
HAL Id: lirmm-01168508
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01168508v1

Submitted on 26 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topological Encoding of 3D Segmented Images
Yves Bertrand, Guillaume Damiand, Christophe Fiorio

To cite this version:
Yves Bertrand, Guillaume Damiand, Christophe Fiorio. Topological Encoding of 3D Segmented Im-
ages. DGCI: Discrete Geometry for Computer Imagery, Dec 2000, Uppsala, Sweden. pp.311-324,
�10.1007/3-540-44438-6_26�. �lirmm-01168508�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01168508v1
https://hal.archives-ouvertes.fr


Topological Encoding of 3D Segmented Images

Yves Bertrand1, Guillaume Damiand2, and Christophe Fiorio2

1 IRCOM-SIC, SP2MI
BP 179, F-86960 Futuroscope Cedex

bertrand@sic.sp2mi.univ-poitiers.fr
2 LIRMM

161 rue Ada, F-34392 Montpellier Cedex 5
{damiand,fiorio}@lirmm.fr

Abstract. In this paper we define the 3d topological map and give an
optimal algorithm which computes it from a segmented image. This data
structure encodes totally all the information given by the segmentation.
More, it allows to continue segmentation either algorithmically or inter-
actively. We propose an original approach which uses several levels of
maps. This allows us to propose a reasonable and implementable solu-
tion where other approaches don’t allow suitable solutions. Moreover our
solution has been implemented and the theoretical results translate very
well in practical applications.

1 Introduction

An early stage of an image analysis process is to group related information in
the image into regions: it is segmentation. This problem has been widely studied
and efficent algorithms which perform segmentation are well known. A related
problem concerns the data structure used to represent the segmentation. Indeed,
after segmentation, more complex algorithms (such as pattern recognition) need
to be run in order to give useful results. These algorithms need a structuration
of the data which represents completely all the information given by the seg-
mentation. Moreover this structuration need to be efficiently computable. For
example we may have to deal with the topological characteristics of the volume
found, as well as to work interactively on the objects modelled.

Numerous data structures have been already proposed. For example, a simple
one is to associate each pixel to the region it belongs to [15]. But this solution
is not efficient if we have to cut or merge regions. There is also a solution using
quadtrees or octrees [8,16] which are based on a recursive decomposition of the
image. But this structure is difficult to modify and doesn’t allow to check easily
adjacency relations between regions. Same drawbacks can be reproached to the
pyramidal structures [2,12].

Other structures focus on information related to the regions, for example the
region adjacency graph [14], which codes the adjacency relation between regions.
But it is not topologically consistent and doesn’t relate the inclusion or multiple
adjacency, so it doesn’t allow a precise analysis.

G. Borgefors, I. Nyström, and G. Sanniti di Baja (Eds.): DGCI 2000, LNCS 1953, pp. 311–324, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



312 Yves Bertrand et al.

Some other solutions try to use several of the formers in order to gather the
advantages offered by each of them. But this lead to complex solutions, often
non efficiently computable.

This is this lack of adequate solutions which has lead [10] to define the topo-
logical graph of frontiers. The interest of such a structure is to be consistent
with the topology of the objects it represents. Moreover, this structure can be
efficiently computed thanks to a linear algorithm in the number of pixels which
proceeds in one scan of the image [9]. One can remark that this solution is close
to the one of [3,4,5] which defines the 2d topological map, the difference being
in the extraction algorithm.

But these solutions are only defined in dimension 2. The need to work in
dimension 3 has lead [1] to propose the border map. This solution can easily be
extended to dimension n. Moreover, they have proposed a very simple algorithm
which extract this structure from a 3d segmented image. But the border map
is not homogeneous. It mixes topological and geometrical information. Further-
more, the optimal algorithm proposed is not practicable in dimension 3 since it
requires the definition of more than 4000 differents cases, which is impossible to
achieve.

We then propose an evolution of the border map: the 3d topological map.
This data structure is completely homogeneous and requires less memory than
the border map. We also give an extraction algorithm which uses a limited
number of cases and so allows an implementation. The topological and the geo-
metrical information has been completely separated allowing to modify one type
of characteristic on one object independently to the other.

In order to present the topological map, we define several maps levels, the
border map becoming one of this levels. We start Sect. 2 by a short introduction
on combinatorial maps. Then Sect. 3 we come back on the basis of border map.
Section 4 we show the notion of topological map and the principle of the ex-
traction algorithm in dimension 2. Then Sect. 5 we extend the precedent results
to the dimension 3. At last Sect. 6 we show and analyse some results and we
conclude this paper Sect. 7.

