([4, 5), 0.2), ([5, 6), 0.4), ([6, 7), 0.2), ([7, 8), 0)} from 8 am to 7:59 pm,
andH2 = {([0, 1), 0), ([1, 2), 0.2), ([2, 3), 0.4), ([3, 4), 0.2), ([4, 5), 0.2), ([5, 6), 0),
([6, 7), 0), ([7, 8), 0)} from 8 pm to 7:59 am. For instance, inH1, the probability that
the plant grew by 5 units is 40%. Meanwhile, during the night,the most probable growth
is only 2 units. The probabilistic time series ofp is made of these two histograms on
their respective time intervals.

Below, we define a data stream based on time series.

Definition 3. [Data stream]a data streamS = {X1, . . . , Xm} is a set of time series
defined on a sequence of intervalsT1, . . . , Tn such that each time seriesXi has its own
histograms for the intervalsT1, . . . , Tn.
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Fig. 2. A probabilistic time series, made of two probabilistic histograms on contiguoustime in-
tervals

The aggregation of histograms can be defined using the aggregation of probability
distribution functions.

Definition 4. [Aggregation of pdfs]letG1 andG2 be two pdfs, andf be an aggregation
function. Then, aggregating pdfsG1 andG2 by f means to generate a pdfG such that
for any two valuesx1 ∈ G1 andx2 ∈ G2 there is a valuex ∈ G wherex = f(x1, x2),
and the probability ofx in G is equal to the probability of all combinations of values
x1 ∈ DG1

andx2 ∈ DG2
such thatf(x1, x2) = x.

Definition 5. [Aggregation of probabilistic histograms]given an aggregation function
f , and two histogramsH1 andH2 representing two pdfsG1 andG2 respectively, then
aggregating histogramsH1 andH2 byf means to make a histogram on the aggregated
pdf ofG1 andG2.

We compare the probabilistic histograms by measuring theirabsolute difference
defined as follows.

Definition 6. [Absolute difference]the absolute difference of two histogramsH1 and
H2, denoted asabs dif(H1, H2), is defined as the cumulative difference of their prob-
ability distributions for all possible values. In other words:

abs dif(H1, H2) =
∫ +∞

−∞
(|H1(x)−H2(x)|) dx.

We compress the histograms of time series in order to hold stream management
constraints. For each compressed histogram, there is a set of original histograms which
we define as follows.

Definition 7. [Original histograms]Let X = {H1, . . . , Hn} be a time series defined
on time intervalsT1, . . . , Tn. AssumeH ′ is a histogram resulted from compressing the
histograms of intervalsTi, . . . , Tj . Then, the original histograms ofH ′, denoted as
org hist(H ′), are the histograms ofX in time intervalsTi, . . . , Tj . In other words,
org hist(H ′) = {Hi, . . . , Hj}.

In our algorithms, sometimes we need to extend the histograms. The extension of a
histogram is defined as follows.

Definition 8. [Extending a probabilistic histogram]the extension of a probabilistic his-
togramH, denoted asExt(H), is a probabilistic histogramH ′ such that the interval
of each bucket inH ′ is of size one (i.e.e−s = 1), and for each valuev,H ′(v) = H(v).



Example 3.LetH = {([0, 2), 0.4), ([2, 4), 0.6)} be a histogram with two buckets. The
extension ofH is Ext(H) = {([0, 1), 0.4), ([1, 2), 0.4), ([2, 3), 0.6), ([3, 4), 0.6)}.
Thus, inExt(H) the size of each bucket interval is 1.

Hereafter, when we write extended representation of a histogram we mean its ex-
tension. For simplicity of presentation, when each bucket of a histogram is of size one,
we write the histogram with the probability values only and we omit the start and end
points.

