
HAL Id: lirmm-01164851
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01164851

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Query Rewriting for Existential Rules with Compiled
Preorder

Mélanie König, Michel Leclère, Marie-Laure Mugnier

To cite this version:
Mélanie König, Michel Leclère, Marie-Laure Mugnier. Query Rewriting for Existential Rules with
Compiled Preorder. IJCAI: International Joint Conference on Artificial Intelligence, Jul 2015, Buenos
Aires, Argentina. pp.3006-3112. �lirmm-01164851�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01164851
https://hal.archives-ouvertes.fr

Query Rewriting for Existential Rules with Compiled Preorder

Mélanie König, Michel Leclère, Marie-Laure Mugnier
University of Montpellier, Inria, CNRS

Montpellier, France

Abstract
We address the issue of Ontology-Based Query An-
swering (OBQA), which seeks to exploit knowl-
edge expressed in ontologies when querying data.
Ontologies are represented in the framework of ex-
istential rules (aka Datalog±). A commonly used
technique consists in rewriting queries into unions
of conjunctive queries (UCQs). However, the ob-
tained queries can be prohibitively large in prac-
tice. A well-known source of combinatorial ex-
plosion are very simple rules, typically expressing
taxonomies and relation signatures. We propose
a rewriting technique, which consists in compil-
ing these rules into a preorder on atoms and em-
bedding this preorder into the rewriting process.
This allows to compute compact rewritings that can
be considered as “pivotal” representations, in the
sense that they can be evaluated by different kinds
of database systems. The provided algorithm com-
putes a sound, complete and minimal UCQ rewrit-
ing, if one exists. Experiments show that this tech-
nique leads to substantial gains, in terms of size and
runtime, and scales on very large ontologies. We
also compare to other tools for OBQA with existen-
tial rules and related lightweight description logics.

1 Introduction
We address the issue of Ontology-Based Query Answering
(OBQA), which seeks to exploit knowledge expressed in on-
tologies when querying data. We consider the novel frame-
work of existential rules, also called Datalog± [Baget et al.,
2011; Calı̀ et al., 2012; Krötzsch and Rudolph, 2011]. Exis-
tential rules are an exstension of function-free positive con-
junctive rules that allows for existentially quantified variables
in rule heads. These rules are able to assert the existence of
unknown entities, a fundamental feature in an open-domain
perspective, where it cannot be assumed that the description
of data is complete. Interestingly, existential rules generalize
Horn description logics (DLs), in particular lightweight DLs
used in the context of OBQA, such as DL-Lite [Calvanese
et al., 2005] and EL [Baader, 2003], which form the core of
so-called tractable profiles of the Semantic Web ontological
language OWL 2. They overcome some limitations of these

DLs by allowing for non-tree structures as well as unbounded
predicate arity. We consider here the basic database queries,
i.e., conjunctive queries (CQs).

There are two main approaches to query answering in pres-
ence of existential rules and Horn DLs. The first approach is
related to forward chaining: it triggers the rules to build a fi-
nite representation of inferred data such that the answers can
be computed by evaluating the query against this representa-
tion, e.g., [Calı̀ et al., 2008; Thomazo et al., 2012]. The sec-
ond approach, initiated by DL-Lite [Calvanese et al., 2005],
is related to backward chaining: it rewrites the query using
the rules such that the answers can be computed by evaluat-
ing the rewritten query against the data, e.g., [Baget et al.,
2009; Gottlob et al., 2011] on existential rules. Some tech-
niques combine both approaches [Kontchakov et al., 2011;
Thomazo and Rudolph, 2014]. Each technique is applicable
to a specific existential rule fragment.

In this paper, we focus on the query rewriting approach,
which has the advantage of being independent from the
data. This technique typically outputs a union of conjunctive
queries (UCQ), with the aim of benefiting from optimized re-
lational database management systems (RDBMS). However,
despite the good theoretical data complexity, first experiments
exhibited a serious problem related to the size of the rewrit-
ten query, e.g., [Rosati and Almatelli, 2010]. Indeed, the out-
put query can be exponentially larger than the initial query,
even with very simple ontologies, and even if the output is
extended to arbitrary first-order queries [Kikot et al., 2011;
2012]. This led to a significant amount of work on rewrit-
ing into more compact queries, which may remain first-
order queries (hence expressible in SQL) or go beyond them
(like Datalog programs, e.g., [Gottlob and Schwentick, 2012;
Stefanoni et al., 2012]). Nowadays, mature systems have
emerged for OWL 2 QL [Rodriguez-Muro et al., 2013;
Civili et al., 2013], as well as prototypes for the EL family
and more expressive DLs, e.g., [Eiter et al., 2012]. Exis-
tential rules are more complex to process. Entailment with
general existential rules is even undecidable (e.g., [Beeri and
Vardi, 1981]). However, expressive subclasses ensuring
the existence of a UCQ rewriting are known, such as linear
rules, which generalize most DL-Lite dialects, the sticky fam-
ily, classes satisfying conditions expressed on a graph of rule
dependencies, and weakly recursive rules [Calı̀ et al., 2009;
2012; Baget et al., 2011; Civili and Rosati, 2012].

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3106

A well-known source of combinatorial explosion are some
very simple rules that typically express taxonomies or rela-
tion signatures. These rules are at the core of any ontology.
We propose a new technique to tame this source of complex-
ity. It relies on compiling these rules into a preorder on atoms
and embedding this preorder into the rewriting process. In-
tituitively, each atom “represents” all its “specializations”.
Hence, the query rewriting process avoids exploring many
CQs and outputs a small UCQ. This UCQ can be seen as a
“pivotal” representation, in the sense that it can be evaluated
by different kinds of systems: it can be passed to a Datalog
engine or unfolded into a positive existential query (a UCQ
or a more compact form of query) to be processed by an
RDBMS; it can also be directly processed if data is stored in
main memory and the appropriate homomorphism operation
is implemented.

