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Abstract. Frequent itemset mining (FIM) is one of the fundamental cornerstones
in data mining. While, the problem of FIM has been thoroughly studied, few of
both standard and improved solutions scale. This is mainly the case when i) the
amount of data tends to be very large and/or ii) the minimum support (MinSup)
threshold is very low. In this paper, we propose a highly scalable, parallel frequent
itemset mining (PFIM) algorithm, namely Parallel Absolute Top Down (PATD).
PATD algorithm renders the mining process of very large databases (up to Ter-
abytes of data) simple and compact. Its mining process is made up of only one
parallel job, which dramatically reduces the mining runtime, the communication
cost and the energy power consumption overhead, in a distributed computational
platform. Based on a clever and efficient data partitioning strategy, namely Item
Based Data Partitioning (IBDP), PATD algorithm mines each data partition in-
dependently, relying on an absolute minimum support (AMinSup) instead of a
relative one. PATD has been extensively evaluated using real-world data sets. Our
experimental results suggest that PATD algorithm is significantly more efficient
and scalable than alternative approaches.

Keywords: Machine Learning, Data Mining, Frequent Itemset, Big Data, MapReduce

1 Introduction

Since a few decades, the amount of data in the world and our lives seems ever-increasing.
Nowadays, we are completely overwhelmed with data, it comes from different sources,
such as social networks, sensors, etc. With the availability of inexpensive storage and
the progress that has been made in data capture technology, several organizations have
set up very large databases, known as Big Data [1]. The processing of this massive
amount of data, helps leveraging and uncovering hidden relationships, and brings up
new, and useful information. Itemsets are one of these tackled levers and consist in
frequent correlations of features. Their discovery is known as Frequent itemset mining
(FIM for short), and presents an essential and fundamental role in many domains. In
business and e-commerce, for instance, FIM techniques can be applied to recommend
new items, such as books and different other products. In science and engineering, FIM
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can be used to analyze such different scientific parameters (e.g, based on their regular-
ities). Finally, FIM methods can help to perform other data mining tasks such as text
mining [2], for instance, and, as it will be better illustrated by our experiments in Section
4, FIM can be used to figure out frequent co-occurrences of words in a very large-scale
text database. However, the manipulation and processing of large-scale databases have
opened up new challenges in data mining [3]. First, the data is no longer located in one
computer, instead, it is distributed over several machines. Thus, a parallel and efficient
design of FIM algorithms must be taken into account. Second, parallel frequent item-
set mining (PFIM for short) algorithms should scale with very large data and therefore
very low MinSup threshold. Fortunately, with the availability of powerful program-
ming models, such as MapReduce [4] or Spark [5], the parallelism of most FIM al-
gorithms can be elegantly achieved. They have gained increasing popularity, as shown
by the tremendous success of Hadoop [6], an open-source implementation. Despite the
robust parallelism setting that these solutions offer, PFIM algorithms remain holding
major crucial challenges. With very low MinSup, and very large data, as will be illus-
trated by our experiments, most of standard PFIM algorithms do not scale. Hence, the
problem of mining large-scale databases does not only depend on the parallelism design
of FIM algorithms. In fact, PFIM algorithms have brought the same regular issues and
challenges of their sequential implementations. For instance, given best FIM algorithm
X and its parallel version X ′. Consider a very low MinSup δ and a database D. If X
runs out of memory in a local mode, then, with a large database D′, X ′ might also ex-
ceed available memory in a distributed mode. Thus, the parallelism, all alone, does not
guarantee a successful and exhaustive mining of large-scale databases and, to improve
PFIM algorithms in MapReduce, other issues should be taken into account. Our claim
is that the data placement is one of these issues. We investigate an efficient combination
between a mining process (i.e, a PFIM algorithm) and an efficient placement of data,
and study its impact on the global mining process.