2.2 Problem Statement

Our objective is to compress the histograms of a data stream’s time series by aggregat-
ing their histograms, while respecting memory constraintson the size of histograms.
Concretely, the results of each aggregation should be represented by a histogram of at
mostm buckets, wherem is a predefined value. At the same time, we want to preserve
the quality of aggregation, i.e. minimum error in the results.

Our goal can be defined as follows: given a set of given time seriesS = {X1, . . . ,
Xn}, an aggregation functionf , and an integer numberm, our objective is to compress
S to a set of time seriesS′ = {X ′

1, . . . , X
′
n} such that each time seriesX ′

i is composed
of a set of histograms{H ′

1, . . . , H
′
k}, while :

1. Minimizing the error of aggregation, given by:
∑

∀X′∈S′ (
∑

∀H′∈X′ abs dif(H ′, f(org hist(H ′))))

2. Limiting the number of buckets of each histogram tom. In other words:
∀X ′ ∈ S′, ∀H ′ ∈ X ′, |bucks(H ′

i)| ≤ m.

2.3 Background

In our underlying applications, when the number of buckets becomes larger than the
available memory, we must reduce the data size. Since we are working with proba-
bilistic time series (i.e. series of histograms) we have two possible dimensions for data
compression. The first one is the bucket dimension. In this case, we merge several con-
tiguous buckets into one bucket having larger granularity.Wavelets and regression [7]
are two popular methods that can be adapted for this purpose.The second one is the time
dimension. In this case, when the number of histograms is toolarge, we merge several
histograms, corresponding to a number of time slots, into one aggregated histogram that
correspond to a larger time slot, thus increasing the granularity of our representation.

3 Compression Approach

In this section, we propose our compression approach on histograms called PHA (Prob-
abilistic Histogram Aggregation) and a strategy for histogram selection (for compres-
sion) in the global streaming process.



3.1 Bucket Dimension

As stated previously, there are two possible dimensions forcompressing probabilistic
time series: bucket and time dimensions. In this subsection, we present our approach
for compression on the bucket dimension. We first describe our method for aggregat-
ing probabilistic histograms of time intervals based on theSUM aggregation operator,
which is the running operator of this paper. Then, we explainthe compression of aggre-
gated histograms. It is not difficult to extend our approach to other aggregation operators
such as AVG (see Appendix 7 for AVG).

Aggregating Histograms with SUM. Given two histogramsH1 andH2 on two time
intervalsT1 andT2 respectively, aggregating them by a functionf means to obtain a
histogramH such that the probability of each valuek in H is equal to the cumulative
probability of all cases wherek = f(x1, x2) such thatH1(x1) > 0 andH2(x2) > 0.
In deterministic context, given two histogramsH1 andH2, for each valuek the SUM
operator returnsH(k) = H1(k) + H2(k) as output. However, this method does not
work for the case of probabilistic histograms, because we need to take into account the
probability of all cases where sum is equal tok. Below, we present a lemma that gives
a formula for performing the SUM operator over probabilistic histograms.

Lemma 1. Let H1 andH2 be two probabilistic histograms. Then, the probability of
each valuek in the probabilistic histogram obtained from the sum ofH1 andH2, de-
noted asSUM(H1, H2)[k], is given by

∑k

i=0((H1[i]×H2[k− i] +H1[k− i]×H2[i])

Proof. The probability of having a valuek in SUM(H1, H2) is equal to the probability
of having valuesi in H1 andj in H2 such thati + j = k. Thus, we must compute
the cumulative probability of all cases where the sum of two values fromH1 andH2 is
equal tok. This is done by the sigma in Lemma 1.

Example 4.Consider the histogramsH1 andH2 in Example 2. Then, the probability
of valuek = 4 in the histogramH = SUM(H1, H2) is computed as follows:

H[4] = H1[0]×H2[4]+H1[1]×H2[3]+H1[2]×H2[2]+H1[3]×H2[1]+H1[4]×
H2[0] = 0 + 0 + 0 + 0.2× 0.2 + 0 = 0.04.

