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Image Segmentation Using a Generic, Fast and Non-Parametric Approach 

Christophe Fiorio, Richard Nock 
LIRMM, 161 rue Ada, F-34790 Montpellier Cedex 5 

Abstract: 
In this paper, we investigate image segmentation by 

region merging. Given any similarity measure between re- 
gions, satisfying some weak constraints, we give a general 
predicate for answering if two regions are to be merged 
or not during the segmentation process. Our predicate is 
generic and has six properties. The first one is its inde- 
pendance with respect to the similarity measure, that leads 
to a user-independant and adaptative predicate. Second, 
it is non-parametric, and does not rely on any assumption 
concerning the image. Third, due to its weak constraints, 
knowledge may be included in the predicate to fit better 
to the user’s behaviour. Fourth, provided the similarity is 
well-chosen by the user, we are able to upperbound one 
type of error made during the image segmentation. Fifth, 
it does not rely on a particular segmentation algorithm and 
can be used with almost all region-merging algorithms in 
various application domains. Sixth, it is calculated quickly, 
and can lead with appropriated algorithms to very efficient 
segmentation. 

Keywords: Vision and Image Processing, AI algo- 
rithms, Machine Learning. 

1 Introduction 

In the early stage of a vision process it is necessary to iso- 
late “objects” in the scene before recognizing them. This 
step in the analyzing process is called image segmenta- 
tion. There are several approaches to this problem [l, 21, 
namely threshold techniques ([3] for example), boundary 
(such ‘as Canny-Deriche edge detector [4, 51) and regions 
based methods ( [6 ]  and [7] for more recent results), and 
hybrid techniques (as for example [8, 91) combining the 
two last methods. In this paper we are concerned by re- 
gion segmentation of intensity (i.e. grey levels) images and 
more precisely region merging. The goal of region segmen- 
tation is to divide the image I in regions R I ,  . . . , R, such 
that I = Ri, Ri n Rj = 8 if i # j ,  each region being 
connected and satisfying an homogeneity criterion. Region 
merging builds up regions by combining smaller regions, 
pixels being taken as primary regions, using a predicate P 
as a similarity test. 

The quality of a segmentation is strongly dependent 
on the way one answer to a simple question: “should (or 

should not) be merged two regions ?’ Albeit a user can 
answer to this question, it is hard to give further steps in 
the definition of a segmentation algorithm. The first reason 
comes from the difficulty to quantify a mathematical notion 
of similarity between regions, which is a part of the user’s 
judgment, but rather implicit and semantic dependent in his 
case. Second, the use of this similarity for answering to the 
latter question is not straightforward, since it implies defin- 
ing a mapping from the similarity values to the Boolean 
values {yes, no}. Third, the main bottleneck is obviously 
the design of the whole segmentation algorithm which uses 
such predicate. 

Many segmentation algorithms use statistical or math- 
ematical techniques relying on hypotheses made U priori 
on the image [ 10, 11, 121. In that case, the time spent 
for the calculations can be very important. Furthermore, 
many of these hypotheses are parametric, introducing dis- 
tributional assumptions on the image. A contrurio, Other 
approaches focuse on algorithmic properties of the image 
[13, 141, leading to efficient segmentation algorithms. Our 
approach differs from all these ones in that it is based on 
the combination of statistical and algorithmic properties of 
a criterion used for the segmentation. Statistical proper- 
ties are based on the absence of any parametric hypotheses 
on the image. Algorithmic properties are based on a quick 
calculation (constant-time) of the criterion, that can lead to 
optimal image segmentation (both linear-time and linear- 
space). 

