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Abstract

In this paper we define formally and completely the 3d topological map intro-

duced in [5]: a model which encodes totally and minimally all the topological

information of a 3d image. In particular, we focus on the problem of discon-

nections induced by the constructive definition based on several levels of maps.

This multilevel representation is more or less a graph pyramid in sense that

each level can be compute from the previous one in term of merge operations.

Furthermore, algorithms extracting these maps from a segmented image have

been given in [5] and have been implemented and tested in practical applications.

1. Introduction

Before image analysis or processing, it’s necessary to group all information

contained in images: this is regions segmentation which is the first step of any

image processing. After this first step, analysis process can be run in order

to try to recognize objects in the image. Some interactive or semi-interactive

process can also be applied, for instance user can select some regions to be

merged. But all these process need one data structure which encodes all the

information resulting of regions segmentation, and which allows efficient im-

plementation of such algorithms. Such a data structure should characterize the

objects it encodes, should be single, minimal and invariant for rigid transfor-

mations (rotation, translation, scale, local deformation). Moreover, one other

important constraint is the data size of the structure. Indeed, we work in 3d,

and a too large data size can prevent using the model.

We present in this paper a model which fulfil all these properties. This model

encodes all topological information of images and allows efficient algorithms for

image processing. Moreover, an embedding which encodes objects geometry can

be easily added. It characterizes objects in respect of the constraints presented

above. The minimality of our model ensure the important property that two

topological equivalent objects have the same and single representation.



Geometrical modelling is used to represent 3d objects and several data struc-

tures have been defined. For example, [4] use a boundary representation based

on planar or combinatorial map (first described in [12, 19]). [17] has shown

that combinatorial maps encode all topological information of any subdivision

of a n-d space. For this reason, combinatorial maps derived structures have

often been used to solve the problem of encoding two dimensional images, for

instance the frontier topological graph [14], the topological maps [8, 6] or dual

graphs [15]. But either these structures are hardly extendable in 3d, as the

frontier topological graph and dual graphs, or aren’t minimal and depend on

the objects geometry, as the border map [5] and the extension of the topological

map proposed in [7].

In order to present our model, we introduce a new notion of simplification level.

These levels allow us to progressively simplify our structure, and finally obtain

the minimal and single structure we look for. This special construction gives

in a straight way an algorithmic definition of the topological map, which is

the minimal map encoding an image. This definition can be easily extended

in n-d by generalizing the construction process. Moreover, some intermediary

levels of map introduced are interesting. Low levels are simpler to extract from

image but are more consuming in memory space. This is the reverse for the

higher levels. Moreover, algorithms are simpler to write for low levels, but their

running time are often more long due to the greater number of basic elements to

look at and to update. These different levels of simplification allow to choose in

between different sorts of maps according to the specification of our application.

We give Section 2. a short recall of combinatorial maps. Then, Section 3. we

show how they will be used to encode segmented images. Section 4. presents

the 3d topological map and our notion of simplification levels. In Section 5. we

show briefly one of our implementation of this model and present some results.

Then Section 6. we conclude the paper.

2. Combinatorial maps recall

Combinatorial maps are a mathematical model of space subdivision represen-

tation. A subdivision is a partition of a n dimensional topological space into

(n + 1) subsets whose elements are cells of dimension 0, 1, 2, 3, . . . n. Border

relations are defined in between these cells. We say that two cells are incident

when one belongs to the border of the second, and that two i-cells are adjacent

if they are both incident to the same cell. Combinatorial maps encode all the

subdivisions and the incident relations, and so represent all the topology. They

are defined formally for any dimension, and we say n-map for a n dimensional



combinatorial map. The n-map can encode all orientable manifold subdivisions

of a n dimensional space. They were generalized in [16, 17] in order to encode

all n dimensional, orientable or not, subdivisions of n space.

The definition of n-map is based onto a single basic type of abstract elements,

called darts, on which are defined a permutation β1 (a bijection of S on S) and

n− 1 involutions β2 . . .βn (permutations f such that f = f−1).
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a. Full representation. b. Implicit representation.

Fig. 1. Two representations of the same combinatorial map.

Each permutation βi connects two i-cells. Furthermore, all topological cells of

the space are represented implicitly, and we can easily find them all by a simple

and efficient cover algorithm. We can see an example of a 2-map Figure 1.a. On

this figure, darts are represented by straight line segments, β1 by grey arrows

and β2 by thick black arrows. We can see on this figure, that for instance,

β1(a) = b and β2(c) = e. β1 connects an edge and the following edge on the

same face, and β2 connects two faces which are incident to the same edge.

We can draw the same map without βi explicit representation, as we can see

Figure 1.b where each βi can be deduced by the drawing configuration.

Combinatorial maps encode only objects topology, and not their geometry. But

it’s very easy to add some geometry elements to some (even all) topological

cells of the combinatorial map: this operation is call embedding. The simplest

embedding of a combinatorial map, and also the most used, consist at linking

each topological vertex of the map with the coordinates of an Euclidean space

point. This embedding is of course valid only when all the edges of the map

are straight line segments, which is not already true.