We have designed and developed a powerful data partitioning technique, namely
Item Based Data Partitioning (IBDP for short). One of the drawbacks of existing PFIM
algorithms is to settle for a disjoint placement. IBDP allows, for a given item i to be
placed in more than one mapper if necessary. Taking the advantages from this clever
data partitioning strategy, we have designed and developed a MapReduce based PFIM
algorithm, namely Parallel Absolute Top Down Algorithm (PATD for short), which is
capable to mine a very large-scale database in just one simple and fast MapReduce
job. We have evaluated the performance of PATD through extensive experiments over
two massive datasets (up to one Terabyte and half a billion Web pages). Our results
show that PATD scales very well on large databases with very low minimum support,
compared to other PFIM alternative algorithms.

The rest of the paper is organized as follows. Section 2 gives an overview of FIM
problem, basic used notations, and the necessary background. In Section 3, we propose
our PATD algorithm and we depict its whole core working process. Section 4 reports on
our experimental validation over real-world data sets. Section 5 discusses related work,
and Section 6 concludes.
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2 Definitions and Background

In this section, we set up the basic notations and terminology, that we are going to adopt
in the rest of the paper.

The problem of FIM was first introduced in [7], and then manifold algorithms have
been proposed to solve it. In definition 1, we adopt the notations used in [7].

Definition 1. Let I = {i1, i2, . . . , in} be a set of literals called items. An Itemset X
is a set of items from I, i.e. X ⊆ I. The size of the itemset X is the number of items
in it. A transaction T is a set of elements such that T ⊆ I and T 6= ∅. A transaction
T supports the item x ∈ I if x ∈ T . A transaction T supports the itemset X ⊆ I if
it supports any item x ∈ X , i.e. X ⊆ T . A database D is a set of transactions. The
support of the itemset X in the database D is the number of transactions T ∈ D
that contain X . An itemset X ⊆ I is frequent in D if its support is equal or higher
than aMinSup threshold. Amaximalfrequentitemset is a frequent itemset that has
no frequent superset.

The FIM problem consists of extracting all frequent itemset from a database D with a
minimum support MinSup specified as a parameter.

Example 1. Let consider a database D with 5 transactions as shown in Table 1. The
items in each presented transaction are delimited by commas. With a minimum support
of 3, there will be no frequent items (and no frequent itemsets). With a minimum support
of 2, there will be 8 frequent itemsets:{{{a}, {b}, {c}, {f}, {g}, {a, c}, {b, c}, {f, g}}.

TID Transaction
T1 a, b, c
T2 a, c, d
T3 b, c
T4 e, f, g
T5 a, f, g

Table 1: Database D

In this paper, we focus on parallel frequent itemset mining problem, where the data
is distributed over several computational machines. We have adopted MapReduce as
a programming model to illustrate our mining approach, however, we strongly believe
that our proposal would have good performance results in other parallel frameworks too
(e.g. Spark).

3 Parallel Absolute Top Down Algorithm

As we briefly mentioned in Section 1, using an efficient data placement technique,
could significantly improve the performance of PFIM algorithms in MapReduce. This



4 Saber Salah, Reza Akbarinia, and Florent Masseglia

is particularly the case, when the logic and the principle of a parallel mining process is
highly sensitive to its data. For instance, let consider the case when most of the workload
of a PFIM algorithm is being performed on the mappers. In this case, the way the data
is exposed to the mappers, could contribute to the efficiency and the performance of the
whole mining process (i.e, invoked PFIM algorithm).

In this context, we point out to the data placement, as a custom placement of
database transactions in MapReduce. To this end, we use different data partitioning
methods. We illustrate the impact of data placement techniques on the performance of
PFIM algorithms, by considering particular PFIM algorithms which are based on two
MapReduce jobs schema (2-Jobs schema for short).

In this section, first, we investigate the impact of partitioning data (i.e, impact of
data placement) on 2-Jobs schema. Second, we introduce our IBDP method for data
partitioning, and then we detail its working logic and principle. Finally, we introduce
PATD algorithm and elucidate its design and core mining process in MapReduce.

3.1 Impact of Partitioning Data on 2-Jobs Schema

Performing a mining process in two steps was first proposed in [8] and it was designated
for centralized environments. SON algorithm [8] divides a mining process as follows:

� Step 1: Divide the input database D into n data chunks (i.e, data splits), where
D = {P1, P2, . . . , Pn}. Then, mine each data chunk (Pi) in the memory, based
on a local minimum support (LMinSup), and a specific FIM algorithm. Thus, the
first step of SON algorithm is to determine a list of local frequent itemsets (LFI).