In this paper we give a generic non parametric predi- 
cate for image segmentation based on “distance” between 
regions. It is generic in the sense that it is independent from 
the chosen distance and independent of a particular region 
segmentation algorithm. Furthermore, provided the user 
can give a calculable “distance” relating his distance, a part 
of the error made during the segmentation process can be 
controlled. Such errors can arise e.g. when merging two 
regions that represent in fact distinct objects. Moreover, it 
satisfies the desirable property of being calculable in con- 
stant time for a broad class of “distances”. So used with an 
adequate algorithm we can achieve a linear-time and linear- 
space segmentation process. At last as shown at the end of 
Section 3.2 our predicate is auto-adaptative since, except 
for a risk parameter, the user doesn’t tune others parame- 
ters and the limit value of the similarity is set automatically 
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according to the risk and the image. 
In the next section we provide basic definitions, as well 

as the algorithm mergesquare we use in our application. 
Then, we present in the following section our generic pred- 
icate. In the same section, we discuss about the fast calcula- 
tion of the predicate criteria. In the last section, we present 
some similarity measures we used, and some experimental 
results we obtained using them. We also present an appli- 
cation where some knowledge is put in our criterion, and 
the quality of the segmentation obtained. We leave in the 
appendix some theoretical remarks on the error reduction 
process that occurs during segmentation, using our crite- 
rion. 

2 Preliminaries 

2.1 Definitions 

An image I with r rows and c columns is an r x c matrix 
taking its entries in (1, ...,g} where g is an integer repre- 
senting the number of grey levels of I .  A region of I is 
a non-empty, 4-connected’ subset of 2’. Two distinct re- 
gions of I are adjacent if and only if (iff for short) their 
union is still a region. A segmentation predicate is a pred- 
icate P(R, RI) taking as parameters two adjacent regions 
R and RI and answering T’ or “N’ whether or not R and 
R‘ should be merged during the segmentation process. The 
segmentation predicate uses a criterion C(R, RI) measur- 
ing the “proximity” of regions R and R’. Formally, C is 
only required to satisfy the following conditions: 

0 C is an application from 2’ x 2’ to R, having finite 
values, 

PMD(R, RI) is read as “if MD(R, RI) < 20, then R and 
R’ can be merged into one region”. The design of PC is 
not straightforward. In particular, it depends on the choice 
of C. In our example, the constant “20” we give for PMD 
is chosen arbitrarily ; it is a priori difficult to know if this 
constant is better than another one. Note also that the de- 
sign of P is not straightforward if we are allowed to choose 
arbitrary C. 

2.2 The algorithm mergesquare 

In order to achieve linear-time and linear-space region seg- 
mentation algorithm we will use for illustration purpose 
the mergesquare algorithm (see next page) presented 
in [ 141. This algorithm is based on a union-find structure 
which represents regions by trees of pixels belonging to 
the same region (see [ 151 for more information on union- 
find algorithms and [ 16, 141 for application to image pro- 
cessing). It proceeds by a quad-tree-like scan of the pix- 
els of the image, and for each pixel on the boundary of a 
square the algorithm checks if the region it belongs to can 
be merge with the region to which belongs the pixel on the 
other side of the boundary. The merge (the union) of two 
regions is done by linking the root of the tree of one region 
to the other one. Note that to identify the region a pixel 
belongs to, it is sufficient to check the root of its tree, the 
find operation allowing us to find quickly the roots of trees. 
In Algorithm 1, the image is assumed to be a square ma- 
trix, and the four sub-squares of a given matrix are called 

To be linear this algorithm requires to use constunt-time 
SNW,SNE,SSW,SSE. 

Algorithm 1: mercresuuare (S.lc) 

0 c is symmetric : VR, RI E 2‘, c(R,  R’) = c(R’, R). 

Intuitively, the smaller c(R, RI), the more likely R and RI 
are to be merged according to P.  Since it depends on C, 
we can rewrite P as %’c. 