2 Combinatorial Maps

Combinatorial maps are a mathematical model of representation of space sub-
divisions in any dimension. They are consistent with the topology of the space
as they also code the adjacency relation between all the subdivisions. For a
complete definition see for example [6,7,11].

A combinatorial map of dimension n is called a n-map. The n-map allows to
represent subdivisions of orientable n-manifolds. The notion of maps has been
generalized in [13] for the representation of quasi-manifold cellular of dimen-
sion n, orientable or not.

In dimension n, a n-map is an (n + 1)-tuple M = (D, β1, β2, . . . , βn) such
that D is the set of darts, β1 is a permutation on D and the other βi are



Topological Encoding of 3D Segmented Images 313

involutions1. Each βi links two cells of dimension i. The βi are called sews, and
a dart b is said i-sewn to a dart c if βi(b) = c. For each dimension the sets of
darts corresponding to the i-cells are a partition of the set of all darts. Maps
code the topology of objects, but it is not sufficient in order to represent them
completely. Information on how drawing them are necessary: it’s the notion of
embedding. For a cells subdivision of space, this embedding associates to each i-
cell a geometric object of dimension i.

For example in dimension 3, the embedding of a surface consists in relating
a point to each vertex, an open curve to each edge and an open surface to each
face. An open face is associated to each cell in order to avoid duplication of
information. Indeed, border of an i-cell is an (i− 1)-cell to which an embedding
is already associated.

But according to our needs or constraints, we can choose not to embed each
cell and compute the missing embedding. For example, in dimension 2, we can
embed only the edge with closed curves. In this case, the embedding of the
vertices can be retrieved by taken the extremities of one incident edge. It is
then necessary to ensure the coherence between topological and geometrical
information: if two edges are incident to the same vertex, there embeddings
have to have the same extremity.

3 Border Maps

We give, here, a brief recall on the border map defined in [1]. Note that in this
paper we use combinatorial map instead of generalized map, this, in order to
save memory.

Definition 1. The border map is a combinatorial map which codes the inter-
pixel contours of a segmented image. Each edge of the map corresponds to a
segment of the interpixel contours of the image.

The border map codes the topology of the contours but also the geometry.
So it contains all the information given by the segmentation about the objects
found.

A level 0 map is the complete map obtained by sewing n1 × n2 squares
between them. Then level i map is the map obtained from i different sorts of
merging. For dimension 2, we get the level 1 map by merging adjacent faces of
the same region. Level 2 map is then obtained by merging adjacent edges on the
same line incident to a degree 2 vertex2. This level 2 map is in fact the border
map.

We can see Fig. 1, the border map of an image and also the two intermediate
levels of maps. We can see on this example, that after the merging of faces, the
map can be disconnected. This problem is solved by adding an inclusion tree to
the connected components of the map. This tree can easily be computed by a
linear algorithm in the number of darts of the map [1].
1 An application f is an involution if and only if f ◦ f is the identity application.
2 A vertex is of degree 2 if and only if it’s incident to exactly two edges.



314 Yves Bertrand et al.

a. An image b. Level 0 c. Level 1 d. Level 2 :
the border map

Fig. 1. The border map

For dimension 3, we proceed on a similar way to obtain the border map. But
an additionnal level is necessary (see Algo. 1).

Algorithm 1: The border map in dimension 3

Input: An image I of n1 × n2 × n3 pixels

Output: The border map of I.

1 Build a 3-map C of n1 × n2 × n3 cubes sewn in between them;
2 Merge all couple of adjacent volumes having the same region;
3 Merge all couple of coplanar faces incident to a degree 2 edge;
4 Merge all couple of aligned edge incident to a degree 2 vertex;

The extraction algorithm in dimension 3 is simply the extension of the naive
extraction algorithm of the border map in dimension 2. We now have three sorts
of merging:

– Merging of adjacent volumes which consists in deleting the faces in between
the volumes and to update the sews in order to have only one volume (see
Fig. 2.b): we get the Level 1.

– Merging couple of coplanar faces which is equivalent to two merging of faces
in dimension 2 (see Fig. 2.a): we get the Level 2.

