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Abstract 
As low cost and highly portable sensors, inertial measurements units (IMU) have become increa-
singly used in gait analysis, embodying an efficient alternative to motion capture systems. Mean-
while, being able to compute reliably accurate spatial gait parameters using few sensors remains a 
relatively complex problematic. Providing a clinical oriented solution, our study presents a gyro-
meter and accelerometer based algorithm for stride length estimation. Compared to most of the 
numerous existing works where only an averaged stride length is computed from several IMU, or 
where the use of the magnetometer is incompatible with everyday use, our challenge here has 
been to extract each individual stride length in an easy-to-use algorithm requiring only one iner-
tial sensor attached to the subject shank. Our results were validated on healthy subjects and pa-
tients suffering from Parkinson’s disease (PD). Estimated stride lengths were compared to GAI-
TRite© walkway system data: the mean error over all the strides was less than 6% for healthy group 
and 10.3% for PD group. This method provides a reliable portable solution for monitoring the in-
stantaneous stride length and opens the way to promising applications. 
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1. Introduction 
Tracking and analyzing a pathological movement is a recurrent need for clinical assessment. Camera-based mo-
tion capture, well known as a present gold standard, enables practitioners and scientists to perform such obser-
vations with a high accuracy. Meanwhile, due to a hampering lack of mobility in addition to a significant finan-
cial cost, this technology trends to be unusable in certain contexts, such as an embedded or outdoor use. In those 
cases, inertial measurement units embody an efficient alternative for movement analysis, such as in sport com-
petition or gait disorders contexts [1] [2]. Quantitative assessment of Parkinson’s disease (PD)-associated signs 
and disability using wearable technology is also knowing a rapidly growing interest [3]. 

Among multiple gait parameters, stride length is frequently observed for rehabilitation and diagnostic pur-
poses. Applied to neurological diseases, it represents an extremely helpful marker for practitioners to analyze 
pathological effects on gait and therapy efficiency. Preliminary work showed that monitoring the instantaneous 
stride length gave a crucial information to online detect or anticipate freezing of gait (FOG, an episodic inability 
to generate effective stepping) in patients suffering from Parkinson’s disease [4] [5]. Measuring the physical ac-
tivity of those patients and quantifying FOG events could also enable to differentiate “OFF” times, a state of de-
creased mobility associated to a low L-dopa level, and “ON” times, or periods when the medication is working 
and symptoms are controlled [6]. 

Numerous works showed the complexity and the diversity of accurately analyzing gait parameters in clinical 
applications, using wearable and non-wearable systems [7]. Most of the existing works on IMU-based stride 
length estimation only provide an average stride length (ex: RehaWatch© device). Usually based on the estimation 
of the distance covered in a fixed time interval, the stride is computed from the whole recording trial [8]. Other 
works performed stride length calculation with at least two IMUs [9] [10], or using motion pattern identification 
[11], thereby requiring a prior knowledge of the subject's biomechanical model and increasing installation time. 

Keeping in mind our objective of conceiving a light and noninvasive patient oriented solution, quickly im-
plementable and easy to put ON and OFF, our objective here is to demonstrate the feasibility of computing each 
single stride length from a maximum of one IMU per leg. Only two accurate enough (<10%) solutions based on 
one IMU without using magnetometer values are available in the literature. The study of Köse et al. [12] is able 
to provide the instantaneous stride length calculated from an inertial sensor located on the pelvis. Meanwhile, 
due to an algorithm based on acceleration patterns identification and pelvis displacement estimation, the authors 
exposed some limitations regarding pathological gait. The second one is the solution proposed by Mariani et al. 
[13], which presents a 3D gait assessment method validated on both young and elderly valid subjects. Using a 
foot-worn inertial sensor, it uses a complex de-drifting method based on sigmoid-like curve substraction mod-
eled from a p-chip interpolation function (Carlson and Fritsch, 1985). 