3. Images, borders and map

We are only concerned with modelling of segmented images. As the combina-

torial maps model objects by their borders, we must look at the borders of the

regions of our segmented images. For that, we use interpixel topology [18, 1]



which define totally and formally borders in segmented images. Moreover, com-

binatorial maps encode the same space subdivisions as those used by interpixel

topology.

Fig. 2. A regions segmented image, and some maps which it models.

We can see Figure 2, a two dimensional regions segmented image, represented

with its interpixels boundaries, and three combinatorial maps which encodes

the boundaries of this image. A map encodes the boundaries of an image if

each edge of the map represent a part of an image boundary. Each of these

maps encode the same image. This can be easily proved by computing all the

topological characteristics of these maps, and verify that they are equivalent.

But to have a complete definition of a structure encoding all information con-

tained in an image, we have to define, first, a topological model, secondly, join

it with an embedding model, and then give algorithms extracting those models

from a region segmented image. We only present is this paper, the topological

aspect of our work, due to a lack space. We can see [3] for an optimal extraction

algorithm of our structure, and [13] for topological proof of objects validity.

4. Topological Map in dimension three

We have seen previously that several different maps can encode the same ob-

ject. We want to define the map which will characterize this object in a minimal

way. Our approach consists to start with a complete map, made up of cubes

sewn together. We then progressively simplify this map by merging two ele-

ments while the topology of the represented objects doesn’t change. The main

advantage of this method is its simplicity which allow us to easily extend it in

dimension n. We just have to find what mergings we have to do. We call the

starting map the level 0 map, and define each level from the previous one by a

particular sort of merging.

In the following we will say i dimensional merging for the operation which takes

two different i dimensional adjacent objects and make a simple object which is



the union of the two. These merging operations can be easily described for all

dimension in the framework of combinatorial maps. [13] can be seen for more

explanation about merging operations in combinatorial map.

In dimension three, we have three different types of merging: the volume merg-

ing (merging of dimension three), the face merging (merging of dimension two)

and the edge merging (merging of dimension one). The starting map for our

merging operations is the level 0 map.

Definition 1. The level 0 map corresponding to an n × m × k voxels image,

is the map having n×m× k cubes β3 sewn in between them, each cube corre-

sponding to a voxel.

Of course, each cube is made up 6 faces β2 sew between them and each face

being made up 4 darts β1 sewn in between them. We begin by merging volumes

belonging to the same region.

Definition 2. The level 1 map is the map obtained from the level 0 map by

merging each couple of adjacent volumes belonging to the same region.

For the level 1 map, as we can see Figure 3.b, the volume merging remove

all faces being inside a same region. We have now only faces incident to two

different regions: those which encode the borders of the image. Note that in

a. Level 0. b. Level 1. c. Level 2.

Fig. 3. Levels 0, 1, and 2 for a three dimensional image.

the first figures we don’t represent face orientation in order to keep the figure

readable. For the same reason, we just show half of darts of the map. Indeed,

each face should be duplicated by another face sewn by β3 and representing

the same border seen by the other region.

We can see on this example that this map is single and totally defined by its

construction algorithm. We can also prove that the order of the merging doesn’t



change the map obtained, which ensure the unicity of this map. Each region of

this level 1 map is now encoded by at least one map. Indeed, a region always

has one exterior border (except the infinite region which has only one interior

border) but can have several interior borders. The paving has an interior border

due to the fact that there is a region (the cube) totally included into it. The

important information that these two borders belong to the same volume is

lost. This is an important topological information and it must be kept. To

solve this problem, we add to our structure an inclusion tree which recall this

information. With this tree, we can retrieve easily the inclusion topological

property. Now, we have to look for face merging in order to obtain the next

simplification level.

Definition 3. The level 2 map is the map obtained from the level 1 map by

merging each couple of adjacent and coplanar faces incident to a degree two

edge.

We can see Figure 3.c the level 2 map of our example. We merge only the face

incident to a degree two edge, because there are the only ones which can be

merged without losing topological information. Moreover, we chose, initially,

to merge only coplanar faces in order to be able to embed edges by a straight

line segment. This allow us to define a simple embedding by associating with

each topological vertex of the map the coordinates of an Euclidean point, which

is not true if we merge non-coplanar faces. But this face merging can lead to

face disconnections, as we can see on our example for the bottom and up faces.

Two borders of the same face have been disconnected. But this information is a

topological information and must be kept. For that, we add another structure

which, for each face of the 3-map, keep the list of borders of this face, each

border being represented by one dart. For our example, the upper face have

two darts in its list of borders, one for exterior border and one for interior. If

each dart of the map know the face it belongs to, we can reconstruct each face

correctly and compute topological characteristics for each face, even those who

have disconnected borders.

We can remark on our example that each edge of the map have the same

length, which correspond to the length of a voxel. We are going to do some

edge merging in order to remove non-necessary darts.

Definition 4. The level 3 map is the map obtained from the level 2 map by

merging each couple of adjacent and lined up edges incident to a degree two

vertex.

