
HAL Id: lirmm-01164702
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01164702

Submitted on 10 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Answering Explanation in Inconsistent
Datalog+/- Knowledge Bases

Abdallah Arioua, Nouredine Tamani, Madalina Croitoru

To cite this version:
Abdallah Arioua, Nouredine Tamani, Madalina Croitoru. Query Answering Explanation in Incon-
sistent Datalog+/- Knowledge Bases. DEXA 2015 - 26th International Conference on Database and
Expert Systems Applications, Sep 2015, Valence, Spain. pp.203-219, 2015, �10.1007/978-3-319-22849-
5_15�. �lirmm-01164702�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01164702
https://hal.archives-ouvertes.fr

Query Answering Explanation in Inconsistent
Datalog+/- Knowledge Bases

Abdallah Arioua, Nouredine Tamani, Madalina Croitoru

University Montpellier, France

Abstract. The paper addresses the problem of explaining Boolean Conjunctive
Query (BCQ) entailment in the presence of inconsistency within the Ontology-
Based Data Access (OBDA) setting, where inconsistency is handled by the in-
tersection of closed repairs semantics (ICR) and the ontology is represented by
Datalog+/- rules. We address this problem in the case of both BCQ acceptance
and failure by adopting a logical instantiation of abstract argumentation model;
that is, in order to explain why the query is accepted or failed, we look for pro-
ponent or opponent sets of arguments in favor or against the query acceptance.
We have also studied the computational complexity of the problem of finding an
arbitrary explanation as well as all explanations.

1 Introduction

In the popular OBDA setting the domain knowledge is represented by an ontology
facilitating query answering over existing data [22]. In practical systems involving
large amounts of data and multiple data sources, data inconsistency might occur. Many
inconsistency-tolerant semantics [7, 6, 17, 18] have been proposed that rely on the no-
tion of data repairs i.e. subsets of maximally consistent data with respect to the ontology.
Different query answering strategies over these repairs (called semantics) are investi-
gated in the literature (computing answers that hold in every repair corresponds to AR-
semantics, computing answers that hold under the intersection of repairs corresponds to
IAR-semantics or to the intersection of closed repairs corresponds to ICR-semantics).
Here we only focus on the ICR-semantics. Query answering under these semantics
may not be intuitively straightforward and can lead to loss of user’s trust, satisfaction
and may affect the system’s usability [20]. Moreover, as argued by Calvanese et al.[10]
explanation facilities should not just account for user’s “Why Q ?” question (why a
query holds under a given inconsistency-tolerant semantics) but also for question like
“Why not Q ?” (why a query does not hold under a given inconsistency-tolerant se-
mantics). Given an inconsistent OBDA setting equipped with an inconsistency-tolerant
semantics (such as ICR-semantics) and given a boolean conjunctive query Q we con-
sider two query answering problems, namely: (RQ1) “why does Q hold under such
semantics ?” and (RQ2) “why Q does not hold under such semantics ?”. For example,
let us a consider a Unique Name Assumption knowledge base where employees work
in departments and use offices, some employees direct departments and supervise other
employees. Also a supervised employee cannot be a manager. A director of a given
department cannot be supervised by an employee of the same department and two em-
ployees cannot be direct the same department. We consider factual information stating

that John and Tom direct the finance department, where they both work in. Furthermore
Tom is a supervisor of John and it also directs the web department. Let us now consider
the query is John an employee. The knowledge base is inconsistent (e. g. Tom and John
both direct finance). We can repair it, for instance considering Tom working in finance
and directing the web department with John working and directing finance etc. (there
are three such repairs). Every repair will entail that John is an employee. However, this
is not true of the query asking whether John works in finance because we can consider
a repair where this does not hold. These intuitions are formalised in the paper.

In a survey conducted in [25], knowledge base explanation that takes the form of
‘Justification’ has proven to be more effective than other types of explanation (Line
of Reasoning and Strategy for instance). This type of explanation aims at showing the
reason why certain conclusions have been drawn in particular circumstances. It is note-
worthy that “Justification” is represented as arguments in [25]. Following this result,
we build upon the logical instantiation of Dung’s abstract argumentation framework for
OBDA in [11] and exploit their equivalence between ICR-semantics and sceptical ac-
ceptance in argumentation framework in order to provide novel explanation facilities
for ICR-semantics. In addition, we show how the ICR-semantics can be interpreted in
the light of argumentation. We show that ICR-semantics behaves distinctively with re-
spect to the question to be answered. In “Why Q ?” questions, ICR-semantics ensures
that a query is accepted if it is supported by a set of arguments that are well-defended.
Whereas, in “Why not Q ?” questions, a query fails if its supporting arguments are
attacked by a set of arguments that are well-defended. We show the link between our
approach and the hitting set based approach of diagnosis [23]. Our work models the
hitting set as a set of arguments, as opposed to a set of faulty components. We focus on
argumentation because it opens interesting and promising research avenues. The con-
tribution of the paper lies in the following points. First, we propose an explanation for
the question “why does Q hold under such semantics ?” based on the set of arguments
that support the entailment of the query, called proponent set of the query. We define
the notion of a strong proponent set that will form the basis of the query acceptance
explanation. Second, we propose an explanation for the question “why Q does not hold
under such semantics ?” based on the set of arguments that does not support the entail-
ment of the query, opponent set of the query. Further, we show that these opponent sets
play an important role in the failure of the query and form the basis of the query failure
explanation. Third, we propose algorithms for finding an arbitrary explanation as well
as all explanations. Furthermore, we show the relation between the former problems
and the problem of finding minimal hitting sets.