Therefore, despite of their ease-of-use, robust design, low-cost, and their small dimensions, numerous well 
known issues make the IMU exploitation relatively complex and hardly usable for a medical practitioner. Indeed, 
partly due to the high drift of the inertial data after numerical integration, limbs position and orientation in space 
cannot be simply obtained by integrating accelerations and angular velocities recorded by means of accelerome-
ters and rate gyrometers. 

Through this paper, we propose a simple clinical use designed solution for calculating each stride length, us-
ing only one basic shank-located IMU, validated from GAITRite© electronic walkway measurements [14] [15] 
on both healthy and PD subjects. 

2. Method 
2.1. Algorithm Development 
The algorithm presented in this study uses data from one 3D gyrometer and one 3D accelerometer embedded in 
an inertial measurement unit (IMU) strapped to the leg. As previously explained, it does not use any magneto-
meter data. The acquisition frequencies were 200 Hz for both sensors. 

2.1.1. Calibration 
Calibration of the IMU used in our experiments has turned to be critical and was the primary task to achieve an 
efficient algorithm. The accelerometers were calibrated using the physical property that the modulus of the ac-
celeration, in static conditions, is equal to gravity acceleration g: 
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2 2 2 =x y za a a g+ +                                      (1) 

We placed the IMU sensor in different random orientations. For each orientation, we recorded the sensor 
output while maintaining it in a strictly static state. We tried different existing calibration algorithms and we had 
the best performances using the Frosio et al. calibration model [16]. It has the advantages of incorporating not 
only the bias and scale factor for each axis but also the cross-axis symmetrical actors computed through Gauss- 
Newton nonlinear optimization. 

Regarding the gyrometer calibration, each recording session started by a motionless period where the angular 
velocity is supposed to be zero. The post-processing algorithm automatically detected this moment and com-
pensated an eventual existing offset. 

2.1.2. Filtering 
Both accelerometer and gyrometer measurements have been filtered with a forward-backward lowpass Butter-
worth filter (order 1, Fcutoff = 5 Hz). In order to reduce the integration drift, partially due to a continuous compo-
nent, we performed also a forward-backward highpass Butterworth filtering (order 1, Fcutoff = 0.001 Hz) on the 
gyrometer data. 

2.1.3. Segmentation 
Firstly, the continuous walking motion had to be segmented into a series of stride cycles to compute the hori-
zontal movement for each stride. We chose to use the gyrometer signal for determining the shank vertical event 
(time in the stance phase when the shank is parallel to the direction of gravity) thereby bounding each cycle. A 
simple automatized detection of this characteristic feature in the angular velocity was performed as shown in 
Figure 1. 

2.1.4. Stride Length 
The principle of stride length estimation is to calculate the horizontal movement of the inertial sensor during one 
stride cycle (Figure 2) in the sagittal plane. We started from the algorithm originally proposed by Li et al. [17]  
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Figure 1. Angular velocity (indeg/s) of the shank during sevens trides. We use this gyrometer signal for segmenting the gait 
into strides. The characteristic features of swing and stance events enable to detect the mid-stance shank vertical event 
(start/stop events). 
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Figure 2. Frame schema: the IMU is located on the shank side, in sagittal plane. The angular 
velocity ω is clock wise positive. D is the distance between the sensor and the ankle joint 
(malleolus) and θ is the sensor orientation. 

 
and improved later by Laudanski et al. [18] which computes the walking speed from a shank-mounted IMU. We 
adapted it for calculating the stride length, by correcting and integrating the linear velocity along the stride dura-
tion, thereby obtaining the length of each stride. As only the horizontal velocity was needed, we also simplified 
it. As an effort to provide an easy-to-implement solution, we made the hypothesis that the sensor is initially set 
in the sagittal plane and does not move during the experiment, thereby working in a 2D frame. Most of all, we 
implemented it with optimized raw data conditioning (sampling rate, filtering and calibration) and integration 
methods (see Discussion part) which it turned to be critical steps. To begin, the sensor orientation θ(t) has to be 
computed by integrating the measured angular velocity ω(t) on as tride cycle (from t = 0 to t = tend, the initialtilt 
at the beginning of the cycle θ(0) = 0, assuming the sensoris aligned to the limb): 