First, we prove that the new rewriting operator is sound
and complete, and provide an algorithm that, given any CQ
and any set of existential rules, effectively outputs a mini-
mal, sound and complete UCQ-rewriting, if one exists (which
may not be the case due to the indecidability of the prob-
lem). Since the computation of the preorder is independent
from any query, we can divide this algorithm into a compila-
tion step performed offline, and a query rewriting step, which
takes the preorder as input. Second, we report experiments,
which show that this optimization leads to substantial gains,
in terms of size of the output and query rewriting runtime,
and is able to scale on very large ontologies. In the case when
the desired output is a “regular” UCQ, it remains faster for
our rewriting tool to compute a pivotal UCQ and to unfold it,
than to directly compute a regular UCQ. Moreover, our pro-
totype behaves well compared to other UCQ-rewriting tools
tailored for DL-Lite ontologies, even if it does not exploit the
specificities of these languages.

2 Preliminaries
An atom is of the form p(t1, . . . , tk) where p is a predicate
with arity k, and the ti are terms, i.e., variables or constants
(we do not consider other function symbols). Given an atom
or a set of atoms A, vars(A), consts(A) and terms(A) denote
its set of variables, of constants and of terms, respectively. In
the following examples, all the terms are variables (denoted
by x, y, z, etc.) unless otherwise specified. |= denotes the
classical logical consequence. Given sets of atoms A and B,
a homomorphism h from A to B is a substitution of vars(A)
by terms(B) such that h(A) ⊆ B. It is convenient to extend
the domain of a substitution h to a set of terms, such that
h(t) = t for all unchanged terms (in particular constants). If
there is a homomorphism h from A to B, we say that A maps
to B (by h); then, A is said to be more general than B, and B
more specific than A.

A fact is the existential closure of a conjunction of atoms
(this generalization of the classical notion of a fact allows to
take existential variables into account). A conjunctive query
is an existentially quantified conjunction of atoms. W.l.o.g.
we consider only Boolean conjunctive queries (i.e., closed
formulas) in this paper and denote them by CQs. In the fol-
lowing, we will see facts and CQs as sets of atoms. The an-

swer to a CQ Q in a fact F is yes if F |= Q; it is well-known
that F |= Q iff Q maps to F .

Definition 1 (Existential rule) An existential rule (or sim-
ply rule hereafter) is a formula R = ∀x∀y(B[x,y] →
(∃z H[y, z])) where B = body(R) and H = head(R) are
conjunctions of atoms, resp. called the body and the head
of R. The frontier of R is the set of variables vars(B) ∩
vars(H) = y. The existential variables in R is the set of
variables vars(H) \ vars(B) = z.

In the following, we will omit quantifiers in rules as there
is no ambiguity. E.g. p(x, y) → p(y, z) denotes the formula
∀x∀y(p(x, y)→ ∃zp(y, z)).

A knowledge base (KB) K = (F,R) is composed of a
finite set of facts (which can be seen as a single fact) F and a
finite set of existential rules R. The CQ entailment problem
is the following: given a KB K = (F,R) and a CQ Q, does
F,R |= Q hold? This problem is known to be undecidable
in the general case [Beeri and Vardi, 1981]. It can be solved
by computing a sound and complete rewritten query Q from
Q and R, provided that such a finite Q exists, then asking if
F |= Q. Here, the target query Q is a union of CQs (UCQ),
that we see as a set of CQs, called a rewriting set of Q.

Definition 2 [Sound and Complete (rewriting) set of CQs]
Let R be a set of existential rules, Q be a CQ, and Q be a
set of CQs. Q is said to be sound w.r.t. Q and R if for any
fact F , for all Qi ∈ Q, if Qi maps to F then R, F |= Q.
Reciprocally, Q is said to be complete w.r.t. Q and R if for
any fact F , if R, F |= Q then there is Qi ∈ Q such that Qi

maps to F .

A set of rules R for which any query Q has a finite sound
and complete set of rewritings (in other words,Q is rewritable
into a UCQ), is called a finite unification set (fus) [Baget et
al., 2009]. Note that restricting a complete rewriting set Q
to its most general elements preserves its completeness. A
cover of Q is an inclusion-minimal subset Q′ of Q such that
each element Q of Q is more specific than an element Q′ of
Q′ (i.e., in database terms: Q is contained in Q′). If a set has
a finite cover, then all its covers have the same size, hence
all minimal, sound and complete rewriting sets have the same
cardinality [König et al., 2012]. Hereafter, we, respectively,
denote by R, R and Q the considered set of rules, a rule of
R, and the initial query. We assume that rules have disjoint
sets of variables, as well as Q and R.

The rewriting operation involves unifying part of Q and
part of head(R). Existential variables in rule heads induce a
possibly complex structure, therefore unification has to con-
sider subsets of atoms at once (called “pieces”) instead of sin-
gle atoms, hence the name piece-unifier. Indeed, if a variable
x fromQ is unified with an existential variable from head(R),
then all atoms in which x occurs must be part of the unifi-
cation, otherwise the obtained rewriting is unsound. Given
Q′ ⊆ Q, we call separating variables of Q′, the variables
occurring in both Q′ and (Q \ Q′); the other variables from
Q′ are called non-separating. Let Q′ be the unified part of Q:
only non-separating variables from Q′ can be unified with an
existential variable of the rule.