2 Formal Settings and Problem Statement

In this section, we introduce: (1) OBDA setting and representation language, (2) the
inconsistency-tolerant semantics and (3) the argumentation framework.

2.1 Language Specification.

There are two major approaches to represent an ontology for the OBDA problem: De-
scription Logics (DL) (such as EL [4] and DL-Lite [9] families) and rule-based lan-

guages (such as Datalog+/- [8] language, a generalization of Datalog that allows for
existentially quantified variables in rules heads). Despite its undecidability when an-
swering conjunctive queries, different decidable fragments of Datalog+/- are studied
in the literature [5]. These fragments generalize the above mentioned DL families and
overcome their limitations by allowing any predicate arity as well as cyclic structures.
Here we restrict ourselves to Datalog+/- classes where the skolemised chase is finite
(Finite Expansion Sets). We consider the positive existential conjunctive fragment of
first-order logic, denoted by FOL(∧,∃), which is composed of formulas built with the
connectors (∧,→) and the quantifiers (∃,∀). We consider first-order vocabularies with
constants but no other function symbol. A term t is a constant or a variable, different
constants represent different values (unique name assumption), an atomic formula (or
atom) is of the form p(t1, ..., tn) where p is an n-ary predicate, and t1, ..., tn are terms.
A ground atom is an atom with no variables. A variable in a formula is free if it is not
in the scope of a quantifier. A formula is closed if it has not free variable. We denote
by X (with a bold font) sequences of variables X1, .., Xk with k ≥ 1. A conjunct C[X]
is a finite conjunction of atoms, where X is the sequence of variables occurring in C.
Given an atom or a set of atoms A, vars(A), consts(A) and terms(A) denote its set
of variables, constants and terms, respectively.

An existential rule (rule) is a first-order formula of the form r = ∀X∀Y(H[X,Y])→
∃ZC[Z,Y], with vars(H) = X ∪ Y, and vars(C) = Z ∪ Y where H and C are con-
juncts called the hypothesis and conclusion of R, respectively. We denote by R =
(H,C) a contracted form of a rule R. An existential rule with an empty hypothesis is
called a fact. A fact is an existentially closed (with no free variable) conjunct.

We recall that a homomorphism π from a set of atoms A1 to set of atoms A2 is a
substitution of vars(A1) by terms(A2) such that π(A1) ⊆ A2. Given two facts f and
f ′ we have f |= f ′ iff there is a homomorphism from f ′ to f , where |= is the first-order
semantic entailment. A rule r = (H,C) is applicable to a set of facts F iff there exists
F ′ ⊆ F such that there is a homomorphism π from H to the conjunction of elements
of F ′. If a rule r is applicable to a set F , its application according to π produces a
set F ∪ {π(C)}. The new set F ∪ {π(C)}, denoted also by r(F), is called immediate
derivation of F by r. A negative constraint is a first-order formula n = ∀X H[X]→⊥
where H[X] is a conjunct called hypothesis of n and X sequence of variables appearing
in the hypothesis. Knowledge base. A knowledge base K = (F ,R,N) is composed
of finite set of facts F and finite set of existential rules R and a finite set of negative
constrains N .

Example 1. The following example is inspired by [8]. In an enterprise, employees work
in departments and use offices, some employees direct departments, and supervise other
employees. In addition, a supervised employee cannot be a manager. A director of a
given department cannot be supervised by an employee of the same department, and
two employees cannot direct the same department. The following sets of (existential)
rulesR and negative constraints N model the corresponding ontology:

R =

∀x∀y (works_in(x, y)→ emp(x)) (r1)

∀x∀y (directs(x, y)→ emp(x)) (r2)

∀x∀y (directs(x, y) ∧ works_in(x, y)→ manager(x)) (r3)

∀x (emp(x)→ ∃y(office(y) ∧ uses(x, y))) (r4)

N =

∀x∀y (supervises(x, y) ∧manager(y))→ ⊥ (n1)

∀x∀y∀z (supervises(x, y) ∧ works_in(x, z) ∧ directs(y, z) ∧ x 6= y)→ ⊥ (n2)

∀x∀y∀z(directs(x, z) ∧ directs(y, z) ∧ x 6= y)→ ⊥ (n3)

Let us suppose the following set of facts F that represent explicit knowledge:

F =

 directs(John, d1) (f1) directs(Tom, d1) (f2)
directs(Tom, d2) (f3) supervises(Tom, John) (f4)

works_in(John, d1) (f5) works_in(Tom, d1) (f6)

R-derivation. Let F ⊆ F be a set of facts andR be a set of rules. AnR-derivation
of F in K is a finite sequence 〈F0, ..., Fn〉 of sets of facts s.t F0 = F , and for all
i ∈ {0, ..., n} there is a rule ri = (Hi, Ci) ∈ R and a homomorphism πi from Hi to Fi

s.t Fi+1 = Fi ∪ {π(Ci)}. For a set of facts F ⊆ F and a query Q and a set of rulesR,
we say F,R |= Q iff there exists anR-derivation 〈F0, ..., Fn〉 such that Fn |= Q.