Aggregation Value probabilities Error
SUM(H1,H2) 0 0 0 0 0.04 0.120.2 0.280.2 0.120.040 0 0 0

SUM(Ext(Wav(H1)),Ext(Wav(H2)))0 0 0.01 0.02 0.07 0.120.170.220.170.120.070.020.010 0 0.24
SUM(Ext(Reg(H1)),Ext(Reg(H2)))0 0 0 0.02 0.04 0.140.170.260.170.140.040.020 0 0 0.16

PHA(H1,H2) 0.0080.0080.0080.0080.0080.120.2 0.280.2 0.120.040 0 0 0 0.064

Fig. 3. Comparing the results of SUM operator on histograms compressed usingdifferent com-
pression techniques

Compressing Aggregated Histograms.An aggregated histogram is not a compressed
histogram by itself (it is just a representation having a lower granularity on the time
dimension). Let us consider the SUM operator onH1 andH2 from Example 2. The



result of this operator is given by Figure 3 (line “SUM(H1, H2)” in bold characters).
Obviously, the number of buckets is not significantly reduced and the requirement of
data compression when the memory budget has been reached is not met. This is due to
the fact that the number of values has grown, and now corresponds to the sum of the
maximum values inH1 andH2. Therefore, if we want to obtain a compressed version
of this histogram, we need to aggregate data on the buckets dimensions. We chose the
regression approach and apply it to the aggregated histogram H ′. Then, we obtain an
aggregation on the time dimension, combined to a compression on the buckets dimen-
sion.We adopt a bottom-up approach to calculate the regression form of our histograms.
First, we build a sorted list of distances between the contiguous buckets. Then, the two
most similar buckets are merged and the list of distances is updated. This process is
repeated until the desired number of buckets is reached. Here, when two contiguous
bucketsb1 andb2 are merged into the resulting bucketb′, thenb′ inherits from the start
point of b1 and the end-point ofb2. The value ofb′ is the weighted average of values in
b1 andb2. The weight of a bucketb′ is the number of original buckets that have been
merged intob′.Our claim is that paying attention to the order of these operations (i.e.
compression+aggregation vs. aggregation+compression) makes the difference between
appropriate and irrelevant manipulation of probabilisticdata. Since an aggregation op-
erator considers the probabilistic meaning of each value ina histogram, it gives better
results on the original data, compared to the result obtained on the compressed (i.e.
damaged) data. This is illustrated in the next example.

Comparative Example. The operations reported in Figure 3 illustrate the main moti-
vation for our approach:in order to choose a representation for probabilistic time series
compression, we should not focus on the error w.r.t. the original histograms, but rather
on the error w.r.t.the results of aggregation operators that will run on the compressed
data. The table of Figure 3 gives the results of the SUM operator onH1 andH2 from
Example 2 (second line, ”SUM(H1, H2)”). We compare the results of this operator on
the compressed versions ofH1 andH2, using the techniques presented Sections 2.3 and
3.1. First, we report the results of SUM on the compressed histograms on the bucket
dimension,i.e. SUM(Ext(Wav(H1)), Ext(Wav(H2))). In other words, we apply
SUM on the extended histograms of the wavelet transform ofH1 andH2 and obtain
the approximate value probabilities on the time intervalT1, . . . , T2. In the last column,
we report the error (24%) of this representation, compared to the true probability values
of SUM(H1, H2). Second, we apply SUM on the extended histograms of the regres-
sion compression onH1 andH2, i.e.SUM(Ext(Reg(H1)), Ext(Reg(H2))) and also
report the error (i.e.16%).

This comparison is provided with SUM operator applied to thehistogram com-
pressed on the time dimension. We apply a regression compression to the result of SUM
on the original histograms. The compressed histogram is given by the
“Reg(SUM(H1, H2))” line and its extension is given by the last line. In this case,
the error is only6.4%.