3107

Definition 3 (Piece-Unifier [König et al., 2012]) A piece-
unifier of Q with R is a triple µ = (Q′, H ′, u), where
Q′ 6= ∅, Q′ ⊆ Q, H ′ ⊆ head(R) and u is a substitution of
T = terms(Q′) ∪ terms(H ′) by T , such that:

1. u(H ′) = u(Q′);
2. for all existential variable x ∈ vars(H ′) and t ∈ T ,

with t 6= x, if u(x) = u(t), then t is a non-separating
variable from Q′.

Example 1 (Piece-unification) Let R = twin(x, y) →
motherOf(z, x) ∧ motherOf(z, y), where z is an ex-
istential variable, expressing that twins have a common
mother. Let Qno = {motherOf(v, w), painter(v)},
asking if there is a mother who is a painter. The only
candidate atom in Qno is motherOf(v, w): then,
v would be unified with z, hence painter(v) should
be unified as well, which is impossible. Let Qyes =
{motherOf(v, w),motherOf(v, t), female(w),male(t)}
asking if there is a mother of a female and a
male. A piece-unifier of Qyes with R is µ =
(Q′ = {motherOf(v, w),motherOf(v, t)}, H ′ =
{motherOf(z, x),motherOf(z, y)}, u = {z 7→ v, x 7→
w, y 7→ t}) (in the general case Q′ and H ′ may be non-
isomorphic). The one-step rewriting of Qyes according to
µ is {twin(w, t),female(w),male(t)}, as formally defined
below.

Definition 4 (One-step Rewriting,R-rewriting, β∗) Given
a piece-unifier µ = (Q′, H ′, u) of Q with R, the one-step
rewriting of Q according to µ, denoted by β(Q,R, µ), is the
CQ u(body(R)) ∪ u(Q \ Q′). An R-rewriting of Q is a CQ
Qk obtained by a finite sequence (Q0 = Q), Q1, . . . , Qk

such that for all 0 ≤ i < k, there is Ri ∈ R and a
piece-unifier µ of Qi with Ri such that Qi+1 = β(Qi, Ri, µ).
We denote by β∗(Q,R) the set of allR-rewritings of Q.

It is known that β∗(Q,R) is a sound and complete set
(within the meaning of Def. 2) [Baget et al., 2011].

3 Embedding a Preorder on Atoms
We first explain the ideas underlying the rewriting technique
before providing formal definitions. An essential component
of any ontology is a hierarchy of concepts and, to a lesser ex-
tent, a hierarchy of relations (binary relations are also called
roles or properties). In a logical framework, concepts and
relations are represented by predicates. Simple rules of the
form p(x1, . . . , xk)→ q(x1, . . . , xk), where k = 1 for a con-
cept, express that p is more specific than q (notation p ≤ q).
See e.g., the logical translation of atomic inclusions in DL,
and the subClassOf and subPropertyOf assertions in RDFS
/ OWL. These rules, called hierarchical hereafter, are an ob-
vious cause of combinatorial explosion in query rewriting, as
illustrated by the next example.

Example 2 Let R1 . . . Rn be rules of the form Ri : bi(x) →
bi−1(x). Let Q = {b0(x1), . . . , b0(xk)}. Each atom b0(xj)
in Q is rewritten into b1(xj), which in turn is rewritten into
b2(xj), and so on. Thus, there are (n+ 1)k rewritings of Q.

Hierarchical rules can be compiled into a (partial) preorder
(i.e., a reflexive and transitive relation) on predicates, say

≤. Then, the homomorphism notion can be extended to take
this preorder into account. Let us call ≤-homomorphism h
from a set of atoms A1 to a set of atoms A2 a substitution of
terms(A1) by terms(A2) such that for all q(e1, . . . , ek) ∈ A1,
there is p(h(e1), . . . , h(ek)) ∈ A2 with p ≤ q. It is easily
checked that, given a set of hierarchical rules Rc, it holds
that Rc, F |= Q if and only if there is a ≤-homomorphism
from Q to F . Now, let R = Rc ∪ Re be a set of existential
rules, where Rc is composed of the hierarchical rules. Given
the preorder ≤ associated with Rc, we would like to have
F,R |= Q if and only if there is an Re-rewriting of Q that
maps to F by a ≤-homomorphism. In Ex. 2, we would have
bj ≤ bi for any i ≤ j; then, since all rules are hierarchical,
we would get a single rewriting, i.e.,Q itself, instead of expo-
nentially many. However, to achieve completeness, we can-
not simply rewrite Q with Re and forget about Rc, we have
to embed the preorder into the rewriting process. This idea
can be further extended to compile all rules with an atomic
body, as long as they do not introduce existential variables.
This allows to compile other common axioms, as illustrated
by Ex. 3. However, since the atoms in a rule may have pred-
icates of different arity and arguments in different positions,
we cannot rely on a simple preorder on predicates anymore.
We have to embed a preorder on atoms.
Example 3 LetRex be the following set of rules:
R1 = r(x, y)→ t(x, y) (r is a specialization of t)
R2 = s(x, y)→ t(y, x)
R′2 = t(x, y)→ s(y, x) (s and t are inverse relations)
R3 = t(x, y)→ q(x) (q is the domain of t)
R4 = t(x, y)→ q(y) (q is the range of t)
R5 = p(x, y, z)→ r(x, z) (r is a projection of p)
R6 = p(x, x, z)→ s(x, x) (introduction of a “self loop”)