- ~ _ _ _  

Input: an integer IC and a square S 
if lc = 0 then return ; 

for D=NW to SE do mergesquare ( S D , ~  - 1) ; 
for i = 0 to 2‘ do 

h- = 2k-1  . h+ = 2 k - 1 ;  , 

1 left = Find ( S[i ,  h-] ) ; 
right = Find (s[i, h+] ) ; 
if P (Zefi, right) then Union ( lejk right ) ; 

A basic example of criterion c(R, R’) is the mean dif- 
ference MD(R, RI): 

for i = 0 to 2k do 
up = Find (S[h- ,  21 ) ; 
down = Find (S[h+,  21 1 : I if P(up,down) then Union (up,down) ; 

and a segmentation predicate using MD would be 
predicates, i.e. predicates that are calculated in constant- 
time at each stage of the process. Note that this implies 
that parameters required for the calculus (such as Sums O f  

grey levels and cardinal of a region for the mean criterion 
for example) must be updated in constant time after a union 
is done. 

PMD(R, R‘) = “MD(R, RI) < 20” 

‘Two pixels are 4-adjacent iff they share an edge. A region is 4- 
connected iff given any two pixels p and q of it, there exists a path of pixels 
in the region, p l  = p ,  p 2 ,  ..., pk  = q, such that Vz E { 1, ..., k - I}, p ,  
is 4-adjacent to p z + l .  
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3 The generic predicate 

3.1 Segmentation criterion and associated predi- 
cate 

The idea underlying our predicate criterion is the following 
: two adjacent regions R and R‘ can be merged during the 
segmentation process iff 

0 c(R,  R’) is sufficiently small, and 

0 c(R,  R‘) is not greater than many C(R”, R”’), where 
R” # R“‘ and R”, R“‘ cover the regions of I .  

We create a “meta-criterion” F(c(R, R’)), using a function 
F ( x )  whose domain is IR, taking its values in [0,1]. It takes 
place between the classic criterion C and the predicate Pc. 
Given any user-defined criterion C, F is defined as 

F ( z )  is the ratio of couple of regions for which the value 
c(R”, R”’) is smaller than that of c(R,  B’). Since we do 
not make assumptions on the image, we do not suppose that 
regions R“ and R”‘ are linked. The predicate criterion PC 
is now the following: 

Pc(R, R’) E “F(c(R, R’)) < ai” ( 2 )  

where 011 is a risk associated to ‘Pc (generally, 3% 5 a1 5 
10%). a1 corresponds to the (small) percent of regions that 
can be merged. 

3.2 Representation of F ( z )  

We suppose that the image I is segmented, and contains a 
set S of regions (at the beginning of the algorithm, each 
pixel defines one element of S). It is convenient for our 
purpose to present F ( z )  as the integral of an estimated 
density f(z). We build the function f(x) in the follow- 
ing way. Let {WO, w1 , ..., wk} stands for the set of possible 
values of C ( R ” ,  R“‘), R“ # R“‘ and RI‘, R“’ E S. Then 
vi E {1,2, ..., IC},\Ja: E]2)o- -1 ,2) , ] ,  

and Vx E [WO - 1, VO], 

. .  .d 
bo = min{C(R”, E”’) : R”, R”’ E S A R” # R’”} 

::*<., bo-1 

R”,R”’~I:~”#R”’r\C(R”,R”’)~u~}~ 
~{R”,R”‘~I:R”#R“’}~ 

Figure 1 : The construction of f and a representa- 
tion of F(c(R, R’]). 

We also set 

vx E] - 03, WO - l[U]Wk, +m[, f(x) = 0 

Figure 1 shows the construction of f as well as a rep- 
resentation of F(c (R ,  R’)) that we justify now. Vi € 
{0,1, ..., k } ,  F ( q )  can be calculated using the follow- 
ing formula: F(wi) = s:; f(z)dz. Indeed, by setting 
w-1 = WO - 1, we obtain 

The integral formula for the calculation F ( z )  shows 
the monotonocity of F ,  because f takes no negative 
value. Given two adjacent regions R, R‘ of S ,  note that 
F(c(R, R’)) is just the area delimited between f and three 
lines whose equations are y = 0, z = WO - 1 and z = 

The signification of PC can be illustrated by Figure 2 
(it also shows a function f * whose role is explained in in 
the appendix. It it represented here for convenience). The 
decision to merge (or not to merge) two regions is taken 
by comparing F(C(R, R’)) and a1, the two hatched areas 
in Figure 2. Equivalently, since F ( x )  is monotonous, the 
decision consists in comparing C(R, R’) and x,, , where 
xal  satisfies F ( z a l )  = al. In the example of Figure 2, 
since F(C(R, RI)) < a1 (equivalently, c(R,  R’) < za,), 
PC (R,  R’) returns “Y” and regions R and R’ are merged. 

