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Abstract

In this paper, we investigate image segmentation as a statistical and computa-
tional problem. The observed image is sampled from a theoretical, unknown
image, in which pixels are represented by distributions. Our objective is to
approximate as best as possible the region segmentation in the ideal image,
where each region has pixels with identical expectations, but adjacent regions
have different pixel’s expectations. From that model, a concentration-based
statistical test for deciding region merging is built, limiting the risk of wrong
merges. The analysis is carried out without any assumption on the distribu-
tions: we avoid in particular the classics of variance analysis, normality and
homocedasticity. A practical approximation of the test is given, of constant
time and space computation, which leads in turn to a segmentation algorithm
of optimal complexity, easy to implement. Some experiments on various
types of images shed light on the quality of the segmentations obtained.

1 Introduction

In the early stage of a vision process it is necessary to isolate “objects” in the scene before
recognising them, a step calledimage segmentation. In this paper, we investigate im-
age segmentation by region merging, which consists in building up regions by combining
smaller regions, pixels being taken as primary regions. Our ultimate goal is to obtain a
good partition of an imageI into regionsfR1; R2; :::; Rng = P (I), each region being
4-connected: between any of its pixels, a path exists, lying in the region, with horizontal
or vertical connections.
In the field of image segmentation, many algorithms use statistical or mathematical tech-
niques, models, relying on hypotheses madea priori on the image [7, 1, 6]. Many of
these hypotheses constrain the models by introducing distributional assumptions on the
image. Also, the computational costs can be huge. Other approaches focus rather on
topologic and algorithmic properties of the image [4, 3], striving to find fast segmentation
algorithms. However, statistical confidence in the results is generally not ensured. In that
paper, we are interested in a bridging technique between the two approaches, based on
a weakly constrained statistical model of image generation, which ultimately leads to a

majid




reliable segmentation algorithm of optimal complexity.
Our model supports the claim according to which an observed imageI is principally a
snapshot of an ideal object “scene”I�, taken under particular conditions. Formally, in
I�, pixels are represented by distributions, used to generate the observed image. Ideal
regions satisfy the homogeneity criterion that pixel’s expectations are equal, expectations
that are in turn different between adjacent regions. This model gives an intuitive notion
of what is theoptimal segmentation. This could be obtained by infinite sampling of the
distributions, thus under infinitely many “conditions of observations”. Averaging over
the observed images would produce for each region its theoretical grey-level expectation,
and we would observe the exact frontiers between regions. Optimising segmentation to
recognise regions ofI� may be of great practical interest, in particular when processing
numerous images of similar scenes, such as for real-time segmentation. In that case, we
better look for fast results of overall quality, rather than single image optimisation at the
possible expense of time complexity.
In the following section, we present our model of image generation. Then, we propose
a statistical merging test to recognise if two observed, adjacent regions, belong actually
to the same object inI�. It has the major computational feature of being constant time
and space approximable. It has the major statistical feature of being completely adaptive,
and relies on a concentration bound whose proof sketch is given. Finally, we provide a
segmentation algorithm of optimal complexity implementing this test, along with experi-
ments that were conducted.

2 A Model for Image Generation in I
�

Let I denote the image observed, containingjI j pixels (j:j denotes the cardinality).I is
described over a maximum, theoretical number, ofg grey levels (generally,g = 256),
but effectively containsgI observed grey-levels. The model easily endorses RGB coding,
by considering three separate models in the same way.I is an observation of a perfect
sceneI� we do not know of, in which pixels are perfectly represented by a family of
distributions, from which the observed grey-level is sampled. In all that follows, the “*”
superscript denotes objects taken fromI�, such asR� for a region ofI�, to which corre-
sponds a regionR of I . Thejth pixel in theith regionRi of the imageI , pi;j , is obtained
by the outcome of some random variable (r.v.)p�i;j 2 I�, itself sum ofQ independent
r.v. p�i;j;1; p

�
i;j;2; :::; p

�
i;j;Q of I� (each of these take values in the set[0; g=Q], see Figure

1). Also, pixels are supposed sampled independently from each other. The role ofQ is
mainly to ensure the practical tractability of our merging test. Actually, as we shall see,
the bigger the imageI and the regions tested, the smallerQ can be chosen. As outlined
in the introduction, each region inI� satisfies an homogeneity property, formalised as
follows:

� First, 8i 2 f1; 2; :::; jI jg;8j 2 f1; 2; :::; jR�
i jg;E(p�i;j) = E(R�

i ) (expectations of
all pixels inR�

i are equal).

� Second, any couple of adjacent regions(R�
i ; R

�
j ) satisfiesE(R�

i ) 6= E(R�
j ).
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Figure 1: One pixel inI� andI (E(.) denotes expectation).