A rule is said to be compilable if it has a single body atom,
no existential variable and no constant.1 W.l.o.g. we also
assume that a compilable rule has a single head.
Definition 5 (Inferred Rule, Saturation) Let R1 and R2 be
compilable rules such that head(R1) and body(R2) are unifi-
able by a (classical) most general unifier u. The rule inferred
from (R1, R2) is R1 • R2 = u(body(R1)) → u(head(R2)).
Given a set Rc of compilable rules, the saturation of Rc, de-
noted byR∗c , is the closure ofRc by the • operation.
Example 4 The rules inferred from Rex (Ex. 3) are the fol-
lowing; we recall that rules have disjoint sets of variables,
even if we use the same variables for simplicity:
R1 •R′2 = r(x, y)→ s(y, x); R1 •R3 = r(x, y)→ q(x)
R1 •R4 = r(x, y)→ q(y); R2 •R′2 = s(x, y)→ s(x, y)
R2 •R3 = s(x, y)→ q(y); R2 •R4 = s(x, y)→ q(x)
R′2 •R2 = t(x, y)→ t(x, y); R5 •R1 = p(x, y, z)→ t(x, z)
R6 •R2 = p(x, x, z)→ t(x, x)
R5 •R1 •R′2 = p(x, y, z)→ s(z, x)
R5 •R1 •R3 = p(x, y, z)→ q(x)
R5 •R1 •R4 = p(x, y, z)→ q(z)
R6 •R2 •R3 = R6 •R2 •R4 = p(x, x, z)→ q(x)

The size of R∗c is polynomial in the size of Rc when the
predicate arity is bounded (more specifically, when the num-
ber of occurrences of a variable in a predicate is bounded):

1The condition on constants is to simplify definitions.

3108

Proposition 1 |R∗c | is bounded by |Rc|2×Bk, where k is the
maximum predicate arity and Bk is the k-th Bell number.

Proof: The number of possible specializations of an atom
with arity k is bounded by the number of partitions of
{1, . . . , k}, known as the k-th Bell number Bk. Thus, the
number of distinct rules (up to variable renaming) that can be
obtained is bounded by |Rc|2 ×Bk. Note that Bk < 2k

2

. �
The saturation of Rc can easily be made minimal by re-

moving tautological rules (necessarily of the form H → H)
and redundant rules, i.e., rules entailed by other rules. Given
non-tautological compilable rulesRi andRj ,Rj |= Ri iffRi

subsumes Rj , as defined below.

Definition 6 (Rule Subsumption) Let Ri and Rj be com-
pilable rules. We say that Ri subsumes Rj if there is
a homomorphism h from body(Ri) to body(Rj) such that
h(head(Ri)) = head(Rj).

Example 3 (cont’d) R2 •R′2 and R′2 •R2 are tautological
rules. R6 • R2 • R3 = p(x, x, z) → q(x) is subsumed by
R5 •R1 •R3 = p(x, y, z)→ q(x).

We first define a preorder 4 on atoms (and sets of atoms)
that will be used to avoid query rewriting withRc.

Definition 7 (4) Let a and b be atoms. We note a 4 b if (i)
a = b or (ii) there is a rule R ∈ R∗c that subsumes the rule
(a→ b) (equivalently: the application ofR to a yields exactly
b). Let A and B be sets of atoms. We note A 4 B if there is
a surjective mapping f from B to A such that for all b ∈ B,
f(b) 4 b.

In the above definition, note that a 4 b implies terms(b) ⊆
terms(a), and the same holds forA andB; moreover, if a 4 b
and a 6= b, then the one-step rewriting of b with R may be
strictly more general than a, as shown in Ex. 5.

Example 5 Let R = r(x, y) → q(x), a = r(c1, c2) and b
= q(c1). The application of R to a yields b, hence a 4 b. The
one-step rewriting of b with R is not a but r(c1, y).

More generally, considering sets of atoms:

Property 1 Let A and B be sets of atoms. It holds that
A 4 B iff there is anRc-rewritingB′ ofB that maps toA by
a substitution s of vars(B′) \ vars(B) by terms(A) such that
s(B′) = A.

Example 6 Let R∗ex from Ex. 3 and 4. Let A =
{p(u, u, c1), r(c2, c1)} and B = {s(u, u), s(c1, u), t(c2, c1),
q(c2)}, where c1 and c2 are constants. One has A 4 B
since p(u, u, c1)→ s(u, u) is subsumed byR6, p(u, u, c1)→
s(c1, u) is subsumed by R5 • R1 • R′2, r(c2, c1) → t(c2, c1)
is subsumed by R1 and r(c2, c1) → q(c2) is subsumed by
R1 • R3. According to Prop. 1, one can also check that
B′ = {p(u, u, z), p(u, y′, c1), r(c2, c1), r(c2, y)} is an Rex-
rewriting of B (by successively using rules R6, R5, R1, R′2,
R1, R1, R3) and that B′ maps to A.

Thanks to the preorder 4, we are now able to embed com-
piled rules in piece-unifiers.

Definition 8 (4-Piece-Unifier, 4-rewriting, β4) Given a
preorder 4 on atoms, a 4-piece-unifier of Q with R is a

triple µ = (Q′, H ′, u) defined similarly to a piece-unifier
(Def. 3), with Condition 1 replaced by u(H ′) 4 u(Q′). The
one-step 4-rewriting of Q according µ, denoted by β4, is
the CQ u(body(R)) ∪ u(Q \Q′).