( ) ( )
0

= d
tendt t tθ ω∫                                    (2) 

The horizontal component acceleration a hor(t) in the world coordinate system has to be calculated from the 
measured raw accelerations, ay(t) and ax(t): 

( ) ( ) ( ) ( ) ( )= cos sinhor y xa t t a t t a tθ θ−                           (3) 

The integration of the horizontal acceleration provides the horizontal velocity horv : 

( ) ( ) ( )
0

= d 0
tend

hor hor hor gyrv t a t t v −+∫                             (4) 

where ( )0hor gyrv −  is the initial horizontal speed computed from gyrometer data at the start of the cycle: 

( ) ( ) ( )0 = cos 0 0hor gyr tangv vθ−                               (5) 

with ( )0tangv : 

( ) ( )0 = 0tangv Dω−                                   (6) 

and D  the distance between the IMU and the ankle joint. 
A velocity drift correction is then performed at the end of each cycle. The linear trend difference between the 

calculated velocity vhor(tend) and the gyrometer based velocity vhor-gyr(tend) at the stride end is added: 

( ) ( ) ( ) ( )
= hor gyr end hor end

hor corrected hor
end

v t v t
v t v t t

t
−

−

−
+                      (7) 
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Once the hor correctedv −  computed, a simple trapezoidal integration provides the horizontal displacement during 
a stride cycle: 

( )
0

= d
tend

hor correctedStrideLength v t t−∫                               (8) 

2.2. Experimental Protocol 
10 healthy subjects, (5 male, 5 female; Age range: 23 to 61 years; Height range: 1.55 to 1.89 m) and 12 patients 
suffering from Parkinson’s disease (9 male, 3 female; Age range: 63 to 82 years) participated to the study. The 
protocol has been approved by the local ethical committee (international identification number NCT02317289). 
Patients were recruited at the Neurology (Chauliac Hospital) and Gerontology (Balmes Center) departments of 
Montpellier hospital (CHU Montpellier). The participants provided their written informed consent. Subjects 
walked continuously for approximately 7 m along the GAITRite© electronic walkway (spatial accuracy ±0.0127 
m, CIR Systems, Inc., Havertown, PA, USA) with two HikoB Fox© (HikoB© Villeurbanne, France) inertial 
measurement units respectively strapped to the foot and the shank of each leg, as illustrated in Figure 3. The 
distance D between the IMU and the ankle joint was systematically measured once the subject equipped. Each 
subject from the healthy group performed two iterations of the walk at self-selected walking speeds (‘normal’ 
and “fast”). Subjects from PD group only walked at their comfort speed. The IMU were remotely controlled and 
synchronized each other via a radio beacon. The GAITRite device provided a +5V trigger output for synchro-
nizing data acquisition with the HikoB inertial sensors, enabling to include all the strides of each gait sequence. 
Based on each single IMU, individual stride lengths were estimated from the previously explained algorithm and 
compared one by one to the stride lengths provided by the GAITRite software. For each of the two sensors lo-
cated on each leg, we observed the influence of the IMU location (shank or foot mounted), the walking speed, 
the sampling rate and the filtering on the mean and maximum stride length calculation error. 

3. Results 
For each subject in the two groups (Healthy/PD), data from inertial sensors were automatically segmented into 
stride cycles and the length of each stride was estimated. Each estimated stride length was compared to the cor-
responding stride length value in GAITRite (Figure 4). For each subject and for each of the 4 IMUs (shank and 
foot on each leg), we calculated the mean error and the standard deviation between considered IMU-based stride 
length estimation and corresponding stride length extracted from GAITRite (Table 1 and Table 2). 
 