In this illustration, we can observe the difference betweenthe errors of each repre-
sentation. Intuitively, we observe that PHA gives the best results (bottom line of Figure



3).When the histograms are independent, the regression technique should give better
results thanwavelets.

3.2 Time Dimension

The time dimension is very important in the technique used for compressing time series.
In data streams, this dimension has a major impact since it gives the organization of
events records (i.e. their order of arrival). Moreover, most streams are cohesive on this
dimension since the series have usually low variation from one timestamp to an other.
By working on this dimension, we are thus able to lower the information loss due to the
representation granularity. In this section, we study two strategies under the decaying
factor point of view and propose a global optimization framework where the available
space is balanced between the series in the model, in order toobtain the best possible
global error.

Logarithmic Tilted Time Windows. The logarithmic Tilted Time Windows (TTW) is
a management principle based on a decaying factor [5]. When new transactions arrive
in the stream, older transactions are merged. The older the transactions, the larger the
granularity of representation (and the size of windows). The main advantage of this
representation is to give more space to recent transactions. The main drawback is to
merge old transactions with a blind approach that does not optimize the available space.

Global Error Optimization. Let us considerS, the data stream of Definition 3. At
each steps (a new histogram is added to each probabilistic time series), we want to
update the representations and their error rates in our datastructure. In order to maintain
a globally satisfying error rate, we need to choose the representations that will minimize
this error. The main idea is that merging the most similar histogram will have low
impact on the resulting error. In other words, similar histograms have higher tolerance
to merging error. Therefore, for each new histogram inS, let Xi be the time series
having the most similar consecutive histograms,i.e.H1 andH2, then i)H1 andH2 are
merged intoH3 ii) the distances betweenH3 and its direct neighbors are calculated and
iii) the sorted list of distances between consecutive histograms inS is updated. Based
on this general principle, we devise the strategies described hereafter.

PHA ’a la Ward’. The goal ofPHA is to minimize the error of a merged histogram w.r.t.
the original merged histogram. It is not possible to know, inadvance, which couple of
histograms will give the lowest error (after merging) amongall the histograms inS.
Therefore, an optimal strategy, by means ofPHA, should try all the possible combi-
nations and pick up the best one. This principle is inspired from the Ward criterion in
hierarchical clustering. However, as illustrated by our experiments, this does not always
give the best results in terms of global error.

Fast PHA. We also propose a fast strategy based onPHA. In order to reduce the time
spent on each merging operation, we propose to merge two consecutive histograms if
the sum of their number of values is minimum. Surprisingly, our experiments illustrate



the good quality of results obtained with this strategy, whereas no information about
the histogram’s content has been taken into account (only their number of probability
values).

4 On Retrieving Original Values

When the histograms have been merged, the remaining questionis “how to use this
compressed information to retrieve the original histograms?”. An ideal solution would
be able to get back to the original histograms (even if some information has been lost in
the compression). In this section, we first show that in general if the original histograms
are different, it is not possible to find them from the compressed histogram, because
of information loss in the compression process. Then, by assuming that the original
histograms are identical, we propose a method to return them. Let us first study of
the case where the original histograms are different. Let usassume that the size of the
original histograms isn. The following lemma shows the impossibility of computing
them from the merged histogram.

Lemma 2. Suppose a histogramH = SUM(H1, H2), and assume it has been gener-
ated from two different probabilistic histograms. Then, wecannot computeH1 andH2

by usingH.

Proof. Let 2n be the size of histogramH = SUM(H1, H2). Let Xi = H1[i] and
Yi = H2[i] for 0 ≤ i ≤ n. To find the variablesXi andYi for 0 ≤ i ≤ n, we must be
able to solve the following equation system:























X0 × Y0 = H[0]
X0 × Y1 +X1 × Y0 = H[1]
X0 × Yi +X1 × Yi−1 + · · ·+Xi × Y0 = H[i]
. . .
Xn × Yn = H[2n]

(1)

In this system, there are2×n+1 equations, and2×n+2 variables, i.e.Xi andYi for
0 < i < n. Since the number of equations is less than the number of variables, it is not
possible to find the value of variables.�

This is usual for data streams, where decreasing the granularity of representation
leads to approximate representations and information loss. However, our experiments
show that our approach allows very high compression rates with no, or very few, loss for
the queries performed on the stream (while traditional approaches show very important
loss). Furthermore, when the original histograms are equal, the following lemma gives
us a formula for retrieving their exact original values.