Note that the limit value zal is not set by the user. Its 
calculation depends on the risk al,  as well as on the image. 

c(R, R’). 
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We have [ 171: 

* 

R 

Figure 2: According to Pc(R,R'), regions R and 
R' can be merged. 

Even when setting a1 to a constant value, different images 
shall lead to different value of IC,, . In this sense we can 
say that our predicate is auto-udaptutive. This last point is 
the most important. We put in appendix some remarks con- 
cerning the limitation of the error during the segmentation 
process, that are not needed for our application purposes. 
Of greater importance is the way to calculate rapidly F ( x ) .  

3.3 Rapid calculation of F 

We define a predicate Pc (resp. a criterion C )  to be a 
constant-time predicate (resp. constant-time criterion) iff 
its calculation from two regions R and R' can be done in 
constant time. This constant-time property is very impor- 
tant, as C and PC are accessed each time the merging of 
two regions is tested. Reducing as small as possible the 
complexity of their calculation is a proof of rapidity for the 
segmentation algorithm. 

Obtaining a constant-time predicate Pc implies neces- 
sarily to have 

1. a constant-time criterion C, and 

2 .  a constant-time calculation of F(C(R, R')) .  

We propose in the following section criteria C that are 
constant-time, satisfying the first condition, Note however 
that the calculation of F ( c ( R ,  RI)) requires more than con- 
stant time : in the worst-case, it is linear in the size of the 
image. In our calculations, we replace F(C(R,  RI)) by an 
estimator @(C(R, E'))  having the constant-time property 
we look for. It is calculated on the basis of a set Pt of 
t (constant) rando_m observations of pairs of regions, over 
the regions of I .  F(C(R ,  R')) equals 

> 1 - a  

Let a = al. Let a2 = ,/-, where a2 is a fixed 
risk parameter. Solving for t leads to 

which is a constant for any fixed values of a1 and "2. 

An illustration of the consequence of constant-time 
calculation of Pc is given by our choice of the algorithm 
mergesquare to implement our predicate. Indeed, we 
have [ 141: 

Theorem 1 If PC is a constant-time predicate, 
mergesquare is linear-time and linear-space with re- 
spect to the size of I .  

4 Application 

4.1 Specialization and quality improvement of 
the predicate criterion 

The basis of the choice to merge two regions relies on the 
construction of a distribution f .  This distribution is not 
necessarily built on the image that is currently being seg- 
mented: 

it can be another image, in the same domain, cho- 
sen because it has better quality (contrast, luminosity, 
etc...), 

0 it can be a little part of an image, chosen because it 
presents important details that should be treated care- 
fully when seen in the segmented image, 

0 it can be an image taken from a collection of preseg- 
mented images, in relevant domains. For example, the 
segmentation of a boat can be done by constructing f 
from a presegmented boat image. Similarly, the med- 
ical segmentation of some organ can be done using a 
presegmented image of this organ, or similar images, 

f can be constructed using z > 1 images, putting 
f = $ Cg=, fj where fj is the distribution con- 
structed from the j t h  image. * 

These three points point out the inner possibility of putting 
knowledge, and machine learning in our predicate. 

t 
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Given one image (or more) to build f, the predicate ’Pc 
can also be specialized in many ways to integrate knowl- 
edge on the image being segmented, in order to fit as pre- 
cisely as possible to the users behaviour. This is equivalent 
to constructing conditional densities for f .  We can define 
three types of specializations. The first ones are syntaxic 
specializations. Among these are all comparisons involv- 
ing regions characteristics, such as 

e using only regions whose grey-levels are limited, or 
with more general functions involving grey-levels of 
images, 

e considering regions whose shape is constrained, or be- 
longs to some class, 

e considering regions not violating some constraint, 
such as the absence of edges between them if the im- 
age has been preprocessed using an edge-detection fil- 
ter. 