 
(a)                               (b) 

Figure 3. Inertial measurement units (HikoBFox©) (a) were strapped to the 
foot and the shank of each leg (b). The distance D between the IMU and the 
ankle joint was system atically measured. 
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Figure 4. Estimation error (in cm) of the stride length between GAITRite data (blue line) and IMU-based estimation (green 
line) for each of the 9 strides of the considered trial. 

 
Table 1. Experiments results: healthy subjects. 

Subject 
ID 

Gait Type 
(Normal/Fast) 

Nb of 
Strides 

GAITRITE information Estimation error using 
IMU located on left foot 

Estimation error using 
IMU located on left shank 

Speed 
(cm/s) 

Cadence 
(step/min) 

Stride length 
Mean 
(%) 

Mean 
(cm) 

STD 
(cm) 

Mean 
(%) 

Mean 
(cm) 

STD 
(cm) Mean 

(cm) 
STD 
(cm) 

1 N 20 129.2 110 143.2 3.2 4 5.7 2.2 4.2 6.1 3.5 

 F 15 203.8 142 174.4 3.4 3.9 6.8 1.7 4.2 7.2 3.9 

2 N 20 143.8 116 150.1 5.4 3 4.6 3.0 5 7.5 4.4 

 F 17 243.7 159 182.8 8.9 2.8 5.1 3.4 5.4 9.8 3.2 

3 N 20 125.1 107 141.5 3.8 6.2 8.8 3.0 4.2 6 3.7 

 F 13 240.9 145 198.7 10.6 5.7 11.4 5.0 4.2 8.3 5.3 

4 N 24 115.5 106 131.3 7.1 6.4 8.3 2.5 6.3 8.3 4.3 

 F 15 242.6 159 189 11.6 3.7 7.0 2.9 8.1 15.3 7.2 

5 N 20 150 110 164 8.7 4.8 7.8 3.2 2.4 4 2.5 

 F 15 227.3 138 199.6 7.2 3.8 7.5 4.1 1.6 3.3 3.4 

6 N 17 163.9 114 173.1 4.7 6.7 11.7 3.4 6.4 11.1 5 

 F 15 230.7 142 195.5 7.4 5.6 11.0 5.9 6.8 13.3 6.2 

7 N 30 79.2 85 112.6 2.8 9.7 11.0 4.7 10.1 11.4 7.7 

 F 20 148.9 111 162.4 7.4 7.3 11.8 3.8 8.9 14.4 5.9 

8 N 25 127.5 117 131.1 4 18.2 23.9 4.6 6.3 8.2 3.8 

 F 20 199.1 151 159 4.3 16.7 26.5 3.3 6.7 10.7 3.3 

9 N 28 126.4 123 122.7 7.3 6.3 7.8 2.8 5.5 6.8 3.8 

 F 25 160.9 138 140.1 3.4 6 8.4 3.1 4.6 6.5 3.3 

10 N 25 97.9 94 126 6.3 13.4 16.9 6.0 8.5 10.8 10.5 

 F 15 182.7 129 171.4 5.6 15.2 26.1 3.2 3.2 5.5 2.8 
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Table 2. Experiments results: Parkinson’s disease patients. 

Subject ID 

Right leg Left leg 

GAITRITE information 
stride length 

Estimation error using IMU 
located on the shank 

GAITRITE information 
stride length 

Estimation error using IMU 
located on the shank 

Mean (cm) STD (cm) Mean 
(cm) 

Mean 
(%) 

STD 
(cm) 

Mean 
(cm) 

STD 
(cm) 

Mean 
(cm) 

Mean 
(%) 

STD 
(cm) 