Closure. Given a set of facts F ⊆ F and a set of rules R, the closure of F with
respect to R, denoted by ClR(F), is defined as the smallest set (with respect to ⊆)
which contains F and is closed under R-derivation. By considering the skolemised
chase and the finite fragments of Datalog+/- this set is unique (i.e. universal model).

Finally, we say that a set of facts F ⊆ F and a set of rulesR entail a fact f (and we
write F,R |= f) iff the closure of F by all the rules entails f (i.e. ClR(F) |= f).

A conjunctive query (CQ) has the form Q(X) = ∃YΦ[X,Y] where Φ[X,Y] is a
conjunct such that X and Y are variables appearing in Φ. A Boolean CQ (BCQ) is a CQ
of the form Q() with an answer yes or no. We refer to a BCQ with the answer no as
failed query, whereas a query with the answer yes as accepted query.
Inconsistency-Tolerant Semantics. Given a knowledge base K = (F ,R,N), a set
F ⊆ F is said to be inconsistent iff there exists a constraint n ∈ N such that F |= Hn,
where Hn is the hypothesis of the constraint n. A set of facts is consistent iff it is not
inconsistent. A set F ⊆ F is R-inconsistent iff there exists a constraint n ∈ N such
that ClR(F) |= Hn. A set of facts is said to beR-inconsistent iff it is notR-consistent.
A knowledge base (F ,R,N) is said to be inconsistent iff F isR-inconsistent.

Notice that (like in classical logic), if a knowledge base K = (F ,R,N) is incon-
sistent, then everything is entailed from it. A common solution [6, 17] is to construct
maximal (with respect to set inclusion) consistent subsets of K. In this finite chase case
there is a finite number of such sets. They are called repairs and denoted byRepair(K).
Once the repairs are computed, different semantics can be used for query answering
over the knowledge base. In this paper we focus on (Intersection of Closed Repairs
semantics) [6].

Definition 1 (ICR-semantics). Let K = (F ,R,N) be a knowledge base and let Q be
a query.Q is ICR-entailed fromK, writtenK |=ICR Q iff

⋂
A∈Repair(K) ClR(A) |= Q.

Example 2. The knowledge base in Example 1 is inconsistent because the set of facts
{f1, f4, f6} ⊆ F is inconsistent since it violates the negative constraint n2. In this
example we obtain 3 repairs. The following is one of them:
A1 = {directs(John, d1), supervises(Tom, John), directs(Tom, d2)}

The closure of A1 is:

ClR(A1) = {directs(John, d1), supervises(Tom, John),
directs(Tom, d2),manager(Tom), emp(John), emp(Tom),
∃y1(office(y1) ∧ uses(Tom, y1))),

∃y2(office(y2) ∧ uses(John, y2)))}

2.2 Problem Statement

In what follows we introduce the motivation of providing explanation facilities for In-
consistent OBDA.

Example 3. Consider the query Q = emp(John) in the knowledge base of Example 1.
Q is accepted under ICR-semantics since it follows from the intersection of all closed
repairs. The user may be interested in knowing why this is the case.
The query Q′ = works_in(John, d1) is a failed query since it does not follow from
the intersection of all closed repairs. Such query failure may need an explanation when
the user is expecting the acceptance of the query.

The above example shows the need for explanation facilities with the aim of helping
the user to understand why a query holds or fails. Thus, we define our problem as: given
an inconsistent knowledge base K and a boolean conjunctive query Q:

RQ1: why Q does hold under the ICR-semantics in the knowledge base K ?
RQ2: why Q′ does not hold under the ICR-semantics in the knowledge base K ?

The Proposed Solution. To depict the intuition underlying our proposal, in what fol-
lows we show how an explanation can be provided by means of argumentation within
the context of an inconsistent OBDA.

Example 4 (Explanation). Let us consider the query Q = emp(John). The knowledge
base of Example 1 is inconsistent thus we have the following consistent possibilities:

1. Tom works in d1 and directs d2, while John works in d1 and directs d1.
2. Tom directs d2 and supervises John who directs d1.
3. Tom works in d1, directs d1 and d2, and supervises John who in turn works in d1.

Please note that the depiction of logical rules in textual form is for illustration pur-
poses only. Thus, in this paper we do not address the problem of generating textual
explanation based on natural language processing.

From above we can always infer Q = emp(John) since from (1) and (3) we can
construct (including and not limited to) the argument “John is an employee because he
works in d1”, and from (2) we get “John is an employee because he directs d1”. In other
words, the query Q is supported from all possible “points of view”. This support is in a
form of arguments, these arguments are grouped in what we call a “proponent set”.

As for query Q′ = works_in(John, d1), we can see that in (1) and (3) we have
an argument that says “John works in d1” which supports Q′. However, the query is
not supported from all points of view, for instance in (2) we have the argument “John
directs d1 and he is supervised by Tom, so John cannot work in d1 since he would be
a manager and a manager cannot be supervised" that attacks the argument “John works
in d1’. It seems that the former argument is holding the query Q′ from being accepted
from all possible points of view. Note that, there may be more than one argument that
jointly hold the query from being accepted. These arguments are grouped in what we
call “opponent set”.