� Step 2: From previous step result, proceed by filtering the local frequent itemsets in
LFI list, based on a global minimum support GMinSup. This may be done with
a scan on D and checking the frequency of each itemset is LFI . The main idea is
that any frequent itemset on D will be frequent on at least one chunk Pi and will
be found in LFI . Then, return a list of global frequent itemsets (GFI) which is a
subset of LFI (GFI ⊆ LFI).

In a massively distributed environment, the main bottleneck of such 2-Jobs schema
PFIM algorithm is its first execution phase, where a FIM algorithm has to be executed
on the chunks. The choice of this algorithm is therefore crucial. Relying on SON min-
ing principle, we have implemented a parallel version of CDAR [9] and Apriori [7]
algorithms on MapReduce, namely, Parallel Two Round CDAR (P2RC) and Parallel
Two Round Apriori (P2RA) respectively. Each version makes use of CDAR or Apriori
on the chunks in the first phase. P2RC divides the mining process into two MapReduce
jobs as follows:

� Job 1: In the first phase, the principle of CDAR (see [9] for more details) is adapted
to a distributed environment. A global minimum supportGMinSup ∆ is passed to
each mapper. The latter deduces a local minimum support LMinSup δ from∆ and
its input data split (i.e, number of transaction in the input split). Then, each mapper
divides its input data split (S) into n data partitions, S = {S1, S2, . . . , Sn}. Each
partition Si in S holds only transactions that have length i, where the length of a
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transaction is the number of items in it. Then, the mapper starts mining the data
partitions Si...Sn according to transaction lengths in decreasing order. A trans-
action in each partition accounts for an itemset. If a transaction T is frequent
(Support(T ) ≥ δ) in partition Si+1, then it will be stored in a list of frequent
itemsets L. Otherwise, T will be stored in a temporary data structure Temp. After
checking the frequency of all transactions T in Si+1, the process continues by gen-
erating i subsets of all T in Temp and adds the i generated subsets to partition Si.
The same mining process is carried out until visiting all partitions Si in S. Before
counting the Support of a transaction T , an inclusion test of T in L is performed.
If the test returns true, the computation of the Support of T will not be consid-
ered as T is already in L which means frequent. Each mapper emits all its local
frequent itemsets to the reducer. The reducer writes all local frequent itemsets to
the distributed file system.

� Job 2: Each mapper takes a data split S and a list of local frequent itemsets LFI .
Each mapper determines the inclusion of LFI elements in each transaction of S.
If there is an inclusion, then the mapper emits the itemset as a key and one as value
(key: itemset, value: 1). A global minimum support GMinSup ∆ is passed to the
reducer. The reducer simply iterates over the values of each received key, and sums
them up in variable sum. If (sum ≥ ∆), then the itemset under consideration is
globally frequent.

As illustrated above, the main workload of P2RC algorithm is done on the mappers
independently. Intuitively, the mapper that holds more homogeneous data (i.e, homo-
geneous transactions) will be faster. Actually, by referring to the mining principle of
CDAR, a mapper that holds homogeneous transactions (i.e, similar transactions) allows
for more itemset inclusions which in turn results in less subsets generation. Thus, plac-
ing each bucket of similar transactions (non-overlapping data partitions) on the mappers
would improve the performance of P2RC algorithm. This data placement technique can
be achieved by means of different data partitioning methods.

In contrast, the partitioning of data based on transaction similarities (STDP for
short: Similar Transaction Data Partitioning), logically would not improve the per-
formance of Parallel Two Round Apriori (P2RA), instead it should lower it. In this
case, each mapper would hold a partition of data (i.e, data split) of similar transactions
which allows for a high number of frequent itemsets in each mapper. This results in a
higher number of itemset candidates generation. Interestingly, using a simple Random
Transaction Data Partitioning (RTDP for short) to randomly place data on the mappers,
should give the best performance of P2RA. Our experiments given in Section 4 clearly
illustrate this intuition.