Example 7 Consider the rules from Ex. 3, the rule R =
b(x) → t(x, y) (where y is existential) and the query Q1 =
{t(u, v), q(v)}. There is no piece-unifier of Q1 with R
but there is a 4-piece-unifier µ = (Q1, head(R), {x 7→
u, y 7→ v}), since R4 subsumes t(u, v) → q(v). We
obtain β4(Q1, R, µ) = {b(u)}. Consider now Q2 =
{q(w), s(z, w), c(w)}. With the 4-piece-unifier µ′ =
({q(w), s(z, w)}, head(R), {x 7→ w, y 7→ z}), using R3 and
R′2, we obtain β4(Q2, R, µ

′) = {b(w), c(w)}.
Logical entailment between queries and facts can be com-

puted by a homomorphism check, which we now extend to
embed 4.

Definition 9 (4-homomorphism) Let A and B be sets of
atoms. A 4-homomorphism from B to A is a substitution
h from vars(B) to terms(A) such that for all b ∈ B, there is
a ∈ A with a 4 h(b).

Example 8 Consider Q1 and Q2 from Ex. 7. The substitu-
tion h = {(u,w), (v, z)} is a 4-homomorphism from Q1 to
Q2. Indeed, t(u, v) and q(v) are both mapped to s(z, w), by
using R2 and R2 •R4 respectively.

Property 2 Let A and B be sets of atoms, and Rc be a set
of compilable rules with associated preorder 4. There is a
4-homomorphism from B to A iff Φ(A),Rc |= Φ(B), where
Φ assigns an existentially closed formula to a set of atoms.

The next theorem states that the new rewriting operator
β4, associated with 4-homomorphism, is logically sound
and complete.

Theorem 1 (Soundness and Completeness of β4) Let
K = (F,R) be a KB, where R is partitioned into Re and
Rc, a set of compilable rules with associated preorder 4.
Let Q be a CQ. Then F,R |= Q iff there is Q′ ∈ β∗4(Q,Re)

with a 4-homomorphism from Q′ to F .

Proof:(Sketch) We rely on the soundness and completeness
of classical piece-based rewriting and prove that: (1) if Q′ ∈
β∗4(Q,Re) then Q′ ∈ β∗(Q,R) and (2) if Q′ ∈ β∗(Q,R)

then there is Q′′ ∈ β∗4(Q,Re) such that Q′ 4 Q′′. �

4 A Correct 4-Rewriting Algorithm
The compilation step consists in partitioning R into Rc and
Re, and compiling Rc into the preorder 4. Then, the rewrit-
ing step (Algorithm 1) follows the general schema of [König
et al., 2012]. Given Re, 4 and Q, the algorithm starts from
the rewriting set QF = {Q} and proceeds in a breadth-first
manner. At each step, queries from QF that have been gen-
erated at the preceding step (i.e., set QE) are explored. “Ex-
ploring” a query consists of computing the set of one-step
rewritings of this query with all rules in Re (set Qt). At the
end of the step, only a cover of QF ∪ Qt is kept (in case
of equivalent queries, priority is given to QF for termination
reasons).

3109

Algorithm 1: 4c-REWRITING ALGORITHM

Data: A set of existential rulesRe, a preorder on atoms
4 and a conjunctive query Q

Result: A cover of the soundRe-4-rewritings of Q
QF ← {Q}; // resulting set
QE ← {Q}; // queries to explore
while QE 6= ∅ do
Qt ← ∅; // queries generated at this rewriting step
for Qi ∈ QE do

for R ∈ Re do
for µ 4-piece-unifier of Qi with R do
Qt ← Qt ∪ {β4(Qi, R, µ)};

Qc ← ComputeCover(QF ∪Qt); // update cover
QE ← Qc \ QF ; // select unexplored queries
QF ← Qc;

return QF

Pairwise comparing all queries at each step may seem ex-
pensive since the comparison relies on a 4-homomorphism
check. The point is to ensure the termination of the algorithm
whenever a finite rewriting set exists: since a set of rewrit-
ings may be infinite and still have a finite cover, a cover has
to be maintained at each step (or computed after a finite num-
ber of steps). Note, however, that for linear and sticky rules,
this problem does not occur, and the cover could be computed
only once at the end of the algorithm.

Theorem 1 is not sufficient to ensure the completeness of
the produced set. Indeed, one has to ensure that by prun-
ing more specific queries at each step, the algorithm does
not “miss” rewritings. A sufficient property is the so-called
prunability of the rewriting operator [König et al., 2013].
Intuitively, this property ensures that for any Q2 more spe-
cific than Q1, the following holds: each one-step rewriting
of Q2 is either more specific than Q1 itself, or than a one-
step-rewriting of Q1; hence no rewriting is missed if Q2 is
removed from the rewriting set without being explored. This
property can be formally expressed as follows for β4:

Property 3 (Prunability) Let Q1 and Q2 be CQs, R be a
rule, and 4 be a preorder on atoms. If Q2 is more specific
than Q1, i.e., Q1 maps to Q2 by a 4-homomorphism, then
for all4-piece-unifier µ2 ofQ2 withR, either β4(Q2, R, µ2)
is more specific than Q1, or there is a 4-piece-unifier µ1

of Q1 with R such that β4(Q2, R, µ2) is more specific than
β4(Q1, R, µ1).

With the previous property and Theorem 1, we can prove
the correctness of the algorithm:

Theorem 2 Algorithm 1 outputs a (minimal) sound and com-
plete finite rewriting set (with respect to 4-homomorphism),
if such exists, and it does not terminate otherwise.

Algorithm 1 stops exactly when a UCQ-rewriting exists for
the input set of rules and query (a sufficient condition being
that the set of rules is fus).