In the two cases (Q and Q′) we consider proponent and opponent sets as the core of
our explanation. Moreover, we deepen the explanation by considering possible attacks

scenario between arguments aiming at showing the user the dialectical procedure that
allows the acceptance or the failure of the query. To do so, we make use of Dung’s
argumentation frameworks [12] adapted for the aforementioned rule-based language in
[11]. First let us specify the structure of an argument under such language.
2.3 Rule-Based Dung Argumentation Framework Instantiation

As defined in [11], given a knowledge base K = (F ,R,N), the corresponding argu-
mentation framework AFK is a pair (Arg, Att) where Arg is the set of arguments that
can be constructed from F and Att is an asymmetric binary relation called attack de-
fined over Arg× Arg. An argument is defined as follows.

Definition 2 (Argument [11]). Given a knowledge base K = (F ,R,N), an argument
a is a tuple a = (F0, F1, . . . , Fn, C) where:
• (F0, . . . , Fn) is anR-derivation of F0 in K,
• C is an atom, a conjunction of atoms, the existential closure of an atom or the

existential closure of a conjunction of atoms such that Fn |= C.
F0 is the support of the argument a (denoted Supp(a)) and C is its conclusion

(denoted Conc(a)).

Example 5 (Argument). The following argument indicates that John is an employee
because he directs department d1:

a = ({directs(John, d1)}, {directs(John, d1), emp(John)}, emp(John)).

Definition 3 (Attack [11]). The attack between two arguments expresses the conflict
between their conclusion and support. We say that an argument a attacks an argument
b iff there exists a fact f ∈ Supp(a) such that the set {Conc(b), f} isR-inconsistent.

Example 6 (Attack). Consider the argument a of Example 5, the following argument
b = ({supervises(Tom, John), works_in(Tom, d1)}, supervises(Tom, John) ∧
works_in(Tom, d1)) attacks a, because {supervises(Tom, John)∧works_in(Tom,
d1), directs(John, d1)} isR-inconsistent since it violates the constraint n2.

Admissibility, Semantics and Extensions in AF . Let K = (F ,R,N) be a knowl-
edge base andAFK its corresponding argumentation framework. Let E ⊆ Arg be a set
of arguments. We say that E is conflict free iff there exist no arguments a, b ∈ E such
that (a, b) ∈ Att. E defends an argument a iff for every argument b ∈ Arg, if we have
(b, a) ∈ Att then there exists c ∈ E such that (c, b) ∈ Att. E is admissible iff it is con-
flict free and defends all its arguments. E is a preferred extension iff it is maximal (with
respect to set inclusion) admissible set (please see [12] for other types of semantics).

We denote by Ext(AFK) the set of all extensions of AFK. An argument is scep-
tically accepted if it is in all extensions, credulously accepted if it is in at least one
extension and not accepted if it is not in any extension.
Equivalence between ICR and Preferred semantics. Let K = (F ,R,N) be a
knowledge base and AFK the corresponding argumentation framework. A query Q is
sceptically accepted under preferred semantics iff (

⋂
E∈Ext(AFK) Concs(E)) � Q, such

that Concs(E) =
⋃

a∈E Conc(a). The results of [11] show the equivalence between
sceptically acceptance under preferred semantics and ICR-entailment:

Theorem 1 (Semantics equivalence[11]). Let K = (F ,R,N) be a knowledge base,
let AFK the corresponding argumentation framework, Q a query. K |=ICR Q iff Q
sceptically accepted under preferred semantics.

3 Argumentative Explanation

In this section we introduce the argumentation-based explanation for query acceptance
(Subsection 3.1) and failure (Subsection 3.2). Note that due to the finiteness property of
our language the argumentative framework is finite.

3.1 Explaining Query Acceptance

We introduce the notion of supporting argument of a query, notion needed when select-
ing the arguments for or against a query:

Definition 4 (Supporting argument). LetK be a knowledge base,AFK = (Arg, Att)
the corresponding argumentation framework, Q a query. An argument a ∈ Arg sup-
ports Q iff Conc(a) � Q. The set of all supporting arguments of Q is denoted by
Sup(Q).

A query may have more than one supporting argument with different statuses (ac-
cepted or not accepted). The arguments with an accepted status (belong to at least one
extension) form a proponent set of the query Q. We exclude not accepted arguments
since they cannot form a base for the support of the acceptance of the query.

Definition 5 (Proponent set). Let K be a knowledge base, AFK the corresponding
argumentation framework, Ext(AFK) set of all preferred extensions of AFK, Q a
query and Sup(Q) the set of all supporting arguments ofQ. Then, the set P ⊆ Sup(Q)
is a proponent set of Q iff: (1) ∀a ∈ P there exists an extension E ∈ Ext(AFK) such
that a ∈ E; (2) there exists no P ′ such that P ⊂ P ′ and P ′ satisfies (1).

Note that there is only one proponent set of any query Q.

Example 7. Consider a knowledge baseK that corresponds to an argumentation frame-
work s.t. the set of arguments is Arg = {a, b, c, d, e, f, g, h} and the attack relation
is: Att = {(f, a), (c, f), (e, c), (b, e), (b, f), (d, b), (c, d), (c, g), (h, g)}. For space rea-
sons the knowledge base underpinning this argumentation framework is not shown. Let
Q be a query. Suppose that we have Conc(a) |= Q, Conc(d) |= Q and Conc(g) |= Q.
This means that the set of supporting arguments of Q is {a, d, g}. The set of preferred
extensions is Ext(AFK) = {E1 = {a, c, b, h}, E2 = {e, f, d, h}}. The proponent set
P of Q is {a, d}. Notice that g /∈ P since it does not belong to any extension.