– At last, the merging of edges on the same line which is equivalent to do, one
by one, several merging of edges in dimension 2: we then get the Level 3
which is also the border map.

a. Face merging b. Volume merging

Fig. 2. Face and volume merging in dimension 3



Topological Encoding of 3D Segmented Images 315

As for dimension 2, an inclusion tree of the regions is needed. But it is not
sufficient since we can also have non-connected faces. Indeed when the merging
of coplanar faces is done, the border of faces can be disconnected and so the
map. In order to solve this new problem we can add an inclusion tree of faces
which, for each face, gives the list of faces included.

In order to embed a border map in dimension 2 or 3, it is sufficient to give the
coordinates of each vertex of the map. Indeed only elements on the same plane
or line are merged, so edges are only straight segments and faces are coplanar to
these edges. So the embedding of the vertices allows to compute the embedding
of an edge from the embeddings of the two incident vertices, and the embedding
of a face from the embedding of all incident edges. This choice of embedding
facilitates process and extraction of the border map.

But this leads to an important problem: the same topological information can
be coded differently according to the geometry of the image : two topologically
equivalent objects could have two different border maps.

The border map mixes topological and geometrical information. The notion
of topological map has been introduced to solve this problem. We first present
it in dimension 2 in order to help us to understand the idea of the algorithms
and the relation in the differents precodes of our different levels. But the goal
remains the definition of a 3d topological map and this is presented in Sect. 5.

4 2d Topological Map: Last Level of an Hierarchy of
Maps

In the border map, some merging are done accordingly to the embedding of
the associated cells. So, two topologically equivalent images, but with different
embeddings will have two different border maps.

So we have to do merging only on topological criteria. Practically for dimen-
sion 2, in addition to the merging of edges on the same line and incident to
degree 2 vertices, we also have to merge edges incident to degree 2 vertices but
not on the same line. Edges embeddings are no longer line segment and embed
only vertices as for the border map is no longer sufficient.

Definition 2. The topological map is a combinatorial map which codes the
interpixel contours of a segmented image. Each edge of the map corresponds to
an entire interpixel frontier of the image.

If we forget for a moment the problem of embedding, computing the topo-
logical map is not really a problem, there is just another sort of merging to add
after the computation of the border map: the merging of each couple of edges
incidents to a degree 2 vertex. This Level 3 map is the topological map. If we
take the example of Fig. 1 showing maps of Level 0 to 2, the topological map is
then the one of Fig. 3. On this figure, the darts are drawn without taking into
account their embedding. In fact the embedding of each edge should be coded by
an open curve. An interesting way of doing this is to use a 1-map representing the



316 Yves Bertrand et al.

Fig. 3. Topological map without embedding

curve corresponding to the embedding of the edge. We then get an hierarchical
structure where i-maps are used to code the embedding of i-cells.

We can see on Fig. 3 that there is exactly one edge for one frontier between
two regions, so a frontier is always coded by exactly two darts. This imply that
the topological map requires less memory than the border map. This can be
very important to deal with 3d images. In the topological map only topological
information darts have been kept. So two topologically equivalent images will
give the same topological map, except for the embedding.

We can easily deduce from the definition of the topological map a first ex-
traction algorithm: building the different levels, starting from level 0 and then
each level is built from the former by doing the supplementary mergings. In-
deed deducing one level from the former level is very simple. Moreover, the same
method can easily be applied for the definition of the topological map and its
associated extraction algorithm for any dimension.

But this algotihm is not optimal since it needs several image scans and it
creates many darts which are in the following deleted. In order to improve this
algorithm, [1] gives an algorithm based on precodes which computes directly the
border map. We have extended this algorithm in order to compute the map of
any level directly and in one scan.

4.1 Extraction of the Level 1 Map in One Scan

This algorithm scans the image with a 2 × 2 window and does the operations
given by the configuration of the frontiers (called a precode) in the 2×2 window.
So the map is built in one scan and no more than the exact number of darts are
created.

The idea of the algorithm is that during a scan from top to bottom and
from the left to the right, the face corresponding to the current pixel can only
be merged with the one above or the one on the left. Then, We only have four
possible cases which corresponds to all the combinations of merging this face
with the two others. Figure 4 shows this four face merging precodes.

The algorithm uses two invariants which say that before processing one pixel:

– The map corresponding to the image already scanned is built.
– The dart corresponding to the right border of the last processed pixel is
known.