Lemma 3. Suppose an aggregated histogramH, and assume it has been generated
fromH1 andH2 with the SUM operator, i.e.H = SUM(H1, H2). Suppose thatH1 and
H2 are two equal probabilistic histograms, i.e.H1 = H2, thenH1 can be reconstructed
fromH using the following formulas:

H1(k) =

{

H[k]−
∑

k−1

i=1
H1[i]×H1[k−i]

2×H1[0]
for k > 0;

√

H[0] for k = 0
(2)



Proof. The proof is done by using Lemma 1 and the assumption thatH1[k] = H2[k]
for all k. We first prove the equation for the case ofk = 0, and then fork > 0. From
Lemma 1, we have :H1[0]×H2[0] = H[0]. By replacingH2[0] with H1[0], we obtain:
H1[0] =

√

H[0]. To prove the second case, i.e.k > 0, let us write the equation of
Lemma 1 as follows:

H[k] = H1[0]×H2[k]+H1[k]×H2[0] +
∑k−1

i=1(H1[i]×H2[k−i]+H1[k−i]×H2[i])
Then, by replacingH2[i] with H1[i] for 0 ≤ i ≤ k, we have
H[k] = 2×H1[0]×H1[k]+ 2×

∑k−1
i=1((H1[i]×H1[k − i]

Thus, we have :

H1[k] =
H[k]−

∑
k−1

i=1
H1[i]×H1[k−i]

2×H1[0]
�

By assuming the equality of the original histograms of a merged histogram, Algo-
rithm 1 computes the original histograms.

Algorithm 1 Retrieving original histograms in the case where they are identical
Require: H: a probabilistic histogram generated by applying SUM operator on two identical

histograms;2× n: highest value in the domain ofH;
Ensure: H1: the original probabilistic histogram from whichH has been generated;
1: H1[0] = sqrtH[0];
2: for k = 1 to n do
3: s = 0;
4: for i = 1 to k − 1 do
5: s = s+H1[i]×H1[k − i];
6: end for
7: H1[k] = (H[k]− s)/(2×H1[0]);
8: end for
9: return H1

5 Experiments

We have implemented the strategies described in Section 3.2with ourPHAcompression
technique.

We evaluated our approach on a real-world dataset and two synthetic datasets. The
real world dataset has been built over probabilistic frequent itemsets (PFI) [1] extracted
from theaccidentdataset of the FMI repository1. The original accident dataset contains
11 millions of events, 340K transactions and 468 items. We have added an existential
probabilityP ∈ [0..1] to each event in these datasets, with a uniform distribution. Then,
we have extracted PFIs [3] from this file. Each PFI has a probability distribution of its
frequentness at regular time intervals in the file. Our interest in this dataset is due to the
significant number of PFIs that can be extracted from it. Actually, we have recorded the
evolution of these distributions for 15 itemsets, over 574Ktimestamps, with a range of
49 possible values. For synthetic datasets, we have writtena generator that builds a set of

1 http://fimi.ua.ac.be/data/



S probabilistic time series having lengthN of histograms havingH buckets (normal or
uniform distributions) as follows. For a normal distribution, we first generate a random
time series of lengthN . Then, for each value in the time series, we consider it as the
“mean” value of the distribution and we chose a random “variance”. We have generated
two datasets: U.S20N100K.H50 and N.S10N100K.H40. For bothof these datasets, S is
the number of series, N the series length and H the size of eachhistogram.