More generally, syntaxic specializations can be of any type, 
provided we can give some precise predicate for their cal- 
culation. Figure 3 gives an example of such predicate that 
can be added to the calculation of F ( z )  in equation 1. 
The second type of specialization are predicates involving 
a semantic knowledge of the image segmented, or (more 
likely) of benchmark images used to build f ,  as it IS pre- 
cised in the beginning of this section. For example, We may 
want to merge only regions that can be part of an organ, that 
would be described on a short benchmark of presegmented 
images. This makes the segmentation “object-oriented’ 
since it tends to isolate large regions that are likely to be- 
long to the searched object (in our example, an organ). Fig- 
ure 3 gives another examples of semantic specialization for 
our predicate criterion. 
Finally, the third type of possible specializations of our 
predicate, as shown in figure 3, relies on both syntaxic and 
semantic specializations. 

Specializations of our predicate criterion drops downs 
to defining an homogenitypredicate H, used to constrain the 
distribution f to more interesting distributions. The calcu- 
lation of &’(IC) can therefore be modified, and in the general 
case, we can rewrite equation 1 by: 

F ( x )  = (4) 

For example, in the case where we use an edge- 
detector to prevent merging regions separated by an edge, 
H(R”, R”’) would be “there is no edge between R“ and 

4 f  

minimajGrw=evel(R”j > \ ‘ / isPartOf(R”, Object)  

isPartOf(R”’, Objec t )  *minimalGreyLevel(R’”) > s , 

Svntaxic and Semantic 

I 1  
minimalGreyLeve1 (R” ) > s A is Part Of*’, 0 b j  ec  t) 

AminimalGreyLevel( R”’ ) > s AisPartOf (R”’ , 0 bject)  

Figure 3: Possible specializations of our criterion. 

R””’. In the case where we want to limit the grey-levels 
of merged regions, H(R”, RI’)) could be “the average grey- 
levels of R” and R”’ are not greater than 2”. 

4.2 Examples of constant-time criteria C 

We now give some basic criteria C that were used to per- 
form our experiments. They are all constant-time crite- 
ria. Their calculation is based on the following quanti- 
ties defined for any region R, whose update is constant- 
time when merging two regions: the number of pix- 
els of R (IRI), the grey level average of R (z), the 
maximal grey level of R (maxR) and the minimal grey 
level of R (minR). Their update when merging two 
regions R and RI in a single region R U R’ is per- 
formed in constant-time, since we have IR U R‘( = 
/RI + IR’I and = (IRIR + lR’lp)/([Rl + IR’I) 
and maxRuRJ = max{max R ,  max R/} and minR,R/ = 
min{ min R ,  min R I  }. 

The first criterion is the mean difference MD that we 
can define as MD(R, RI) = la - Fl. The second one is the 

levels in the union R U R’ flattens: 
range RA which traduces how much the histogram of grey 

= max{maxR,maxR,} - min{minR,minRj} 

The third one is the between-regions error BR, which 
is used in discriminant analyses: 

BR(R, RI) = - m)’ + IR‘I(R’ - m)2 
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We have tested other parameters, including variations in 
standard error of means, variations in the sums of grey lev- 
els, but the results were never better than those provided by 
these three criteria. 