Topological Encoding of 3D Segmented Images 317

1 f2 f3 f4f

Fig. 4. The four precodes of face fusion

These two invariants insure us that we can proceed by modifying the map.
Indeed we have to know how to link the map associated to the current pixel
to the global map. So before scanning the image we have to build a map done
with n1 horizontal darts, corresponding to the upper border of the image, and 1
vertical dart to the left, all these darts being sewn by β1. So the invariant is also
verified for the first pixel and for the first line of the image.

During the scanning, we consider that the image is on a cylinder. Thus,
when the algorithm treats the last pixel of a line, it can create the dart for the
left border of the next line. Special treatments for borders of the image are so
avoided. We only have to define the treatment associated for each of the four
precode and the Level 1 map extraction algorithm will be defined. In fact this is
easily done as we can see on the example of Fig. 5 and on Algo. 2 associated.

f2

u

l

u

l
?

Fig. 5. Precode f2: map before processing this precode and map to be obtained

Algorithm 2: Processing of precode f2

t1 ← a new dart; t2 ← a new dart;
β1 − sew(t2, β1(l)); β1 − sew(t1, t2);
β1 − sew(l, t1); β2 − sew(l, u);
(x, y)← the embedding of vertex incident to u;
Embedding of vertex incident to t2 ← (x + 1, y + 1);
return t1

We can see on this example that not all the local configuration is known
(the dart sewn to the dart u is not known), but it is not a problem since the
operations to be done are independent of the fourth pixel. This precode returns
the dart which will be the dart to the left for the next precode. At last we can
see that the treatment is very simple, this is the same thing for the other three
precodes.

Extraction algorithm of Level 1 map in one scan is very simple and is de-
scribed in Algo. 3. This algorithm is in fact similar for all maps level, it is just
necessary to define the precodes corresponding to the level concerned. So we will
now focus on the precodes for the other levels of the map.



318 Yves Bertrand et al.

Algorithm 3: Extraction algorithm in one scan

Entrée: An image I of n1 × n2 pixels

Sortie: Level i map of I.

1 Build the upper border of the map;
2 for j = 1 n2 + 1 do

for i = 1 to n1 + 1 do
Process the precode (i, j);

4.2 Extraction of Level 2 Map in One Scan

For level 2 map, we have to add the merging of edges incident to a degree 2
vertex and on the same line. We can easily check that only two precodes are
concerned by this merging: these are the precodes of Fig. 6.a.

1b 2b
4tt3t2t1

a. The two precodes for level 2 map. b. The four precodes for topological map.

Fig. 6. Precodes for level 2 and 3 maps

Finally we have six precodes for the Level 2 map: the four of the level 1 and
these two of Fig. 6.a. The extraction algorithm is similar, we just have to look
at the six precodes.

4.3 Extraction of the Topological Map in One Scan

For the topological map, in addition to the precedent merging, we have to merge
the edges incident to a degree 2 vertex. These edges are necessary not on the
same line, else they have been processed by one of the two precedent precodes
for level 2 map. It is easy to see that there are only four precodes concerned by
this sort of merging. These precodes are shown on Fig. 6.b.

In addition, this level requires an embedding for the edges, which can be
represented by a 1-map. The general algorithm is also similar to Algo. 3 but ten
precodes have to be checked. Nevertheless, this algorithm is still simple and can
easily be implemented. It is also optimal and built directly the topological map.

Here we see the advantage of having defined several map levels: we have a
relation between the number of precodes and the level of the map we want to
extract in one scan. It allows to choose to extract directly Level imap accordingly
to the need or development constraints, without paying more in processing time.
This approach is particularly interesting in the 3d case where the number of
precodes is huge.



Topological Encoding of 3D Segmented Images 319

5 3d Topological Map

As for dimension 2, we have to do merging according to topological criteria and
without taking into account the embedding associated to the cells. We have seen,
Sect. 3 that the border map of dimension 3 is the Level 3 map where adjacent
volumes of the same region, coplanar faces incident to degree 2 edge and same
line edges incident to degree 2 vertex have been merged. The level 4 map is then
the map obtained from the Level 3 map where incident to degree 2 edge faces
are merged.

As in dimension 2 where an edge embedding was added, this merging of non
coplanar faces will require to add a face embedding. We can also use here a map
for coding the embedding. Of course this map will be a 2d topological map where
their edge embedding will be 1d map.