P2RC performs two MapReduce jobs to determine all frequent itemsets. Thus,
PFIM algorithms that depend on SON process design duplicate the mining results. Also,
at their first mining step (i.e, first MapReduce job), 2-Jobs schema PFIM algorithms out-
put itemsets that are locally frequent, and there is no guarantee to be globally frequent.
Hence, these algorithms amplify the number of transferred data (i.e, itemsets) between
mappers and reducers.

To cover the above-mentioned issues, our major challenge is to limit the mining
process to one simple job. This would guarantee low data communications, less energy
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power consumption, and a fast mining process. In a distributed computational environ-
ment, we take the full advantage of the available massive storage space, CPU(s) etc.

3.2 IBDP: An Overlapping Data Partitioning Strategy

Our claim is that duplicating the data on the mappers allows for a better accuracy in the
first job and therefore leads to less infrequent itemsets (meaning less communications
and fast processing). Consider a data placement with a high overlap (i.e, placement of
data partitions that share several transactions), with for instance 10 overlapping data
partitions, each holding 50% of the database. Obviously, there will be less globally in-
frequent itemsets in the first job (i.e, if an itemset is frequent on a mapper, then it is
highly likely to be frequent on the whole database.). Unfortunately, this approach has
some drawbacks, we still need a second job to filter the local frequent itemsets and
check their global frequency. Furthermore, such a thoughtless placement is absolutely
not plausible, given the massive data sets we are dealing with. However, we take advan-
tage of this duplication opportunity and propose IBDP, an efficient strategy for parti-
tioning the data over all mappers, with an optimal amount of duplicated data, allowing
for an exhaustive mining in just one MapReduce job. The goal of IBDP is to replace
part of the mining process by a clever placement strategy and optimal data duplication.

The main idea of IBDP is to consider the different groups of frequent itemsets that
are usually extracted. Let us consider a minimum threshold∆ andX , a frequent itemset
according to∆ onD. Let SX be the subset ofD restricted to the transactions supporting
X . The first expectation is to have |SX | � |D| since we are working with very low
minimum thresholds. The second expectation is that X can be extracted from SX with
∆ as a minimum threshold. The goal of IBDP is a follows: for each frequent itemset X ,
build SX the subset from which the extraction ofX can be done in one job. Fortunately,
itemsets usually share a lot of items between each other. For instance, with Wikipedia
articles, there will be a group of itemsets related to the Olympic games, another group
of itemsets related to Algorithms, etc. IBDP exploits these affinities between itemsets.
It divides the search space by building subsets of D that correspond to these groups of
itemsets, optimizing the size of duplicated data.

More precisely, given a database of transactionsD, and its representation in the form
of a set S of n of non-overlapping data partitions S = {S1, S2, . . . , Sn}. Each one of
these non-overlapping data partitions (i.e,

⋂n
i=1 Si = ∅)holds a set of similar transac-

tions (the union of all elements in S is D,
⋃n

i=1 Si = D). For each non-overlapping
data partition Si in S we extract its "centroid". The centroid of Si contains the different
items and their number of occurrences in Si. Only the items having a maximum num-
ber of occurrences over the whole set of partitions are kept for each centroid. Once the
centroids are built, IBDP simply intercepts each centroid of Si with each transaction in
D. If a transaction in D shares an item with a centroid of Si, then the intersection of
this transaction and the centroid will be placed in an overlapping data partition called
S′
i. If we have n non-overlapping data partitions (i.e, n centroids), IBDP generates n

overlapping data partitions and distributes them on the mappers.
The core working process of IBDP data partitioning and its parallel design on

MapReduce, are given in Algorithm 1, while its principle is illustrated by Example
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2.

Algorithm 1: IBDP
//Job11
Input: Non-overlapping data partitions S = {S1, S2, . . . , Sn} of a database D
Output: Centroids
//Map Task 12
map( key: Split Name: K1, value = Transaction (Text Line): V1 )3

- Tokenize V1, to separate all items4
emit (key: Item, value: Split Name)5

//Reduce Task 16
reduce( key: Item, list(values) )7

while values.hasNext() do8
emit (key:(Split Name) values.next (Item))9

//Job210
Input: Database D
Output: Overlapping Data Partitions
//Map Task 211
- Read previous job1 result once in a (key, values) data structure (DS), where key:12
SplitName and values: Items
map( key: Null: K1, value = Transaction (Text Line): V1 )13

for SplitName in DS do if Items.Item ∩V1 6= ∅ then14
emit (key: SplitName, value: V1)15