3 A statistical merging test inI

The test relies on some definitions related to ordinary variance analysis. In contrast how-
ever, our study does not rely on assumptions such as normality or homocedasticity,i.e.
equal standard deviation between pixels inI�. Though we do not observe it directly in
I , we denote aspi;j;k the outcome ofp�i;j;k, i.e. pi;j =

PQ
k=1 pi;j;k. In all that follows,

the bar notation “R” denotes theobserved grey-level average of some region, that is,
(
P

j;k pi;j;k)=jRij. Similarly, the average grey-level of the observed imageI is denoted

I .

Definition 1 LetfR1; R2; :::; Rng = P (I) be a partition ofI .

� The Intra-Pixel Variability (IPV) inI , is

Vp(I; P (I)) =
X
i;j;k

�
pi;j;k � pi;j

Q

�2

� The Intra-Region Variability (IRV) inI , is

Vi(I; P (I)) =
1

Q

X
i;j

(pi;j �Ri)
2
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� The Extra-Region Variability (ERV) inI , is

Ve(I; P (I)) =
1

Q

X
i

jRij(Ri � I)2

� The Overall Image Variability ofI is

V (I) =
X
i;j;k

�
pi;j;k � I

Q

�2

Some of the formulae presented before might appear misleading with respect to classical
notations of variance analysis, but we have given them in the most compact form. For
example, in order to follow the usual conventions, theIRV should be stated

Vi(I; P (I)) =
X
i;j

Q

�P
k pi;j;k
Q

�
P

j;k pi;j;k

QjRij
�2

This strictly represents the same fomula as in definition 1. Also, classical result of vari-
ance analysis is preserved since we have

V (I) = Vp(I; P (I)) + Vi(I; P (I)) + Ve(I; P (I)) (1)

(proof straightforward). The membership to some regionR� � I� of two adjacent regions
R andR0 of I is checked by a measure of their “proximity”, the increase ofIRV when
merging them,�i(R;R

0) (In RGB coding, it is the sum of threeIRV increases in each of
the R, G and B coordinates, and each pixel results from the outcomes of3Q distributions).
Though we do not have access to anypi;j;k, the fact that pixels are themselves “regions” of
fixed sizeQ makes thatVp(I; P (I)) is constant, and thus does not influence�i(R;R

0).
The following lemma shows that the computation of�i(R;R

0) is indeed easy (proof
straightforward).

Lemma 1 The increase ofIRV when mergingR andR0 satisfies

�i(R;R
0) =

jRj � jR0j
Q(jRj+ jR0j) (R �R0)2 (2)

Therefore, as long as we merge regions in the image,Vi(I; P (I)) increases bylocal
amounts, which can be computed in constant time, as well as for the parameter’s up-
date (means and sizes). The deviations of�i(R;R

0), whenR andR0 come from the
same region inI�, can be quantified as follows (#R is the number of distinct regions of
sizejRj, having grey levels included into those ofR):

Theorem 1 LetR, R0 be two adjacent regions inI , belonging to the same regionR� in
I�. Fix

m =
6
p
2g2
p
maxfjRj; jR0jg(jRj(jRj+ 2jR0j)2 + jR0j3)

Q3jRjjR0j(jRj+ jR0j)
Suppose thatg;Q; jRj; jR0j are such thatm < 1=2. Fix some� > 0. Then,

Pr[�i(R;R
0) � � ] <

8#R#R0

1� 2m
� e

� 2Q2(jRj+jR0j)2�

g2jRjjR0j (3)
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Proof sketch: Though concentration bounds are not so hard to obtain provided unrealis-
tic hypotheses are assumed, the necessity for us to stay as close as possible of a practical
model of image generation led us to build a rather long proof for our bound. Moreover,
ordinary concentration bounds, in that case, generally lead to too large bounds for prac-
tical use: in practice indeed, and we have observed it, this can lead to an over merged
image with too few regions. That is why we have developped a bound taylor-made for
our model, whose proof steps are the following ones. First, lemma 1 is used to shift from
variability analyses to the deviation analysis ofjR �R

0j beyond some� 0, for somefixed
regionsR andR0. This is of better easiness to upperbound. Second, we remark that

(R [ R0 �R
�
)2 = (jR�R

0j)2 + Z (4)

with R� being the region ofI� to whichR andR0 belong, andZ defining the outcome of
a r.v. . In other words,

Pr[jR�R
0j �

p
� 0] < Pr

h
(R [ R0 �R

�
)2 � � 0

i
=Pr[Z � 0] (5)

= Pr[B]=Pr[C] (6)

Then, a lowerboundPr[C] � 1
2 � m is obtained, wherem is the median ofZ (Z has

0 expectation). A concentration upperbound for the medianm is obtained by combining
the use of the Independent Bounded Difference Inequality (IBDI, [5]) and a derived ver-
sion of Talagrand’s theorem [5]. Finally, using the IBDI onPr[B] gives the final result
of theorem 1. Since the result holds for twofixedregionsR andR0, the multiplication of
the bound by the number of possible choices forR andR0 gives the final, desired result.