4.3 Basic experiments 

Due to the lack of space, Figures 4, 6 present only a few 
experiments that were carried out, on three original bench- 
mark images presented in figure 5. Our whole segmen- 
tation algorithm includes repeating N times the algorithm 
mergesquare on each image, in order to decrease the 
region number. Each time, N was chosen small, never ex- 
ceeding 15. Parameters a1 and a2 were tested with differ- 
ent values, using each of the criteria MD, RA and BR. Each 
result is presented by a four-tuple (N, al , a2, C). Our ex- 
periments show the interest of considering different crite- 
ria, leading to segmentations that behave quite differently. 
This difference is to be seen not on different qualities, but 
on different varieties. Indeed, unless we try bad segmenta- 
tion criteria, the segmentations had all similar quality, but 
highlighted different part of the images, this being impor- 
tant since various domain studies shall focuse on various 
aspects of images and objects. Furthermore, we carried ex- 
periments setting high values a1 and a2 (one is showed 
with both values set to .20), and the quality of the seg- 
mentation obtained for these high values accounts for the 
robustness of our criterion. Real-time calculation never 
exceeded five minutes for the biggest images, for a non- 
optimized C program ran on a Pentium Pro 180. Process- 
ing time for 256x256 images never exceeded 1 minute. 

4.4 An example of specialization of our criterion 

We present an application of a syntaxic specialization of 
our criterion on the image lena. 

Figure 5 shows the original image. We have first iso- 
lated a small part of the image, known as being very dif- 
ficult to segment : the top of the hat. Figure 6 shows this 
part. We then have produced a first segmentation using an 
error criterion, which we denote ER: 

It is straightforward to show that this criterion is also 
constant-time, provided we keep for each region the sum 
of squares of grey levels (which also updates in constant 
time). We did not use separately this criterion like the three 
others, since it gave poor results for segmentations like in 
the preceeding section (the number of regions is generally 
greater than for the three other parameters). We have ex- 
ecuted our criterion building f not on lena, but on the 
small part of the hat. This produces an histogram which is 

Figure 6: The error reduction in lena, with param- 
eters (20,230, .lo, ER). 

highly concentrated around the difficult values, and there- 
fore leads to keeping almost perfectly the hat in the final 
image. The errors due to lena’s hair and her hat’s feathers 
are greatly reduced (a rectangle shows the area of interest 
on figure 6). 

This latter image obtained is then segmentated, but us- 
ing to build f a very noisy image where greylevels are sim- 
ilar to lena. The final result is presented in figure 7 (left 
image). It contains very few regions (less than 0,06% of 
the original number of regions), and many intuitive regions 
of the original image are kept almost intact. For compar- 
ison, the right image in figure 7 gives the result of a seg- 
mentation using the same criterion MD, chosen because it 
led to good decreasing of the regions number in lena’s hair 
and hat’s feathers. It shows that the segmentation using the 
preprocessed image of figure 6 leads effectively to reducing 
the error on regions such as lena’s hair and hat’s feathers. 

5 Conclusion 

We have presented in this paper a generic non parametric 
predicate to be used in region segmentation algorithms. It 
is generic since it for each distance criterion chosen we get 
a new predicate. This choice of a distance is critical since 
it determines the final result. The important thing to note 
is that, provided the distance criterion chosen fit exactly 
a user criterion segmentation, part of the predicate error 
with respect to the user is controlled. The stating that the 
similarity measure is well chosen by the user is strong, but 
due to the weak constraints on C, many knowledge can be 

455 



(5, .03, .07, MD) 

(7,  .03, .lo, MD) 

(10, . lo,  .lo, BR) 

(5, .lo, .lo, RA) 

(7, .20, .20, BR) 

Figure 4: Segmentation produced with various parameters setting, see text. 

Figure 5: Original images (resp. peppers, cornouaille, lena). 
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. lo,  . ~ O , M D )  

Figure 7: Final segmentations with lena, with error reduction (left), or without (right). 

included to improve its behaviour. 
Moreover our predicate doesn’t need to tune parame- 

ters in order to get good result. It is only necessary to set 
a risk parameter, this risk being generally fixed within 3% 
to 10%. We claim that it is auto-adaptative since, provid- 
ing the risk paramater is fixed, a limit value on the distance 
function will be set automatically according to the distri- 
bution of the image. This limit value will determine the 
similarity notion between regions in the image. It will be 
different in another image. 