A stronger notion of support for a query is expressed in what we call strong propo-
nent set. The arguments in this set are forced to be distributed over all extensions.

Definition 6 (Strong proponent set). Let K be a knowledge base, AFK the corre-
sponding argumentation framework, Ext(AFK) set of all preferred extensions ofAFK,
Q a query and P the proponent set of Q. Then, a set S ⊆ P is a strong proponent set
of Q iff: (1) ∀E ∈ Ext(AFK) there exists an argument a ∈ S such that a ∈ E . (2)

there exists no proper subset S ′ ⊂ S such that S ′ satisfies (1). We say the proponent set
P is strong if it has at least one strong proponent set. The set of all strong proponent
sets of a query Q is denoted by Strong(Q). Computing Strong(Q) is called the strong
proponent set problem.

Example 8. Consider the same argumentation framework of Example 7 and make the
slight modification such that the set of supporting arguments ofQ is {a, g}. In this case,
the proponent set of Q is P = {a}. Note that Q has no strong proponent set since there
is an extension E2 = {e, f, d, h} for which we can never construct a set S ⊆ P in which
there is an argument that belongs to E2.

If a query has a strong proponent set then this indicates that the query is supported
from all possible extensions. This property has a strong relation with ICR-semantics as
expressed by the next proposition.

Proposition 1. Let K be a knowledge base, AFK the corresponding argumentation
framework, Q a query and P its proponent set. Then K �ICR Q iff P is strong.

Proof. In the technical report [1] Page 7.

Proposition 1 indicates that the strong proponent set represents the reason why a
query is accepted under ICR-semantics. The ICR-semantics, in fact, operates such that
if the query is not supported from one extension then it should not be accepted. So,
strong proponent set will form the basis of an explanation for query acceptance under
ICR-semantics.

Example 9 (Count. Example 7). In order to provide an explanation for the acceptance
of the query Q in Example 7, we should mention the fact that the query is supported
by the well-defended arguments a and d. In general, we need to show that whenever
an argument is attacked, there is an argument or a set of arguments that defend it. For
instance, the argument a is attacked by f but it is defended by c and b. Moreover, the
argument d is attacked by c but it is defended by e.

The intuition captured in the previous example is formalized as a tree structure
called a defense tree.

Definition 7 (Defense Tree). Let a ∈ Arg. A Defense Tree DT (a) of a is a tree of
arguments such that: (1) H(DT (a)) = 3; (2) DT (a)’s root node is the argument a,
and ∀b, c ∈ Arg : b is a child of c in DT (a) iff (b, c) ∈ Att; (3) {a ∪ leafs(DT (a))} is
conflict-free; (4) every internal node has a child. Notice that H(DT (a)) indicates the
height of the tree and leafs(DT (a)) indicates the leafs of the tree.

Example 10. Figure 1 depicts a defense tree for the arguments a and c of Example 7.

Note that, if a query Q is accepted, then all arguments in Strong(Q) have a defense
tree since they are accepted with respect to an extension. Given a set of arguments S,
the set of all defense trees for all arguments in S is denoted DT (S) and defined as
DT (S) = {DT (a)|a ∈ S}.

Based on this notion, an explanation in our framework is not just the strong propo-
nent set, but also a description of how these arguments are defended.

!
a"

f"

c" b"

d"

c"

e"

Fig. 1: Defense trees of the arguments a (left) and d (right).

Definition 8 (Explanation for query acceptance). Let K be an inconsistent knowl-
edge base, Q a query such that K �ICR Q. An explanation E+

K(Q) for the acceptance
of Q in K is the tuple 〈S,DT (S)〉 such that S is a strong proponent set of Q and
DT (S) is the set of all defense trees of arguments in S. The set of all explanations for
the acceptance of Q is denoted by exp+(Q).

3.2 Explaining Query Failure

In this subsection we consider the problem of explaining why a query Q is not ICR-
entailed. In this case the failure of a query is more related to “the opposition against the
query” than “ the support for the query”. Let us start by defining an opponent set.

Definition 9 (Opponent set). Let K be an inconsistent knowledge base and AFK =
(Arg, Att) its corresponding argumentation framework, Q be a query and let P be a
proponent set of Q. A finite set of arguments O is an opponent set of Q iff:

1. ∀a ∈ O there exists an extension E ∈ Ext(AFK) such that a ∈ E .
2. For every b ∈ P , there exists a ∈ O such that (a, b) ∈ Att.
3. ∀a ∈ O and ∀b ∈ P , it never holds that a and b are in the same extension.
4. for all a ∈ O there exists an argument b ∈ P such that (a, b) ∈ Att.

An opponent set is defined with respect to a proponent set since an opponent of Q is a
set of arguments that are against the arguments that support Q.

As for property (1) and (2) represent minimal requirements, i.e. acceptance and
attack. Property (3) insures coherence, that means an argument that belongs to an ex-
tension should not be against a queryQ while there are some arguments in its extension
which are supporting Q. The last property reinforces the property (2) and eliminates
redundancy. This means that an opponent set has to incorporate only arguments that
participate in the attack on the proponent set. Notice that, according to the definition
above, there may be more than one opponent set of a query. Thus, the set of all oppo-
nent sets of a query Q is denoted by OPP(Q).