1 58.6 6.7 6.8 11.7 4.2 58.6 6.3 3.6 6.3 2.6 

2 37.5 5.0 3.8 10.2 2.8 37.8 4.5 4.2 11.1 3.5 

3 102.3 6.2 6.12 5.98 2.9 102.7 5.8 4.2 4.2 2.9 

4 95.7 7.0 8.2 8.6 5.2 95.9 7.4 8.0 8.3 5.9 

5 92.1 7.6 6.5 7.0 5.4 93.2 7.1 4.6 4.9 3.1 

6 42.7 6.7 6.9 16.1 4.9 42.1 5.1 5.7 13.6 5.6 

7 112.6 8.7 8.5 7.4 4.2 112.1 9.9 10.5 9.4 5.6 

8 107.8 6.0 14.9 13.8 6.1 107.5 5.8 7.5 7.1 5.5 

9 101.9 5.7 8.5 8.3 5.4 102.1 5.5 7.6 7.5 4.6 

10 99.8 7.1 5.8 5.9 3.8 100.3 5.2 8.5 8.5 5.1 

11 91.3 5.2 17.05 18.67 6.9 91.4 4.7 10.2 11.2 6.6 

12 79.4 9.8 8.1 10.4 4.1 79.5 10.1 9.2 11.8 3.3 

3.1. Healthy Subjects 
399 strides (229 in comfort walking, 170 in fast walking) were computed and compared one by one to the 
GAITRite results. For each subject and for each of the 4 IMUs (shank and foot on each leg), we calculated the 
mean error and the standard deviation between considered IMU-based stride length estimation and correspond-
ing stride length extracted from GAITRite (Table 3). 

For the shank mounted IMUs, we obtained a mean error of 5.9% for the “normal” walk and 5.4% for the “fast” 
one. Standard deviation is also low, less than 10 cm in average. We observed a slight difference between the 
foot and the shank location (the results are 3.2% better for shank mounted IMU). 

As we can observe in Figure 5, stride lengths are very variable over the subjects. We recorded ’normal’ 
strides going from 113 to 173 cm and from 140 to 200 cm for the “fast” ones. Despite a huge speed increase 
between the two types of walks in some subjects (ex: subject 4, from 116 to 243 cm/s), the mean error remains 
under 10% in worst cases with a mean error of 5.6% (0.09 m) on both “fast” and “normal” walk using the shank 
mounted IMUs. 

3.2. PD Subjects 
In the Parkinson’s Disease group, despite of consequently smaller and slower strides, we obtained a mean error 
of 9.5% for both legs using the shank mounted IMUs (Table 2) (8.6% for the left leg, and 10.3% for the right 
one). Standard deviation is also low, less than 5 cm in average. 

As we can observe in Figure 6, stride lengths are variable over the subjects. We recorded strides going from 
38 to 113 cm. In the worst case (subject 11) the mean error is 11.2% (0.102 m). 

4. Discussion & Conclusions 
The proposed stride length calculation algorithm has been validated using the GAITRite system. The results 
emphasized the reliability of our algorithm in the gait analysis of healthy volunteers, with variable lengths (113 
to 200 cm) and speeds (79 to 244 cm/s) but also on patients suffering from Parkinson’s disease, with consistent-
ly smaller stride lengths (38 to 113 cm). Despite of using only one sensor by leg, we showed that gait segmenta-
tion and stride length estimation were accurate and robust enough to fit different morphology and type of gait  
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Table 3. Patients characteristics. 

Patient Age Sex Age-of-onset Disease duration Stage (H & Y) Motor-score (walk) 

1 78 F 64 14 3 1 

2 81 M 67 15 3 1 

3 67 M 57 10 3 1 

4 71 M 53 18 3 2 

5 82 M 67 15 NA 3 

6 74 F 52 22 3 2 

7 63 M 56 7 NA 1 

8 74 M 66 8 3 NA 

9 71 M 50 21 NA NA 

10 72 F 65 7 3 NA 

11 63 M 54 9 NA 1 

12 66 M 61 5 NA 1 
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Figure 5. Stride length results on 10 Healthy subjects based on the left shank IMU data. The bars represents the real length 
measured by the GAITRite, above that the calculated mean error between IMU-based estimation and GAITRite measure-
ment is presented in cm. 
 