At last, if the chosen distance function is a constant- 
time predicate, we ensure that our predicate will be a 
constant-time predicate. This allows to design efficient seg- 
mentation algorithms. In Section 4 we have given some 
results showing good segmentations with simple distance 
criteria. This allow us to expect very good results in partic- 
ular applications where knowledge can be included in the 
distance criterion. 
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6 Annex 0 keeping 7-10 while 7-11 is true, or 

0 rejecting 7-10 (i.e. accepting XI) while 7-10 is true. 

These two events are noted respectively “3c01311” and 
“7-1117-10”. It is not easy to quantify PT(310l7-11). However, 
provided f is a good approximation of f *, we have: 

PT(7-1IlXO) 5 Q: 

In this part, we provide an interpretation of the segmenta- 
tion and predicate criteria. 
For large images, under the hypothesis that the criterion 
C is well chosen, The function f represents a distribution 
function which is a good approximation of an “ideal 
distribution function” f *, that we do not know exactly. 
f* satisfies the following property : the answer of PC for 
merging two adjacent regions R and R’ of I ,  calculated 
using f *  instead of f ,  would be exactly the same as the 
user’s answer on the question “can we merge R and RI?’ 
This notion of exactitude is very important. It postulates 
that the predicate PC behaves like the user when testing 
the merging of two regions, and therefore that c is well 
chosen by the user. It is obviously a very strong hypothesis 
difficult to ensure. But it has the property that it allows 
us to upperbound one type of error the algorithm can 
make when merging two regions. Furthermore, and we 
emphasize on this later in our conclusion, many parame- 
ters and knowledge can be included in the criteria C and 
P,, thus adaptatable to fit precisely to the user’s behaviour. 

If the previous hypothesis is not valid, there is still 
a partial control of the error made during the algorithm, 
but it is more basically a control of the error made by 
PC with respect to C,  and not with respect to the user’s 
behaviour. From the user’s point of view, it is less im- 
portant, but it is relevant for the properties of our algorithm. 

f *  can be seen as a similarity measure between two 
distinct regions of I ,  representing the distribution func- 
tion of a random variable x. Thus, we have for example 
F ( x )  FZ P, (X 5 x). Suppose we have drawn randomly 
two adjacent regions R, R’ of I .  If we make the following 
hypothesis: 

?Lo = “R is diyerent from R’ ’’ 

then c(R,  R‘) is just a realization of X, and so a value in 
the domain o f f  * .  If the observed value C(R, R’) satisfies 

PT (x 5 c(R,R’)) 5 Q! ( 5 )  

where a! is fixed and small, then C(R,R‘) is small and 
belongs to a small set of realizations of X, having a little 
probability of appearance. These are the realizations of X 
defined by the set { y 5 C (R ,  R’)}. In that case, we can rea- 
sonably consider that R and R’ in fact belong to the same 
region, and in that case we can merge them. That means 
that we reject 310 for the alternative hypothesis 7-11 : 

311 = “R and R’ belong to the same region” 

When testing the merging of two regions R and R’, there 
are two types of errors that can be made: 

Indeed, if NO is true, the probability of rejecting it for 311 
is no more than the probability of drawing two regions R 
and R’ in I satisfying equation 5.  Note that the vocabulary 
in the presentation of the errors is very important: 

e when we choose ?Lo, since it is hard to control 
PT(7-t0IX1), we say that we keep U0 ; 

0 when we choose 7-11, since we control P, (311 1x0) , 
we can say that we reject 7-10 for XI 

Thus, we obtain relatively strong bounds on one type of 
error, provided we choose a! sufficiently small. This can be 
achieved by choosing a1 in equation 2 small enough, since 
we also have P,(7-1117-10) 5 al. 
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