Example 11 (Opponent of a query). Consider an argumentation framework AFK s.t.
Ext(AFK) = {E1 = {a, b, c}, E2 = {d, e, f}, E3 = {g, h, k,m}} and its attack re-
lation contains the following attacks among others {(f, a), (h, c)}. Consider a query
Q with a proponent set P = {a, c}. Then, the set of all opponent sets is OPP(Q) =

{{f, h}}. As stated in Definition 9 all the arguments of P are attacked (the argument f
(resp. h) attacks a (resp. c)). In addition, the argument f is accepted w.r.t the extension
E2 and the argument h is accepted w.r.t the extension E3. The presence of the argument
f (resp. h) in E2 (resp. E3) prevents the query to be inferred from all extensions.

The relation between opponent set and the acceptance and failure of a query is
presented i what follows.

Proposition 2. Let K be an inconsistent knowledge base, Q be a query and let P be a
proponent set of Q. Then, P is strong iff OPP(Q) = ∅.

Corollary 1. Let K be an inconsistent knowledge base, Q be a query and let P be a
non-empty proponent set of Q. Then, K |=ICR Q iff OPP(Q) = ∅.

Proof. In [1] pages 9-10.

Proposition 2 and Corollary 1 indicate that if the query has a support represented by
the proponent set P , and an opposition represented by opponent sets, then the query is
not accepted. In this case, an opponent set of a query Q plays an important role in the
failure of the query and can form the basis of the explanation.

Like in explaining query acceptance, we do not limit the explanation to the argu-
ments that force the query to fail, we also present how these arguments are defended.

Definition 10 (Explanation for query failure). Let K be an inconsistent knowledge
base, Q a query such that K 2ICR Q. An explanation E−K (Q) for the failure of Q in K
is the tuple 〈O,DT (O)〉 such that O is an opponent set for Q and DT (S) is the set of
all defense trees of arguments in S. The set exp−(Q) is the set of all E−K (Q).

The selection of the set O (resp. S in Definition 8) is arbitrary and it can be defined
according to some criteria, which their specification is beyond the scope of the paper.

4 Algorithms

As mentioned in Section 2, boolean conjunctive query answering in Datalog+/- under
general existential rules is undecidable. Thus, the results and the algorithms presented
in this section are considered only on families of Datalog+/- for which BCQ answering
is tractable w.r.t data complexity1(for a detailed review see [8, 14]). In addition, in these
fragments the closure (ClR(F)) over any set of facts F is finite and any R-derivation
from a knowledge base is finite (see [8, 14]). Consequently, the corresponding argumen-
tation framework AFK = (Arg(F), Att) of the knowledge base K is finite. Precisely,
the set of all arguments Arg(F) and the set of all extensions Ext(AFK) are finite. Fur-
thermore, since an argument is an R-derivation and an R-derivation is finite so all the
arguments of AFK are finite.

An explanation has two components: a defense tree and strong proponent set (resp.
opponent set). Since the defense tree is a common component for query acceptance
and failure explanation, we start in the next subsection by presenting Algorithm 1 that

1 This refers to the complexity of evaluating the query over the knowledge base where the size
of the query is assumed to be constant.

Algorithm 1 DEFENSETREE

1: function DEFENSETREE(a, Ext(AFK))
2: DefTree = ∅;Attackers = ∅;Defenders = ∅
3: for all E ∈ Ext(AFK) such that a /∈ E do
4: Attackers = Attackers ∪ {b|b ∈ E such that b attacks a}
5: DefTree = DefTree ∪ {(b, a)|b ∈ Attackers}
6: for all E ∈ Ext(AFK) do
7: for all b ∈ Attackers do
8: Defenders = Defenders ∪ {c|c ∈ E such that c attacks b}
9: DefTree = DefTree ∪ {(c, b)|c ∈ Defenders}

10: Return (DefTree)

computes a defense tree for a given argument. Then, before presenting algorithms for
computing strong proponent set and opponent set, we show the relation between the
former sets (separately) and minimal hitting sets and present Algorithm 2 & 3 that
establish such relation. Next, in Algorithm 4 we present the algorithm that compute
minimal hitting set in order to use it in the final algorithm (Algorithm 5) to compute an
explanation.

4.1 Computing Defense Tree

The function DefenseTree() in Algorithm 1 takes as an input an argument a and a set of
extensions. First, it computes the set of attackers of a (for-loop at line 4) then for each
attacker it computes its attackers (for-loop at line 7). Finally, the function returns the
defense tree as a form of a binary relation called DefTree. The time complexity of the
algorithm is mainly related to the computation of attack between two arguments in line
5 and 9 (since all the loops induce only a polynomial overhead). This issue comes down
to check if the conclusion and the hypothesis of the two arguments are unsatisfiable in
K which can be done efficiently ([8]).

4.2 Computing Strong Proponent and Opponent sets

In what follows we define the Hitting Set Problem.

Definition 11 (Hitting Set Problem). Given a collection C = {S1, ..., Sm} of finite
nonempty subsets of a set B (the background set). A hitting set of C is a setH ⊆ B such
that Sj ∩ H 6= ∅ for all Sj ∈ C. A hitting set for C is minimal iff no proper subset of
it is a hitting set for C. The set of all minimal hitting sets is denoted byM. Computing
M is known as the hitting set problem.

The hitting set problem amounts to find all minimal (w.r.t ⊆) sets of B whose intersec-
tion with each set of C is non-empty.