We can see the level 3 map of our example Figure 4.a. The merging of the lined



a. Level 3. b. Level 4. c. Level 5.

Fig. 4. Levels 3, 4 and 5.

up edges incident to degree two vertex can’t lead to disconnection. In fact, this

merging can be considered as a simple extension of lined up edges of the map,

when we can. Until this level, we have only merge lined up cells, and so we have

all edges of this level 3 map which can be embedded by a straight line segment.

The embedding of this map can be simply defined by its vertices. This is this

level map which is called border map in [5], and which is fluently used by the

geometrical modelisation world, due to its simplicity of implantation and using.

But this level isn’t really satisfying. It isn’t stable for rigid transformations (two

equivalent images by these transformations don’t have the same map) and the

number of darts of this map depends on the geometry of the modeled objects.

This level can’t characterize in a single way objects its encode. To solve this

problem, we should do the same merging for the other cells we have already

done for lined up cells.

Definition 5. The level 4 map is the map obtained from the level 3 map by

merging each couple of adjacent and non coplanar faces incident to a degree

two edge.

As for the coplanar faces merging, the merge of non coplanar faces can also

involves face disconnections, but this problem is solve with the same solution

already used for level 2, with the face structure and its list of borders. We can

see Figure 4.b the level 4 map of our example. We can remark that it remains

just a few darts. But this few number of darts contains, with the additional

structure, all the same topological information than the 3 previous levels. For

instance, the cube included into the paving is now represented just by two

darts β2 sewn between them. The information associated is: “there is only one

face between this two objects, this face doesn’t have border and doesn’t have

adjacency face”. There is not lost of topological information. Now we just have

to look at the edge merging to define the last level: the topological map.



Definition 6. The level 5 map is the map obtained from the level 4 map by

merging each couple of adjacent and non lined up edges incident to a degree

two vertex.

This merging can’t lead to disconnection and modification of topological char-

acteristics. We can see the level 5 map for our example image Figure 4.c. It is

just made of six darts. Two for the cube, and two for the different faces with

their two distinct borders. One face represents the exterior face of the paving,

and the other the interior face which crosses this paving. This map contains all

the topological information of the corresponding image.

We can prove that this level 5 map is topologically equivalent to the preceding

ones by computing and comparing all topological characteristics. Moreover,

this map is minimal for the merging operations: we can’t merge two adjacent

cells without lost topological information. This is why we call this last level the

topological map. This map verify all our needs: it’s single, minimal, invariant

for rigid transformation and encode all topological information of the image.

All these properties can easily be proven. We can’t give here these proofs due

to lack of available place.

5. Experimentation and analysis

We have developed a complete software which takes a three dimensional image

and computes directly any level of map encoding this image. This software

is based upon the linear and in one scan of the image algorithm present in

[3]. Moreover, we have implemented the topological model presented in this

paper as well as an embedding model which encode geometry of objects in

the image. We have tried several different embeddings to compare the different

results in term of memory space consuming and in term of computation time.

One interesting embedding is a hierarchical structure, where each dimension i

cell of the topological map was embedded by a dimension i map, which is of

course embedded itself with this hierarchical principle. This give an interesting

recursive definition of the maps. With this embedding, we extract topological

map of an 512 × 512 × 180 image in about 10 minutes1 of computation, and

the final model need about 300 Mb which stays reasonable in regard of actual

PC.

Another advantage of our different simplification levels is that the memory

space necessary to our structure decrease more and more for each higher level

of maps we computed. This is a very important advantage, because the space

1 With the input/output necessary time.



memory needed by the first level is, for an 512 × 512 × 180 image, about one

giga-bytes and can’t be compute on standard computer. We can look at [3] for

more details on the need of memory of the different levels of map.

6. Conclusion

In this paper, we have presented a model which encodes all topological infor-

mation of three dimensional objects: the topological map. This structure is

minimal, stable for rigid transformations, and give a single characterization of

three dimensional objects.

To give a formal definition of this map, we have introduced a notion of sim-

plification level which allows us to define progressively and easily each level of

map from the previous one. Moreover, some levels are interesting and actually

used by some particular applications. Indeed, if we haven’t memory space con-

straints and if we want to develop immediately a model for little image, low

level should be used. On the other hand, for big image, we must work with a

higher level which is less costly in memory space, and more fast in computing

time for all algorithms. But higher levels are more difficult to implement. These

different levels of map are interesting also by the large choice they give.

Our simplification levels can be look as map pyramids [11] where the contrac-

tion operation would be replaced by our merging. This is one of our present

interest for future works. Moreover, the topological map can be the starting

point of several simplifications, but which would be with loss of information.

This would give a multi-scale representation.

At last, these levels were successfully tested in a software which extracts any

level from a three dimension image. We now must study, as done in two di-

mension in [9, 10, 2], operations acting on our topological map. When this

operations will be defined, we will be able to make some high level treatments.

Our main goal is to be able, with the help of the maps, to refine automat-

ically the segmentation of an image, and to have an interactive software for

manipulation of three dimensional segmented images.
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