5 Query Evaluation
The rewriting set Q produced by Algorithm 1 can be seen as
a “pivotal” representation, in the sense that it can be trans-
formed into different kinds of queries, depending on the type
of data storage and the applicative context. Obviously, Q
can be directly evaluated with an adequate implementation
of 4-homomorphism in the case the data can be loaded in
main memory. Otherwise, the set Q ∪ Rc can be straight-
forwardly translated into a Datalog query. A mixed approach
can be adopted with Rc being used to saturate the data, and
Q being evaluated over the saturated data. One may even
assume that all information that could be inferred by com-
pilable rules is already present in the data, and delegate the
encoding of this information to the database manager. This
notion is called H-completeness in [Rodriguez-Muro et al.,
2013] in the specific context of DL ABoxes. In particular, if
Rc is composed solely of hierarchical rules and the data are
stored in a RDBMS, semantic index techniques allow to avoid
the effective computation of saturation [Rodriguez-Muro and
Calvanese, 2012].

When partial saturation of the data is not feasible, Q may
also be unfolded into a set of CQs (i.e., a UCQ) Q′: Q′ is
obtained from Q by adding, for each Q ∈ Q, all Q′ such that
Q′ 4 Q (then eliminating redundant queries). Our experi-
ments (see the last section) show that it is more efficient to
unfold Q than to directly compute Q′. More compact forms
of positive existential queries can be computed, for instance
unions of semi-conjunctive queries (SCQs), which are con-
junctions of disjunctions [Thomazo, 2013]: each CQ Q ∈ Q
is transformed into an SCQ by replacing each atom a ∈ Q by
the disjunction of all atoms a′ such that a′ 4 a.

6 Related Work
Since the seminal paper on DL-Lite [Calvanese et al., 2005],
a significant amount of work has been carried out on query
rewriting algorithms, mainly for DL-Lite, but also for other
Horn-DLs. The work closest to ours is certainly the tree-
witness (tw) rewriting algorithm for DL-Lite [Kikot et al.,
2012] because of the similarities between tw-rewritings and
pieces. Another similarity is that tw-rewriting can make the
assumption that the database is already saturated with in-
ferrable knowledge that does not involve existential variables
(H-completeness assumption). In the context of DL-Lite, this
kind of knowledge corresponds exactly to compilable rules
(up to the usual DL restrictions: predicate arity bounded
by two, no multiple occurrences of variables in atoms).
Hence, one could see our technique as an extension of tw-
rewriting with the H-completeness assumption to existential
rule KBs. However, the underlying techniques are quite dif-
ferent. Moreover, tw-rewriting heavily exploits the speci-
ficities of DL-Lite. First, “DL-Lite rules” without existen-
tial variables are necessarily compilable rules. Second, the
“anonymous part” of the possibly infinite canonical model of
a DL-Lite knowledge base is a set of trees (instead of a hyper-
graph with any structure for existential rules). This allows for
a smart technique that rewrites the query in a single pass (in-
stead of possibly exponentially many passes with fus rules).

3110

Regarding general existential rules, two rewriting meth-
ods were proposed [Baget et al., 2009; Gottlob et al., 2011]
and respectively implemented in Alaska/PURE [König et al.,
2012] and Nyaya [Virgilio et al., 2012].

7 Experiments
Our algorithm2 was implemented in Java, as an extension
of the query rewriting prototype PURE. All tests were per-
formed on a DELL machine with a processor at 3.60 GHz
and 16 GB of RAM. As benchmarks dedicated to existen-
tial rules are not available yet, and in order to compare with
other tools producing UCQs, which are mostly restricted to
DL-Lite, we considered rule bases obtained by translation of
DL-LiteR ontologies: first, the widely used benchmark intro-
duced in [Pérez-Urbina et al., 2009] (i.e., ADOLENA (A),
STOCKEXCHANGE (S), UNIVERSITY (U) and VICODI
(V)); second, very large ontologies built from OpenGalen2
(G) and OBOProtein (O), and used in [Trivela et al., 2013],
which respectively contain more than 53k and 34k rules, with
54% and 64% of compilable rules. Each ontology is provided
with 5 handcrafted queries. Timeout was set to 10 minutes.
Due to space limitation, we list only parts of the experiments.

We first evaluated the impact of rule compilation on the
rewriting process, w.r.t. rewriting sizes and runtime respec-
tively. We denote by PUREC the extension of PURE and call
pivotal UCQ its output. Table 1 shows the size of the UCQ
(we recall that it is the same for all systems outputing a min-
imal, sound and complete UCQ), the size of the pivotal UCQ
produced by PUREC , and the number of generated queries
during the rewriting process for PURE and PUREC . Miss-
ing values are due to timeouts. We find a huge gap between
the sizes of the output; the pivotal UCQ is often restricted
to a single CQ even when the UCQ has thousands of CQs
(which also explains the gap between the numbers of gener-
ated queries). Unsurprisingly, the results on the runtimes lead
to similar observations (Table 2, Columns 1 and 2). We see
that PUREC remains faster than PURE when we include the
time required to unfold the pivotal UCQ into a UCQ (Table
2, Column 3), except for Q2 on O, which comes from the
fact that the pivotal UCQ is almost as large as the UCQ. Note
that we implemented a brute-force unfolding method, which
removes redundant CQs only at the end by a pairwise com-
parison of queries. Almost all the unfolding time is actually
spent in checking redundancies. Nervertheless, the size of the
UCQ obtained for some queries (up to more than 30000 CQs
on O) clearly advocates for more compact forms of output.