//Reduce Task 216
reduce( key: SplitName, list(values) )17

while values.hasNext() do18
emit (key: (SplitName), values.next: (Transaction))19

� Job 1 Centroids: Each mapper takes a transaction (line of text) from non-overlapping
data partitions as a value, S = {S1, S2, . . . , Sn}, and the name of the split being
processed as a key. Then, it tokenizes each transaction (value) to determine differ-
ent items and emits each item as a key coupled with its split name as value. The
reducer aggregates over the keys (items) and emits each key (item) coupled with its
different value (split name) in the list of values (split names).

� Job 2 Overlapping Partitions: The format of the MapReduce output is set to "Mul-
tiFileOutput" in the driver class. In this case, the keys will denote the name of
each overlapping data partition output (we override the "generateFileNameForKey-
Value" function in MapReduce to return a string as key). In the map function, first
we store (once) the previous MapReduce job (Centroids) in a (key, value) data
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structure (e.g. MultiHashMap etc.). The key in the used data structure is the split
name, and the value is a list of items. Then, each mapper takes a transaction (line of
text) from the database D, and for each key in the used data structure, if there is an
intersection between the values (list of items) and the transaction being processed,
then the mapper emits the key as the split name (in the used data structure) and
value as the transaction of D. The reducer simply aggregates over the keys (split
names) and writes each transaction of D to an overlapping data partition file.

Example 2. Figure 1 shows a database D with 5 transactions. In this example, we have
two non-overlapping data partitions at step (1) and thus two centroids at step (2). The
centroids are filtered in order to keep only the items having the maximum number of
occurrences (3). IBDP intercepts each one of these two centroids with all transactions
in D. This results in two overlapping data partitions in (4) where the intersections only
are kept in (5). Finally, the maximal frequent itemsets are extracted in (6). Redundancy
is used for the counting process of different itemsets. For instance, transaction efg is
duplicated in both partitions in (5) where the upper version participates to the frequency
counting of a and the lower version participates to the frequency counting of fg.

Fig. 1: Data partitioning process: (1) partitions of similar transactions are built; (2) cen-
troids are extracted; (3) and filtered; (4) transaction are placed and filtered ; (5) to keep
only the intersection of original transactions and centroids; (6) local frequent itemsets
are also globally frequent.

3.3 1-Job Schema: Complete Approach

We take the full advantage from IBDP data partitioning strategy and propose a powerful
and robust 1-Job Schema PFIM algorithm namely PATD. PATD algorithm limits the
mining process of very large database to one simple MapReduce job and exploits the
natural design of MapReduce framework. Given a set of overlapping data partitions
(S = {S1, S2, . . . , Sm}) of a databaseD and an absolute minimum supportAMinSup
∆, the PATD algorithm mines each overlapping data partition Si independently. At each
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mappermi, i = 1, ..., n, PATD performs CDAR algorithm on Si. The mining process is
based on the same AMinSup ∆ for all mappers, i.e, each overlapping data partition Si

is mined based on ∆. The mining process is carried out in parallel on all mappers. The
mining result (i.e, frequent itemsets) of each mappermi is sent to the reducer. The latter
receives each frequent itemsets as its key and null as its value. The reducer aggregates
over the keys (frequent itemsets) and writes the final result to a distributed file system.

The main activities of mappers and reducers in PATD algorithm are as follows:

� Mapper: Each mapper is given a Si, i = 1...m overlapping data partition, and a
global minimum support (i.e, AMinSup). The latter performs CDAR algorithm
on Si. Then, it emits each frequent itemset as a key and null for its value, to the
reducer.

� Reducer: The reducer simply aggregates over the keys (frequent itemsets received
from all mappers) and writes the final result to a distributed file system.

As illustrated in the mappers and reducers logic, PATD performs the mining process in
one simple and efficient MapReduce job. These properties of PATD are drawn from the
use of the robust and efficient data partitioning strategy IBDP.