Theorem 1 can be used to build a merging threshold� for �i(R;R
0), under which we

can expectR andR0 to come from the same region inI�. This is done by solving the right
inequality of theorem 1 for some particular probability. The merging test for two adjacent
regionsR;R0 is then straightforward: “if�i(R;R

0) does not exceed� , then mergeR and
R0”.

4 Practical approximations and experimental results

Theorem 1 gives a way to practically quantify the risk we make of rejecting the merging
of two regionsR andR0 that would actually be elements of the same regionR� in I�. Of
course, when executingn0 rejections(R1; R

0
1), (R2; R

0
2), ..., (Rn0 ; R0

n0), the probability
that the event of theorem 1 occurs can be upperbounded byn0 times the upperbound given.
Solving for� the equality between the right member of Ineq. 3 andÆ=n0 gives the theo-
retical testing threshold, which is conveniently approximated for practical computability
as follows. First, the segmentation algorithm we use is optimal but precludes the knowl-
edge ofn0 in advance. We replace thereforen0 by an upperbound for our segmentation
algorithm,2jI j. n0 appearing in a log factor for� , this gives no visual difference in the
results. Let

#R = g
jRj
I =UR (7)

whereUR is a correction factor:
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� UR = 0:5 � jRj!
djRj=2e! if jRj < gI ,

� UR = 0:5 � jRj!
djRj�(gI=2)e!

otherwise (proof omitted due to the lack of space)

Factorials are approximated using Stirling’s formula:x! � p
2�x(x=e)x. All tests are

processed with reasonable values ofQ;m; Æ:

Q =
p
g (8)

m = 1=4 (9)

Æ = 1=jI j (10)

While Q remains sufficiently small, this limits the risk of overmerging for significant,
“visible” regions. The threshold� , computable in constant time, is finally:

�(R;R0) =
gjRjjR0j

2(jRj+ jR0j)2 log
 
32jI j2g(jRj+jR0j)

I

URUR0

!
(11)

Finally, each image is preprocessed in linear time and space to merge adjacent pixels
having the same grey-level: this does not degrade optimal solutions, but increases the
average region’s size, and thus the efficiency of the merging test. The segmentation algo-
rithm consists in making a single pass of the image, and testing (if possible) the merging
of the current pixel (or region) with the upside pixel’s region, and then the left one. As
showed in [3], a particular data structure allows to obtain optimal (linear) time and space
complexities. The running time for the C implementation over a Pentium II PC never
exceeded the second for every experiment.
Figures 2, 3 and 4 present some experiments on various images. We emphasise thatall
segmentations were obtained using thesametuning for all parameters, even if the images
are much different from each other (synthetic, medical, aerial images, portraits, etc.). In
particular, the quality of the results does not stem from the optimisation of the algorithm
on each image. Also, images are segmented without any preprocessing (e.g. noise fil-
tering). Onlystreet was Gaussian smoothed according to [2]’s experimental setup, to
make accurate comparisons.
In cornouaille , the algorithm manages a great reduction in the boat’s noise, particu-
larly on its left part, whereas it keeps almost intact the overall shape and the name of the
boat (note also the segmentation of the man in the bottom-right part). In imagesynth ,
which mainly features a ramp gradient on the left, and a noisy rectangle area on the right,
the algorithm detects exactly three regions, approximating those most people would con-
sider as perceptually distinct. Thestreet image shows that our algorithm outperforms
two other approaches on two aspects: the number of regions selected compared to [2]
(e.g. the van), and the accuracy of the segmentation compared to [3] (e.g. the grass,
highly noisy).
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cornouaille (256x256) Our algorithm

lena (512x512) Our algorithm

synth (89x84) Our algorithm

Figure 2: Some experiments conducted (regions are white bordered, and averaged inside).
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clock (256x256) Our algorithm

house (80x87) Our algorithm

medical (255x285) Our algorithm

Figure 3: More experiments (regions are white bordered, and averaged inside).
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frame (128x128) Our algorithm

street (320x240) Our algorithm

Result of [2] Result of [3]

Figure 4: More experiments (regions are white bordered, and averaged inside).
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