We also compared to other query rewriting tools, namely:
PURE and Nyaya, which are the only tools processing ex-
istential rules, as well as some well-known DL tools: Re-
quiem [Pérez-Urbina et al., 2009] (optimized “full modal-
ity”), Iqaros [Imprialou et al., 2012], Rapid [Chortaras et
al., 2011] and tw-rewriting (part of the Ontop OBDA sys-
tem [Rodriguez-Muro et al., 2013]). We emphasize again
that these DL tools exploit the specificities of DL-Lite, spe-
cially the most recent ones, Rapid and tw-rewriting, whereas
the algorithms of Nyaya and PURE are designed for gen-
eral existential rules. Despite this fact, PUREC (without

2Available at https://github.com/graphik-team/graal

UCQ p-UCQ gen (PURE) gen (PUREC)
A Q1 27 2 460 14

Q2 50 2 172 2
Q3 104 1 317 1
Q4 224 2 827 6
Q5 624 1 1417 1

V Q1 15 1 15 1
Q2 10 1 10 1
Q3 72 1 118 1
Q4 185 1 329 1
Q5 30 1 60 1

G Q1 2 1 3 1
Q2 1152 1 1276 1
Q3 488 5 1515 5
Q4 147 1 155 1
Q5 324 19 909 19

O Q1 27 20 29 22
Q2 1356 1264 1356 1264
Q3 33887 1 - 1
Q4 34733 682 - 794
Q5 36612 - - -

Table 1: Impact of rule compilation on sizes

Pure PureC PureC Nyaya Requiem Iqaros tw Rapid
to UCQ

A Q1 180 10 130 1120 260 50 10 10
Q2 90 0 40 860 100 50 10 20
Q3 170 10 30 2360 130 190 0 30
Q4 280 0 130 5550 250 130 10 40
Q5 1500 0 440 33200 460 570 10 90

V Q1 10 0 0 10 10 10 0 0
Q2 10 0 10 50 10 10 0 0
Q3 110 0 70 20 60 20 0 20
Q4 120 0 60 20 130 30 0 30
Q5 10 0 10 20 70 40 10 20

G Q1 0 0 10 - 40 40 0 0
Q2 1060 50 620 - 209040 5860 10 70
Q3 1020 70 260 - 259100 9180 20 50
Q4 20 10 10 - 190250 770 0 10
Q5 890 30 90 - 238450 7400 20 40

O Q1 440 130 140 - 3440 6670 10 20
Q2 1160 1110 1870 - 21780 27810 570 950
Q3 TO 90 557990 - TO TO 70 610
Q4 TO 430 TO - TO 139980 1230 14690
Q5 TO TO TO - TO TO TO 562220

Times are in ms, with increments of 10 ms (0 means < 10);
TO stands for timeout.

Table 2: Impact of rule compilation on rewriting time

or with unfolding) scales well on DL-Lite large ontologies
(except for extreme cases which are difficult for all tools,
see Ontology O). Globally, PUREC behaves similarly to tw-
rewriting and Rapid. If we restrict the comparaison to classi-
cal UCQ output, the fastest tools are undeniably tw-rewriting
and Rapid, followed by PUREC with unfolding. The diffi-
culties of Nyaya on A can be explained by the fact that A
contains some rules with two atoms in the head, whereas
Nyaya only processes rules with a single head; hence, it had
to take as input the ontology obtained by decomposing these
rules into single-head rules, which introduces new predicates,
whereas PURE processes rules with any head size. Nyaya
could not process the very large ontologies G and O, which
also needed to be decomposed.

We checked that all systems return exactly the same size
of UCQ, hence the choice of a given query rewriting tool be-
tween those outputing a UCQ is irrelevant for the query evalu-
ation step. We carried out additional experiments to compare

3111

the evaluation of the pivotal UCQ over the data saturated by
the compilable rules and the evaluation of the corresponding
classical UCQ over the initial data (data generated with the
modified LUBM generator [Lutz et al., 2013] and stored in
a MySQL database). As expected, in a number of cases the
system did not accept the classical UCQ because of its size,
and in the other cases the pivotal UCQ was evaluated much
more efficiently than the classical UCQ.

Further work includes extending query rewriting tech-
niques outside the fus fragment, by exploiting datalog
rewritability or combining with other paradigms for rules.

Acknowledgments. This work was partially funded by the
ANR project PAGODA (ANR-12-JS02-007-01).

References
[Baader, 2003] F. Baader. Terminological Cycles in a Description

Logic with Existential Restrictions. In IJCAI’03, pages 325–330,
2003.

[Baget et al., 2009] J.-F. Baget, M. Leclère, M.-L. Mugnier, and
E. Salvat. Extending Decidable Cases for Rules with Existen-
tial Variables. In IJCAI’09, pages 677–682, 2009.

[Baget et al., 2011] J.-F. Baget, M. Leclère, M.-L. Mugnier, and
E. Salvat. On Rules with Existential Variables: Walking the
Decidability Line. Artificial Intelligence, 175(9-10):1620–1654,
2011.

[Beeri and Vardi, 1981] C. Beeri and M. Vardi. The implication
problem for data dependencies. In ICALP’81, volume 115 of
LNCS, pages 73–85, 1981.

[Calı̀ et al., 2008] A. Calı̀, G. Gottlob, and M. Kifer. Taming the
Infinite Chase: Query Answering under Expressive Relational
Constraints. In KR’08, pages 70–80, 2008.

[Calı̀ et al., 2009] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A Gen-
eral Datalog-Based Framework for Tractable Query Answering
over Ontologies. In PODS’09, pages 77–86, 2009.