The topological map of dimension 3 (Level 5 map) is defined algorithmitically
by merging in the Level 4 map each couple of edges incident to a degree 2 vertex:
all the redundant topological information has been merged.

The simple algorithm which builds the map of Level i consists now to build
a complete map (Level 0 map) of n1 × n2 × n3 voxels sewn, then to build level
after level the different maps. The Level i+ 1 map is obtained from the Level i
map by doing the adequate additional merging.

[1] have tried to apply the same method as for dimension 2 in order to
bring a more efficient algorithm. But they have calculated, thanks to the Stirling
numbers, that it could be necessary to define 4140 different precodes in order
to be able to compute optimally and in one scan the border map! In fact this
number denotes the total number of possible precodes in dimension 3.

But we are interested only in manifolds, so in a first time, we have tried to
calculate the number of manifold precodes. But we didn’t manage to achieve a
formula giving us this result. We finally computed it by the help of a program
and found 958 manifold precodes. This number is more encouraging but the
implementation of such a number of precodes is not yet easy. In fact the de-
composition of the problem in different levels of map will bring us a reasonable
solution.

5.1 8 Precodes for Level 1 Map

The scanning of the image starts from up to down, from behind to front of and
from left to right. So a voxel can only be merged with the upper voxel, the
voxel behind and the voxel to the left. We have then 8 possibility of volume
merging and we get the 8 precodes of Fig. 7. More Generally, in dimension n, we
get 2n precodes for the Level 1 map. Indeed, the current element has exactly n
neighbours already scan.

The extraction algorithm requires a similar invariant as for the dimension 2
version which ensure us that there exists in the map a face to the left, a face be-
hind and a face with the top of the current voxel. The definition of the operations
for each precode is not a lot more difficult that in dimension 2. The difficulties
provide from the number of darts in one precodes, and from the fact that this



320 Yves Bertrand et al.

v1 v2 v3 v4

v5 v6 v7 v8

Fig. 7. 8 Precodes of Level 1 Map

is not easy to represent and visualize the object in dimension 3. The general
algorithm is similar as the one of dimension 2, it requires only an additional
loop for the additional dimension.

5.2 18 Precodes for Level 2 Map

At this level we have to do the merging of coplanar faces incident to degree 2
edge. Intuitively, in order to merge coplanar faces, the two voxels “containing”
this faces are to be of the same region, and that the two front of voxels are of
another region but the same for the two. We can see Fig. 8.a some examples of
such precodes.

a. Two precodes for level 2 map. Two precodes for level 3 map.

Fig. 8. Examples of precodes for Level 2 and 3 Map

The low number of cases allows us to find exhaustively the 18 precodes for
this sort of merging. We, then, immediately get the optimal extraction algorithm
in one scan of Level 2 map: it’s enough to check for each voxel in which of the 26
(the 18 for the coplanar face merging plus the 8 volume merging precodes) cases
(precodes) it is and then to apply to corresponding operations on the map.

5.3 27 Precodes for the Border Map

For this level, we have to look at the merging of edges incident to a degree 2
vertex and on the same line. Intuitively, this merging can only be done if the
vertex in the center of the precode is of degree 2. It means that all the voxels are
two by two of the same region. Fig. 8.b shows some examples of such precodes.



Topological Encoding of 3D Segmented Images 321

In this case also, the low combinatorial allows us to find easily all the 27
precodes involved. So the total number of precodes to extract directly and in
one scan the border map is of 53. We obtain a number which is far away from the
4140 first claimed in [1], and far away from the 958 cases of manifold. This last
result is obtained thanks to our new approach which considers different levels of
map.

But the topological map, which is our final objective, requires the implemen-
tation of Level 4 and 5.

5.4 Level 4 Map and Topological Map

Until the Level 3, only on the same line or on the same plane elements are
merged. So the number of precodes remains limited and we have been able to
determine all the precodes. But from level 4, things become more complicated
and finding all the precodes is a lot more difficult and a long work. So we have
just tried to determine the number of precodes for each level. This was done
by the help of a program which, for each precode among the 958, builds the
corresponding map, then does the merging required by the Level i considered.
It is then sufficient to group the precodes with the same merging and count the
number of equivalence classes.