In our tests, we don’t adopt Wavelets as a compression strategy on probability dis-
tributions because this technique does not fit the constraints of probabilistic streaming
time series. Actually, Wavelets need to be applied to staticdatasets (they don’t apply
to streaming or incremental environments) and they requiredatasets size to be a power
of two (for instance, in our context, both the number of timestamps and the number of
buckets should be a power of two for a Wavelet compression).

We compare our compression approach with extensions of a competitive approach,
which we callaveraging, that compresses two given histograms by computing their av-
erage for any given value in the domain. Formally, averagingworks as follows. LetH1

andH2 be two given histograms, then their compression means to generate a histogram
H ′ such that for any valuev in their domain,H ′(v) = AV G(H1(v), H2(v)). Actually,
in our context, the time dimension is very important since successive histograms are
more likely to be similar than random histograms in the series. Therefore, we consider
that the most adequate approach, for a comparison toPHA, is theaveragingcompres-
sion technique.

In the following,TTW.AVGis theaveragingcompression in the Tilted Time Win-
dows strategy,TTW.PHAis thePHA compression in the TTW strategy,GOF.PHA is
PHA in the Global Optimization strategy with theFastapproach (Section 3.2),GOW.PHA
is PHA in the global optimization ’a la Ward’ (Section 3.2) andGOS.AVGis theaver-
aging techniquein the global optimization strategy with SSE as a distance between
histograms. When quality is measured, it is with regards to the goal defined in Section
2.2. For this purpose, when a stream has been summarized by means ofPHA and a
techniqueT , we compare the quality of the chosen operator (in our case, it is SUM )
over the intervals built byPHAon the corresponding histograms in the representation of
T and in the original data. Our goal is to measure the information loss of various com-
pression techniques, compared to that ofPHA, having the original data as a reference.
Since the intervals built byPHA are not the same from one experiment to another, we
have one comparison diagram per dataset and per couple of compression techniques.
Measures are given according to a compression ratio. For instance, a compression of
90% for a file with 1, 000, 000 histograms means that our representation is done with
100, 000 compressed histograms.

5.1 Global Optimization: Evaluation of the Synopses Techniques

During our experiments, we observed thatGOW.PHAdoes not justify the difference in
response time. Actually, the results in terms of quality were similar to that ofGOF.PHA
with much higher response times. This is the case for all the datasets we have tested,
but due to lack of space, we don’t report this result in our figures. Our first set of ex-
periments aims to compare the synopses techniques based onaveraging, andPHA. For
this purpose, we use the global optimization principle described in Section 3.2.



Figure 4 illustrates the difference in quality of approximation according to the com-
pression ratio on the real and synthetic datasets. We can observe thatGOF.PHAgives
very good results in terms of quality whenGOS.AVGreaches high error levels (up to
75% on real data). For instance, on thenormaldataset (Figure 4(b))GOF.PHAis able
to keep an error close to zero with compression rates up to80%. This is a very good
result, illustrating the capability ofPHA to keep most of the information during the
compression, compared to the high error rates ofGOS.AVG.
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Fig. 4.Quality of approximation: Global Optimization strategy

5.2 TTW vs. Global Optimization

Here, our goal is first to investigate the difference betweenTTW.PHAandTTW.AVG.
Figure 5(d) illustrates the difference between both approaches in terms of compression
and error rates on thenormaldataset. We observe similar differences, compared to our
previous experiments betweenGOF.PHAandGOS.AVG. Then, we have measured the
error rate, timestamp by timestamp, for a TTW strategy on onehand, compared to a
Global Optimization, on the other hand. We expect TTW to givebetter results on the
most recent histograms, since they are designed for this purpose. Figure 5(e) gives a
detailed error comparison betweenGOF.PHAandTTW.AVGon the accident data set
with a compression ratio of 85%. Figure 5(f) gives the same comparison on thenormal
dataset with a compression ratio of 95%. We observe that the difference is negligible



for the most recent histograms, while it increases greatly for old histograms (one can
observe the quality plateau due to changes of TTW in the representation).
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Fig. 5. Quality of approximations: TTW vs. Global Optimization (a,b,c), TTW only (d) and de-
tailed quality of approximation, transaction by transaction (e,f)