Reducibility. Recall that, the problem of computing strong proponent sets (resp.
opponent sets) is defined as the problem of computing all strong proponent sets (resp.
opponent sets) for a given query Q. It turns out that the problem of computing strong
proponent sets (resp. opponent sets) is polynomially reducible to the hitting set problem.
As its name indicates, Algorithm 2 (resp. Algorithm 3) is the algorithm responsible for

Algorithm 2 REDUCESTRONGTOHITTING

1: function REDUCESTRONGTOHITTING(Ext(AFK),Q)
2: B = ∅; C = {{}}
3: for all E ∈ Ext(AFK) do
4: S = {a|a ∈ E such that Conc(a) |= Q}
5: C = C ∪ {S}
6: B =

⋃
S∈C S

7: Return (C,B)

Algorithm 3 REDUCEOPPONENTTOHITTING

1: function REDUCEOPPONENTTOHITTING(Ext(AFK),Q)
2: B = ∅; C = {{}}
3: for all E ∈ Ext(AFK) do
4: S = {a|a ∈ E such that Conc(a) |= Q}
5: for all E ∈ Ext(AFK) such that @a ∈ E and Conc(a) |= Q do
6: for all a ∈ S do
7: Attakers = {b|b ∈ E such that b attacks a}
8: C = C ∪ {Attakers}
9: B =

⋃
S∈C S

10: Return (C,B)

transforming any instance of the strong proponent set (resp. opponent set) problem to
an instance of the hitting set problem.

Theorem 2. [Reduction] Let K be a knowledge base, AFK the corresponding argu-
mentation framework, Ext(AFK) = {E1, ..., Em} set of all preferred extensions of
AFK and Q be a query.

– Suppose that C = {S1, ..., Sm} and B are the outputs of the function ReduceS-
trongToHitting (Ext(AFK), Q), then the set of argumentsH is a strong proponent
set of Q if and only ifH is a minimal hitting set of C.

– Suppose that C = {S1, ..., Sm} and B are the outputs of the function ReduceOp-
ponentToHitting (Ext(AFK), Q), then the set of arguments H is an opponent set
of Q iffH is a minimal hitting set of C.

Proof. In [1] pages 12-13.

Complexity of Algorithm 2 & 3. It is not hard to see that Algorithm 2 & Algorithm
3 run in a polynomial time O(n2) considering the worst-case scenario, in which n =
max(|Ext(AFK)|, |S|) where |S| is the cardinality of the set of all arguments that
support Q.

4.3 Computing Explanations

In order to compute an explanation we need to compute one strong proponent set (or
opponent set) of Q. As a result of Theorem 2, computing one strong proponent set is at

Algorithm 4 COMPUTEMINHITTINGSET

1: function COMPUTEMINHITTINGSET(C,B = {m1, ...,mn})
2: M = B
3: for i← 1, n do
4: H =M -{mj}
5: if ∀S ∈ C,H ∩ S 6= ∅ then M = H
6: Return (M)

Algorithm 5 COMPUTEEXPLANATION(Q,TYPE,Ext(AFK))
Input: The query to be explained, boolean variable type indicating the explanation

type, the set of all extensions of the corresponding argumentation framework.
Output: An explanation.

1: if type = true then (C,B) = ReduceStrongToHitting(Ext(AFK), Q)
2: else(C,B) = ReduceOpponentToHitting(Ext(AFK), Q)

3: H = CompMinHittingSet(C,B)
4: DT (H) = {DefenseTree(a, Ext(AFK))|a ∈ H}
5: Return (H,DT (H))

least as hard as computing one minimal hitting set. Based on the polynomial algorithm
(Algorithm 4) for computing one minimal hitting set proposed in [13], we will com-
pute a strong proponent set (or an opponent set) by means of the reduction algorithms
(Algorithm 2 & 3).

Algorithm 5 computes an explanation for query failure and query acceptance. The
boolean constant true corresponds to acceptance of Q and false corresponds to the fail-
ure of Q. The algorithm uses the reduction (lines 1 and 2) to make use of the hitting set
algorithm (line 3). Finally, in line 4 the algorithm returns the explanation after having
computed the defense trees of the set S. The complexity of ComputeExplanation de-
pends on the complexity of ReduceStrongToHitting() (resp. ReduceStrongToHitting()),
CompMinHittingSet() and DefenseTree() which is polynomial.

Computing all explanations is hard to perform since one has to find all strong propo-
nent (resp. opponent) sets to be able to compute all explanations, and finding all strong
proponent (resp. opponent) sets is at least as hard as find all minimal hitting sets.

Theorem 3. Let K be an inconsistent knowledge base, Q a query and exp+(Q) (resp.
exp−(Q)) the set of all explanations of the acceptance (resp. failure) of Q. Then, com-
puting exp+(Q) (resp. exp−(Q)) is NP-hard.

Proof. In [1] page 14.

Despite the hardness of computing all explanations, a brute-force algorithm can be
constructed as follows. We use the reduction function ReduceStrongToHitting() and Re-
duceOpponentToHitting(). Next, we use Reiter’s well-known hitting set algorithm [23,
15] as a subroutine called ComputeAllMinHit(). After that, given the reduction between
the problem of hitting set and strong proponent (or opponent) set, this subroutine can

compute all strong proponent (or opponent) sets. Finally, for each strong proponent (or
opponent) set we compute the set of defense trees of its arguments.