The numbers of 8, 18 and 27 precodes for the first three levels of map have
been confirmed. Then we get 98 precodes for the Level 4 map and 216 precodes
more for the topological map. We recall that these numbers are the numbers
of precodes to add to the precedent level. So the total number for an algorithm
which would compute the topological map directly and in one scan would require
the definition of 367 precodes! Our approach allows us to divide by half the total
number of precodes required. But even if we are still far away from the 958 or
better from the 4140 initially claimed, there are still too many precodes for a
human.

But an intermediate solution exists. It consists in computing directly the
border map by the way of the 53 precodes, and then to proceed as for the
general algorithm and compute Level 4 and Level 5 (the topological map) by
doing the additional merging on the border map. This solution is the one we
have implemented and is an interesting compromise between the running time,
the development time and the memory space required.

6 Experiments and Analysis

In dimension 2, we have implemented the extraction of maps for each level
with the precode based algorithm. Results about memory needed can be seen
on Table 1. The running time doesn’t change a lot for the different levels and is
about 0.20 seconds for a 512× 512 on a 600 MHz PIII with 256 Mb of memory,
included the computation of the inclusion tree.

In dimension 3, we can see on Table 2, for each level, the differences between
the number of darts and the memory space. The method implemented is the



322 Yves Bertrand et al.

Table 1. Comparison of the different levels in dimension 2

Level 1 Level 2 Level 3

Lena, 58 724 2d darts 31 648 2d darts 1 160 2d darts
256 region - - 15 244 1d darts

1 650 004 Bytes 891 876 Bytes 350 948 Bytes

Lena, 220 900 darts 2d 139 848 darts 2d 67 112 darts 2d
14218 regions - - 36 368 darts 1d

6 478 564 Bytes 4 209 108 Bytes 3 095 524Bytes

Table 2. Comparison of the different levels in dimension 3

Level 1 Level 2 Level 3 Level 5 Unit

Heart, 245 296 33 936 23 900 1 408 3d darts
64× 64× 64 - - - 16 435 2d darts
12 regions - - - 225 1d darts

7 998 920 1 235 400 854 032 598 068 Bytes

Skeleton, 10 109 680 1 354 412 922 072 44 300 3d darts
512× 512× 177 - - - 632 396 2d darts

4 regions - - - 14 828 1d darts
329 647 688 49 479 112 33 050 192 22 905 824 Bytes

Legs, 17 869 952 5 152 672 3 282 702 710 518 3d darts
512 × 512 × 55 - - - 1 667 613 2d darts
13926 regions - - - 184 554 1d darts

584 564 284 177 611 324 117 772 284 82 155 560 Bytes

one described at the end of Sect. 5.The computation of the Level 5 map takes
about 3 seconds for the heart (Fig. 9.a), 470 seconds for the skeleton (Fig. 9.b)
and about 200 seconds for the legs. The running time of the other levels is a little
more important, due to much more dart creations and so much more memory
allocation calls.

We can see on Table 2 that the gain in memory is very significant. These
first results confirm that the 3d topological map is well suited for applications
on 3d images. Indeed in dimension 3 the big amount of memory required could
limit the size of the images processed. For example, for the legs where all regions
are considered, only 55 slices have been processed and the level 1 map requires
too much memory space to be used in a basic computer. In the contrary the
topological map only needs about 80Mb which is reasonable and can be used on
a classical computer.

7 Conclusion

In this paper we have presented a data structure and an algorithm which recon-
struct a 3d segmented image. This structure, the 3d topological map represents



Topological Encoding of 3D Segmented Images 323

a. Heart b. Part of a skeleton

Fig. 9. Topological maps extracted from a segmented image

totally the objects found by the segmentation. It allows to continue the segmen-
tation either algorithmically or interactively, since based on combinatorial maps
used in geometric modeling. This structure can be used to compute geometric
properties as well as topological properties of the objects represented.

The approach proposed which uses different levels of simplification has al-
lowed to define on a simple manner the structure and to propose a simple, linear
(but not optimal) extraction algorithm. In order to achieve an optimal solution,
we have introduced a new algorithm based on precodes. This algorithm builds
the different levels of map in one scan of the image and is then very efficient. Nev-
ertheless, it remains very simple since it proceeds by checking a configuration,
called a precode, and realizes the operations associated to the met configuration.

In order to implement this algorithm, it is then sufficient to define these
operations. A first study gave 4140 possibles cases, but we have proven here
that there are only 958 precodes suitable for the non-manifold case which we
are interested in, and moreover that our approach gives the possibility to study
only one half, i.e. 367 precodes, for the last level of map. But the intermediate
levels require only 8, 18, 27 and 53 precodes and then can easy be implemented.