Example 3. Lets take the example of Figure 1. Given an absolute minimum support
∆ = 2 (i.e, an itemset is considered frequent, if it appears at least in two transactions
in D). Following PATD mining principle, each mapper is given an overlapping data
partition Si as value. In our example, we have two overlapping data partitions (5). We
consider two mappers m1 and m2, each one performs a complete CDAR with ∆ = 2.
In Figure 1 (5) from bottom-up : mapper m1 mines first overlapping data partition and
returns {fg} as a frequent itemset. Alike, mapper m2 mines second overlapping data
partition and returns {{ac}, {bc}}. All the results are sent to the reducer, the reducer
aggregates over the keys (frequent itemsets) and outputs the final result to a distributed
file system.

3.4 Proof of Correctness

To prove the correctness of PATD algorithm, it is sufficient to prove that if an itemset x
is frequent, then it is frequent in at least one of the partitions produced by IBDP. Since,
each partition is locally mined by one mapper, then x will be found as frequent by one
of the mappers. Thus, the correctness proof is done by the following lemma.

Lemma 1. Given a databaseD = {T1, T2, . . . , Tn} and an absolute minimum support
∆, ∀ itemset x in D we have: SupportD(x) ≥ ∆⇔ ∃ P \ SupportP(x) ≥ ∆ where
P denotes one of the data partitions obtained by performing IBDP on D.

Proof.

We first prove that if SupportD(x) ≥ ∆ then ∃ P \ SupportP(x) ≥ ∆.
Let denote by X the set of all unique items of D. The intersection of all transac-
tions {T1, T2, . . . , Tn} with X is D. Thus, in this particular case, SupportD(x) ≥
∆ ⇒ ∃ D \ SupportD(x) ≥ ∆. If the set of unique items X is partitioned
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into k partitions, then the intersection of each one of these k partitions with all
{T1, T2, . . . , Tn} in D, would result in a new data partition P . Let denote by
Π = {P1, P2, . . . , Pk}, the set of all these new data partitions. For any given item-
set x in D, its total occurrence will be in one partition of Π , because, all items
in X are shared among these partitions in Π . Therefore, SupportD(x) ≥ ∆ ⇒
∃ IP \ SupportIP (x) ≥ ∆

Next, we prove the inverse, i.e. if ∃ P \ SupportP(x) ≥ ∆ then SupportD(x) ≥
∆.
This is done simply by using the fact that each partition P is a subset of D. Hence,
if the support of x in P is higher than ∆, then this will be the case in D. Thus, we
have: if ∃ P \ SupportP(x) ≥ ∆⇒ SupportD(x) ≥ ∆.
Therefore, we conclude that: SupportD(x) ≥ ∆⇔ ∃ P \ SupportP(x) ≥ ∆.

4 Experiments

To assess the performance of PATD algorithm, we have carried out extensive experi-
mental evaluations. In Section 4.1, we depict our experimental setup, and in Section 4.3
we investigate and discuss the results of our different experiments.

4.1 Experimental Setup

We implemented PATD, and all other presented algorithms on top of Hadoop-MapReduce,
using Java programming language version 1.7 and Hadoop version 1.0.3. For comparing
PATD performance with other PFIM alternatives, we implemented two bunches of algo-
rithms. First, we followed SON algorithm design and implemented Parallel Two Round
Apriori (P2RA) and Parallel Two Round CDAR (P2RC). These two PFIM algorithms
are based on random transaction data partitioning (RTDP) and similar transaction data
partitioning (STDP), respectively. Second, we designed and implemented a parallel ver-
sion of standard Apriori algorithm [7], namely Parallel Apriori (PA). For comparison
with PFP-Growth [10], we adopted the default implementation provided in the Mahout
[11] machine learning library (Version 0.7).

We carried out all our experiments on the Grid5000 [12] platform, which is a plat-
form for large-scale data processing. We have used a cluster of 16 and 48 machines re-
spectively for Wikipedia and ClueWeb data set experiments. Each machine is equipped
with Linux operating system, 64 Gigabytes of main memory, Intel Xeon X3440 4 core
CPUs, and 320 Gigabytes SATA hard disk.