5 Discussion and conclusion
In recent years explanation has drawn a tremendous attention in the field of Description
Logics, OWL Ontologies debugging and Database Systems. In the field of databases
there has been work on explaining query answering and query failure [21] using causal-
ity and responsibility or cooperative architectures. In the area of DLs, the question was
mainly about explaining either reasoning (subsumption and non-subsumption) or un-
satisfiability and incoherence. In [19] the authors addressed the problem of explaining
subsumption and non-subsumption in a coherent and satisfiable DL knowledge base
using formal proofs as explanation while other proposals [24] have used Axiom pin-
pointing and Concept pinpointing as explanation to highlight contradictions within an
unsatisfiable and incoherent DL KB. Another proposal [16] is the so-called justification-
oriented proofs in which the authors proposed a proof-like explanation without the need
for a deduction system.

In previous work [2, 3] we have proposed explanation facilities for inconsistent-
knowledge base, we focused in these work on the representational aspects of explana-
tion where a dialogue between the user and the system takes place to explain query
failure, in this work we are more interested in the definition of the core explanation and
the computational aspects, in addition we handle query answering in its broader sense,
i.e. query failure and query acceptance.

Acknowledgement Financial support from the French National Research Agency (ANR)
for the project DUR-DUR (ANR-13-ALID-0002) is gratefully acknowledged.

References

1. A. Arioua, N. Tamani, and M. Croitoru. Query answering explanation in inconsistent
datalog+/- knowledge bases. Technical report, INRIA GraphiK - LIRMM, INRA, UM, 2014.
http://www2.lirmm.fr/∼arioua/Arioua2014TR.pdf, please mind the tild.

2. A. Arioua, N. Tamani, and M. Croitoru. Query failure explanation in inconsistent knowledge
bases an argumentation approach: Extended abstract. In 5th International Conference on
Computational Models of Argument 2014, to appear, 2014.

3. A. Arioua, N. Tamani, M. Croitoru, and P. Buche. Query failure explanation in inconsis-
tent knowledge bases: A dialogical approach. In Research and Development in Intelligent
Systems XXXI, pages 119–133. Springer, 2014.

4. F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope. In Proc. of IJCAI 2005, 2005.
5. J.-F. Baget, M.-L. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity lines for

generalized guarded existential rules. In Proc. of IJCAI’11, pages 712–717, 2011.
6. M. Bienvenu. On the complexity of consistent query answering in the presence of simple

ontologies. In Proc of AAAI, 2012.
7. M. Bienvenu and R. Rosati. Tractable approximations of consistent query answering for

robust ontology-based data access. In Proc of IJCAI’13, pages 775–781. AAAI Press, 2013.
8. A. Calì, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable

query answering over ontologies. Web Semantics: Science, Services and Agents on the World
Wide Web, 14:57–83, 2012.

9. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The dl-lite family. J. Autom. Reasoning,
39(3):385–429, 2007.

10. D. Calvanese, M. Ortiz, M. Šimkus, and G. Stefanoni. Reasoning about explanations for
negative query answers in dl-lite. J. of Artificial Intelligence Research, 48:635–669, 2013.

11. M. Croitoru and S. Vesic. What can argumentation do for inconsistent ontology query an-
swering? In Scalable Uncertainty Management, volume 8078 of Lecture Notes in Computer
Science, pages 15–29. Springer Berlin Heidelberg, 2013.

12. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial intelligence, 77(2):321–357,
1995.

13. A. Fijany and F. Vatan. New approaches for efficient solution of hitting set problem. In Pro-
ceedings of the Winter International Synposium on Information and Communication Tech-
nologies, WISICT ’04. Trinity College Dublin, 2004.

14. G. Gottlob, A. Pieris, et al. Towards more expressive ontology languages: The query answer-
ing problem. Artificial Intelligence, 193:87–128, 2012.

15. R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction to the algorithm in reiter’s theory
of diagnosis. Artificial Intelligence, 41(1):79–88, 1989.

16. M. Horridge, B. Parsia, and U. Sattler. Justification oriented proofs in owl. In Proc. of ISWC
2010., pages 354–369. Springer-Verlag, 2010.

17. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-
tics for description logics. In Proceedings of the Fourth International Conference on Web
Reasoning and Rule Systems, RR’10, pages 103–117. Springer-Verlag, 2010.

18. T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Complexity of inconsistency-tolerant
query answering in datalog+/-. In Proceedings of ODBASE 2013, volume 8185 of Lecture
Notes in Computer Science, pages 488–500. Springer, 2013.

19. D. L. McGuinness and A. T. Borgida. Explaining subsumption in description logics. In
Proceedings of IJCAI’95, pages 816–821. Morgan Kaufmann Publishers Inc., 1995.

20. D. L. McGuinness and P. F. Patel-Schneider. Usability issues in knowledge representation
systems. In Proc. of AAAI-98, pages 608–614, 1998.

21. A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu. Why so ? or why no ? functional
causality for explaining query answers. In Proc. of the International Workshop on Manage-
ment of Uncertain Data, 2010.

22. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. In Journal on data semantics X, pages 133–173. Springer, 2008.

23. R. Reiter. A theory of diagnosis from first principles. Artificial intelligence, 32(1):57–95,
1987.

24. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of descrip-
tion logic terminologies. In Proceedings of IJCAI’03, pages 355–360. Morgan Kaufmann
Publishers Inc., 2003.

25. L. R. Ye and P. E. Johnson. The impact of explanation facilities on user acceptance of expert
systems advice. Mis Quarterly, 19(2), 1995.