This level approach allows to choose an hybrid solution in order to avoid the
367 precodes: compute directly an intermediate level of map and then build the
last levels from this one. This is the solution we have implemented and tested.
The border map have been computed directly with the 53 precodes and then,
level 4 and the topological map has been built from the border map by doing
appropriate merging of elements of the map.

At last our experiments prove that the topological map requires less memory
than the other map levels, which is an important point for 3d images. More-
over in order to apply segmentation algorithm on a structure it is important
that it doesn’t code redundant information. In fact, adjacency relation, that is
topological information, is the key point of such algorithms. Our structure is
then well-adapted, not only to reconstruction and modeling, but also to image
analysis .



324 Yves Bertrand et al.

Acknowledgements

We wish to thank Lionel Gral for useful comments and careful reading of this
paper.

References

1. Y. Bertrand, C. Fiorio, and Y. Pennaneach. Border map : a topological repre-
sentation for nd image analysis. In G. Bertrand, M. Crouprie, and L. Perroton,
editors, Discrete Geometry for Computer Imagery, number 1568 in Lecture Notes
in Computer Science, pages 242–257, Marne-la-vallée, France, March 1999. 312,
313, 316, 319, 321

2. M. Bister, J. Cornelius, and A. Rosenfeld. A critical view of pyramid segmentation
algorithms. Pattern recognition Letters, 9(11):605–617, 1990. 311

3. J. P. Braquelaire and L. Brun. Image segmentation with topological maps and
inter-pixel representation. Journal of Visual Communication and Image Represen-
tation, 1(9):62–79, 1998. 312

4. J. P. Braquelaire and J. P. Domenger. Representation of segmented images with
discrete geometric maps. Image and Vision Computing, pages 715–735, 1999. 312

5. L. Brun. Segmentation d’images couleur à base Topologique. Thèse de doctorat,
Université Bordeaux I, décembre 1996. 312

6. R. Cori. Un code pourles graphes planaires et ses applications. PhD thesis, Uni-
versité Paris VII, 1973. 312

7. R. Cori. Un code pour les graphes planaires et ses applications. In Astérisque,
volume 27. Soc. Math. de France, Paris, France, 1975. 312

8. R. C. Dyer, A. Rosenfeld, and H. Samet. Region representation : boundary codes
for quadtrees. In ACM 23, pages 171–179, 1980. 311

9. C. Fiorio. Approche interpixel en analyse d’images : une topologie et des algo-
rithmes de segmentation. PhD thesis, Université Montpellier II, 1995. 312

10. C. Fiorio. A topologically consistent representation for image analysis: the fron-
tiers topological graph. In S. Miguet, A. Montanvert, and S. Ubeda, editors, 6th
International Workshop, DGCI’96, number 1176 in Lecture Notes in Computer
Sciences, pages 151–162, Lyon, France, November 1996. 312

11. A. Jacques. Constellations et graphes topologiques. In Combinatorial Theory and
Applications, pages 657–673, Budapest, 1970. 312

12. W. G. Kropatsch. Building irregular pyramids by dual graph contraction. In IEE
Proceedings : Vision, Image and Signal Processing, volume 142(6), pages 366–374,
1995. 311

13. P. Lienhardt. Subdivision of n-dimensional spaces and n-dimensional generalized
maps. In 5th Annual ACM Symposium on Computational Geometry, pages 228–
236, Saarbrücken, Germany, 1989. 312

14. A. Rosenfeld. Adjacency in digital pictures. Inform. and Control, 26:24–33, 1974.
311

15. A. Rosenfeld and A. C. Kak. Digital Picture Processing, volume 2. Academic
Press, New York, 1982. 311

16. H. Samet. Region representation : quadtrees from boundary codes. In ACM 23,
pages 163–170, 1980. 311


	Topological Encoding of 3D Segmented Images
	Introduction
	Combinatorial Maps
	Border Maps
	2d Topological Map: Last Level of an Hierarchy of Maps
	Extraction of the Level 1 Map in One Scan
	Extraction of Level 2 Map in One Scan
	Extraction of the Topological Map in One Scan

	3d Topological Map
	8 Precodes for Level 1 Map
	18 Precodes for Level 2 Map
	27 Precodes for the Border Map
	Level 4 Map and Topological Map

	Experiments and Analysis
	Conclusion