6 Related Work

Today, probabilistic data management is recognized as a major concern [8], where an
important challenge is to provide reliable models that willallow data querying with
relevance and cohesion [14]. In this section, we review the works done on the prob-
lems that are related to the problem that we address. Aggregate query processing is an
important issue of probabilistic data management. In this context, some works were



devoted to developing efficient algorithms for returning the expected value of aggre-
gate values, e.g. [4] [10]. In [6] and [13], approximate algorithms have been proposed
for probabilistic aggregate queries. The central limit theorem [12] is one of the main
methods to approximately estimate the distribution of aggregation functions, e.g. SUM,
for sufficiently large numbers of probabilistic values. In [11], Kanagal et al. deal with
continuous aggregate queries over correlated probabilistic data streams. They assume
correlated data which are Markovian and structured in nature. In [2], a dynamic pro-
gramming algorithm for evaluating the SUM aggregate queries was proposed. The goal
of almost all the work on probabilistic aggregate query processing is to efficiently pro-
cess these queries over uncompressed probabilistic data. But, the goal of our work is
to develop compression techniques such that the aggregate queries return high quality
results on the compressed data. Despite the data overload and the quality issues that are
at stake, we only find a few contributions on probabilistic data reduction [15] [7]. Cur-
rently, the main grip for research in this domain is to consider the difference between
deterministic and probabilistic data in the compression techniques. In [7] the authors
build synopses of probabilistic data represented by histograms that associate a value
to its probability. In [15], a wavelet approach is designed for probabilistic time series
compression. The authors work on a series of probabilistic histograms and consider
two dimensions in their Wavelet algorithm. Aside from [15, 7], most of existing works
on probability distributions has focused on normal distributions. We didn’t find solu-
tions for probabilistic streaming time series where the numbers of series, buckets and
timestamps have no constraints. and they don’t consider thepossible use of aggregation
operations that can be made on these data.

7 Conclusions

We addressed the problem of probabilistic time series compression with the objective of
allowing high quality results to aggregation operators. Weproposed PHA, a new prob-
abilistic approach that takes into account the aggregationoperator in the compression
process. We evaluated our approach through experiments over several datasets. Exper-
imental results illustrate that our approach is capable to obtain compression ratios as
high as 95% over probabilistic time series, with very low (close to zero) error rates for
the results of aggregation operators. This shows that PHA fits well to analytical ap-
plications where specific aggregation operators are frequently issued over compressed
probabilistic time series.
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AVG Operator . To extend PHA to the average (AVG) operator, we need a method
for computing the average of two probabilistic histograms.Given two probabilistic his-
togramsH1 andH2, aggregating them by an AVG operator means to make a histogram
H such that the probability of each valuek is equal to the cumulative probability of
cases where the average of two valuesx1 from H1 andx2 from H2 is equal tok, i.e.
k = (x1 + x2)/2. In the following lemma, we present a formula for aggregating two
histograms using the AVG operator.

Lemma 4. Let H1 andH2 be two probabilistic histograms. Then, the probability of
each valuek in the probabilistic histogram obtained from the average ofH1 andH2,
denoted asAV G(H1, H2)[k], is computed as:

AV G(H1, H2)[k] =
∑k

i=0((H1[i]×H2[2× k − i] +H1[2× k − i]×H2[i])

Proof. The probability of having a valuek in AV G(H1, H2) is equal to the cumu-
lative probability of all cases where the average of two valuesi in H1 andj in H2 is
equal tok. In other words,j should be equal to2× k − i. This is done by the sigma in
the above equation.