4.2 Real World Datasets

To better evaluate the performance of PATD algorithm, we used two real-world data
sets. The first one is the 2014 English Wikipedia articles [13] having a total size of 49
Gigabytes, and composed of 5 million articles. The second one is a sample of ClueWeb
English data set [14] with size of one Terabyte and having 632 million articles. For each
data set, we performed a data cleaning task. We removed all English stop words from all
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articles, we obtained data sets where each article represents a transaction (items are the
corresponding words in the article) to each invoked PFIM algorithm in our experiments.

We vary the MinSup parameter value for each PFIM algorithm. We evaluate each
algorithm based on its response time, its total amount of transferred data, and its en-
ergy power consumption. In particular, we consider these three different measurements,
when MinSup is very low.
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Fig. 2: Runtime and scalability on English Wikipedia data set

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

0.001 0.0008 0.0006 0.0004 0.0002 0.0001 0.00008

T
im

e
 (

s
)

Support (%)

PA
P2RA

PFP-Growth
P2RC
PATD

(a) All algorithms

 0

 5000

 10000

 15000

 20000

 25000

 30000

0.00008 0.00006 0.00004

T
im

e
 (

s
)

Support (%)

P2RC
PATD

(b) Focus on scalable algorithms

Fig. 3: Runtime and scalability on ClueWeb data set

4.3 Runtime and Scalability

Figures 2 and 3 give a complete view of our experiments on both English Wikipedia and
ClueWeb data sets. Figures 2(a) and 2(b) report our experimental results on the whole
English Wikipedia data set. Figure 2(a) gives an entire view on algorithms performances
for a minimum support varying from 0.12% to 0.01%. We see that PA algorithm runtime
grows exponentially, and gets quickly very high compared to other presented PFIM
algorithms. This exponential run-time reaches its highest value with 0.04% threshold.
Below this threshold, PA needs more resources (e.g. memory) than what exists in our
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tested machines, thus, it is impossible to extract frequent itemsets with this algorithm.
Another interesting observation is that P2RA performance tends to be close to PFP-
Growth until a minimum support of 0.02%. P2RA algorithm continues scaling with
0.01% while PFP-Growth does not. Although, P2RC scales with low minimum support
values, PATD outperforms this algorithm in terms of running time. In particular, with
a minimum support of 0.01% PATD algorithm outperforms all other presented PFIM
algorithms. This difference in the performance is better illustrated in Figure 2(b).
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(b) ClueWeb data set.

Fig. 4: Data communication
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Fig. 5: Energy consumption
Figure 2(b) focuses on the differences between the four algorithms that scale in

Figure 2(a). Although P2RC continues to scale with 0.002%, it is outperformed by
PATD in terms of running time. With 0.002% threshold, we observe a big difference in
the response time between PATD and P2RC. This very good performance of PATD is
due to its clever and simple mining principle, and its simple MapReduce job property
that allows a low mining time.

In Figures 3(a) and 3(b), similar experiments have been conducted on the ClueWeb
data set. We observe that the same order between all algorithms is kept compared to
Figures 2(a) and 2(b). There are three bunches of algorithms. One made of PA which
cannot reasonably applied to this data set, whatever the minimum support. In the second
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bunch, we see that PFP-Growth suffers from the same limitations as could be observed
on the Wikipedia data set in Figure 2(a), and it follows a behavior that is very similar
to that of P2RA, until it becomes impossible to execute. P2RA continues scaling until
stops executing with a minimum support of 0.0001%. In the third bunch of algorithms,
we see P2RC and PATD scale until 0.00008%. We decreased the minimum support pa-
rameter, and we zoom on these two algorithms. As shown in Figure 3(b), we observe
a very good performance of PATD compared to P2RC. The P2RC algorithm becomes
inoperative with a minimum support below 0.00006%, while PATD continues scaling
very well. This big difference in the performance behavior between PATD and all other
presented algorithms shows the high capability of PATD in terms of scaling and re-
sponse time. With both, Gigabytes and Terabytes of data, PATD gives a very good and
significant performance. Whatever, the data size, the number of transactions, and the
minimum support, PATD scales and achieves very good results.