patterns, with a mean error less than 9%. Figure 7 shows a similar median error between fast and normal walk. 
We claim to provide a solution able to calculate the stride length without a complex prior knowledge of the 
biomechanical model. The distance between the sensor and the ankle joint has been systematically measured 
during the experiments and has been taken into account in the algorithm. Meanwhile, we observed that the ac-
curacy of this measure has a neglectable impact on the performance of the results and can be approximately (±2  
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Figure 6. Stride length results on 12 patients suffering from Parkinson’s disease based on the left shank IMU data. The bars 
represents the real length measured by the GAITRite, above that the calculated mean error between IMU-based estimation 
and GAITRite measurement is presented in cm. 
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Figure 7. Box plots presenting all the errors (%) between all the trials and subjects, from both shank IMUs, for valid and 
Parkinson’s disease gait. 
 
cm) provided by the user. We tried two different sensors location, the results showed that the error was slightly 
increased (~3%) for the foot mounted IMU. Indeed, at the mid-stance shank vertical event, the angular velocity 
reached a local maximum. At faster walking speeds, the impact of this estimated initial velocity based on the 
angular velocity becomes more important on the accuracy of the stride. Because the shank IMU has a greater 
angular velocity than the foot one, the speed estimation algorithm slightly underestimates it. For some isolated 
cases, we had an important maximum error (~30 cm) generally due to a bad stride cycle detection (the vertical 
shank event is not properly detected because the gait pattern is too distorted). We observed in most of the cases 
that PD gait presents a pattern similar to healthy gait. Nevertheless, some patients showed huge difficulties to 
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walk (outlier in Figure 7), thereby creating a hardly automatically and reliably segmentable pattern, which does 
not look as a step anymore. In these cases, the identification pattern used by [13] is likely to be unusable. This 
underlines the influence of the segmentation process on the results, which is the most sensitive part of the algo-
rithm. In future works, the segmentation could be improved by also using the accelerometer values for detecting 
the shank verticality [19] or by combining our segmentation algorithm to AHRS(Attitude and Heading Refer-
ence System) algorithms for estimating the exact sensor orientation [20] [21]. We could also add a second IMU 
on the opposite leg and use the swing phase of one leg for robustly detecting the stance phase of the other [10]. 

The raw signals filtering also turned to be critical. Compared to other studies where a simple high pass filter-
ing of the raw values is performed, we found essential here to perform it in a zero-phase filtering way for keep-
ing a zero-phase distortion between accelerometer and gyrometer values. 

We also tried three different numerical integration methods for improving our results, the strap-down, the 
Simpson’s and the trapezoidal ones. We found the strap-down rule induced less drift, but the best time-con- 
suming/efficiency ratio was obtained with the classical trapezoidal rule. Indeed, as we only integrated the signals 
on a stride duration, the numerical drift due to the trapezoidal rule was not significant. 

We designed a reliable portable solution by making the choice to develop an algorithm without using the 
built-in IMU magnetometer sensor. By providing a non-sensitive magnetic field variation solution, we improved 
the reliability of our algorithm for different everyday life situations. Still related to portability issues, we also 
chose to implement a generic solution which is basically usable with any inertial sensor [22]. 

Different applications could be consequently considered using this algorithm. In this paper we presented an 
offline processing, but we will need to make it evolve towards a real time calculation process for our future 
works, i.e. gait assistive devices. For instance, in order to pilot an auditory system based on freezing events de-
tection for Parkinson’s disease [23]. 

All of these research topics show a common need to easily and robustly export the instantaneous stride length 
for different types of gaits and contexts. In our next experiments, we will have to face numerous issues due to 
online processing, such as the filtering delay, the real time segmentation (in the current state, the algorithm 
would have a one stride delay because the current gait cycle has to be ended for being segmented) or the hard-
ware limited real-time sampling rate (below 100 Hz we found an undersampled acceleration signal causes major 
deterioration of the results). 
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