[Calı̀ et al., 2012] A. Calı̀, G. Gottlob, and A. Pieris. Towards more
expressive ontology languages: The query answering problem.
Artif. Intell., 193:87–128, 2012.

[Calvanese et al., 2005] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. DL-Lite: Tractable Description
Logics for Ontologies. In AAAI, pages 602–607, 2005.

[Chortaras et al., 2011] Alexandros Chortaras, Despoina Trivela,
and Giorgos B. Stamou. Optimized Query Rewriting for OWL
2 QL. In CADE’11, pages 192–206, 2011.

[Civili and Rosati, 2012] C. Civili and R. Rosati. A Broad Class
of First-Order Rewritable Tuple-Generating Dependencies. In
Datalog 2.0 Worksop, pages 68–80, 2012.

[Civili et al., 2013] C. Civili, M. Console, G. De Giacomo,
D. Lembo, M. Lenzerini, L. Lepore, R. Mancini, A. Poggi,
R. Rosati, M. Ruzzi, V. Santarelli, and D. F. Savo. MASTRO
STUDIO: Managing Ontology-Based Data Access applications.
PVLDB, 6(12):1314–1317, 2013.

[Eiter et al., 2012] T. Eiter, M. Ortiz, M. Simkus, T.-K. Tran, and
G. Xiao. Query Rewriting for Horn-SHIQ Plus Rules. In AAAI.,
2012.

[Gottlob and Schwentick, 2012] G. Gottlob and T. Schwentick.
Rewriting Ontological Queries into Small Nonrecursive Datalog
Programs. In KR, 2012.

[Gottlob et al., 2011] G. Gottlob, G. Orsi, and A. Pieris. Ontolog-
ical queries: Rewriting and Optimization. In ICDE’11, pages
2–13, 2011.

[Imprialou et al., 2012] M. Imprialou, G. Stoilos, and B. Cuenca
Grau. Benchmarking Ontology-Based Query Rewriting Systems.
In AAAI, 2012.

[Kikot et al., 2011] S. Kikot, R. Kontchakov, and M. Za-
kharyaschev. Polynomial Conjunctive Query Rewriting under
Unary Inclusion Dependencies. In RR, 2011.

[Kikot et al., 2012] S. Kikot, R. Kontchakov, and M. Za-
kharyaschev. Conjunctive Query Answering with OWL 2 QL.
In KR, 2012.

[König et al., 2012] M. König, M. Leclère, M.-L. Mugnier, and
M. Thomazo. A Sound and Complete Backward Chaining Al-
gorithm for Existential Rules. In RR’12, pages 122–138, 2012.

[König et al., 2013] M. König, M. Leclère, M.-L. Mugnier, and
M. Thomazo. On the Exploration of the Query Rewriting Space
with Existential Rules. In RR, pages 123–137, 2013.

[Kontchakov et al., 2011] R. Kontchakov, C. Lutz, D. Toman,
F.Wolter, and M. Zakharyaschev. The Combined Approach to
Ontology-Based Data Access. In IJCAI, 2011.

[Krötzsch and Rudolph, 2011] M. Krötzsch and S. Rudolph. Ex-
tending Decidable Existential Rules by Joining Acyclicity and
Guardedness. In IJCAI’11, pages 963–968, 2011.

[Lutz et al., 2013] C. Lutz, I. Seylan, D. Toman, and F. Wolter. The
Combined Approach to OBDA: Taming Role Hierarchies Using
Filters. In ISWC’2013, pages 314–330, 2013.

[Pérez-Urbina et al., 2009] H. Pérez-Urbina, I. Horrocks, and
B. Motik. Efficient Query Answering for OWL 2. In ISWC’09,
pages 489–504, 2009.

[Rodriguez-Muro and Calvanese, 2012] M. Rodriguez-Muro and
D. Calvanese. High Performance Query Answering over DL-Lite
Ontologies. In KR, 2012.

[Rodriguez-Muro et al., 2013] M. Rodriguez-Muro,
R. Kontchakov, and M. Zakharyaschev. Ontology-Based
Data Access: Ontop of Databases. In ISWC, Proceedings, Part I,
pages 558–573, 2013.

[Rosati and Almatelli, 2010] R. Rosati and A. Almatelli. Improv-
ing Query Answering over DL-Lite Ontologies. In KR’10, 2010.

[Stefanoni et al., 2012] G. Stefanoni, B. Motik, and I. Horrocks.
Small Datalog Query Rewritings for EL. In DL, 2012.

[Thomazo and Rudolph, 2014] M. Thomazo and S. Rudolph. Mix-
ing Materialization and Query Rewriting for Existential Rules. In
ECAI, pages 897–902, 2014.

[Thomazo et al., 2012] M. Thomazo, J.-F. Baget, M.-L. Mugnier,
and S. Rudolph. A Generic Querying Algorithm for Greedy Sets
of Existential Rules. In KR, 2012.

[Thomazo, 2013] M. Thomazo. Compact Rewritings for Existential
Rules. In IJCAI, 2013.

[Trivela et al., 2013] Despoina Trivela, Giorgos Stoilos, Alexan-
dros Chortaras, and Giorgos B. Stamou. Optimising Resolution-
Based Rewriting Algorithms for DL Ontologies. In DL’13, pages
464–476, 2013.

[Virgilio et al., 2012] Roberto De Virgilio, G. Orsi, L. Tanca, and
R. Torlone. NYAYA: A System Supporting the Uniform Man-
agement of Large Sets of Semantic Data. In ICDE, pages 1309–
1312, 2012.

3112