4.4 Data Communication and Energy Consumption

Let’s now study the amount of transferred data for each PFIM algorithm. Figure 4(a)
shows the transferred data (in mega bytes) of each presented algorithm on English
Wikipedia data set. We observe that PA has the highest peak, this is simply due to
its several round of MapReduce executions. In other hand, we see that P2RA, P2RC
and PFP-Growth represent smaller peaks. Among all the presented algorithms in Fig-
ure 4(a), we clearly distinguish PATD algorithm. We can see that whatever the used
MinSup, PATD does not allow much data transfer compared to other algorithms. This
is because PATD does not rely on chains of jobs like other presented alternatives. In
addition, contrary to other PFIM algorithms, PATD limits the mappers from emitting
non frequent itemsets. Therefore, PATD algorithm does not allow the transmission of
useless data (itemsets).

In Figure 4(b), we report the results of the same experiment on ClueWeb data set.
We observe that PATD algorithm always has the lowest peak in terms of transferred
data comparing to other algorithms.

We also measured the energy consumption of the compared algorithms during their
execution. We used the Grid5000 tools that measure the power consumption of the
nodes during a job execution. Figure 5 shows the total amount of the power consump-
tion of each presented PFIM algorithm. We observe in Figure 5, that the consumption
increases when decreasing the minimum support for each algorithm. We see that PATD
still gives a lower consumption comparing to other algorithms. Taking the advantage
from its parallel design, PATD allows a high parallel computational execution. This
impacts the mining runtime to be fast and allows for a fast convergence of the algo-
rithm and thus, a less consumption of the energy. PATD also transfers less data over the
network, and this is another reason for its lower energy consumption.

5 Related Work

In the literature, several endeavors have been made to improve the performance of FIM
algorithms [15] [16].
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Recently, and due to the explosive data growth, an efficient parallel design of FIM
algorithms has been highly required. FP-Growth algorithm [16] has shown an efficient
scale-up compared to other FIM algorithms, it has been worth to come up with a parallel
version of FP-Growth [10] (i.e. PFP-Growth). Although, PFP-Growth is distinguishable
with its fast mining process, PFP-Growth has accounted for different flaws. In particu-
lar, with very low minimum support, PFP-Growth may run out of memory as illustrated
by our experiments in Section 4. PARMA algorithm [17] uses an approximation in order
to determine the list of frequent itemsets. It has shown better running time and scale-up
than PFP-Growth. However, PARMA algorithm does not return an exhaustive list of
frequent itemsets, it only approximates them.

A parallel version of Apriori algorithm [18] requires n MapReduce jobs, in order to
determine frequent itemsets of size n. However, the algorithm is not efficient because
it requires multiple database scans. In order to overcome conventional FIM issues and
limits, a novel technique, namely CDAR has been proposed in [9]. This algorithm uses a
transactions grouping based approach to determine the list of frequent itemsets. CDAR
avoids the generation of candidates and renders the mining process more simple, by
dividing the database into groups of transactions. Although, CDAR [9] has shown an
efficient performance behavior, yet there has been no proposed parallel version of it.

Another FIM technique, called SON, has been proposed in [8], which consists of
dividing the database into n partitions. The mining process starts by searching the local
frequent itemsets in each partition independently. Then, the algorithm compares the
whole list of local frequent itemsets against the entire database to figure out a final list
of global frequent itemsets.

In this work, we have focused on the data placement as a fundamental and essential
mining factor in MapReduce. We proposed the PATD algorithm that not only reduces
the total response time of FIM process, but also its communication cost and energy
consumption.

6 Conclusion

We proposed a reliable and efficient MapReduce based parallel frequent itemset algo-
rithm, namely PATD, that has shown significantly efficient in terms of runtime and scal-
ability, data communication as well as energy consumption. PATD takes the advantage
of the efficient data partitioning technique IBDP. IBDP allows for an optimized data
placement on MapReduce. It allows PATD algorithm to exhaustively and quickly mine
very large databases. Such ability to use very low minimum supports is mandatory when
dealing with Big Data and particularly hundreds of Gigabytes like what we have done
in our experiments. Our results show that PATD algorithm outperforms other existing
PFIM alternatives, and makes the difference between an inoperative and a successful
extraction.
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